File: set.texi

package info (click to toggle)
octave 10.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 145,388 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 660; xml: 192
file content (516 lines) | stat: -rw-r--r-- 19,376 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
@c DO NOT EDIT!  Generated automatically by munge-texi.pl.

@c Copyright (C) 1996-2025 The Octave Project Developers
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <https://www.gnu.org/licenses/>.

@node Sets
@chapter Sets

Octave has a number of functions for managing sets of data.  A set is defined
as a collection of unique elements and is typically represented by a vector of
numbers sorted in ascending order.  Any vector or matrix can be converted to a
set by removing duplicates through the use of the @code{unique} function.
However, it isn't necessary to explicitly create a set as all of the functions
which operate on sets will convert their input to a set before proceeding.

@c unique scripts/set/unique.m
@anchor{XREFunique}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{y} =} unique (@var{x})
@deftypefnx {} {@var{y} =} unique (@var{x}, "rows")
@deftypefnx {} {@var{y} =} unique (@dots{}, "sorted")
@deftypefnx {} {@var{y} =} unique (@dots{}, "stable")
@deftypefnx {} {[@var{y}, @var{i}, @var{j}] =} unique (@dots{})
@deftypefnx {} {[@var{y}, @var{i}, @var{j}] =} unique (@dots{}, "first")
@deftypefnx {} {[@var{y}, @var{i}, @var{j}] =} unique (@dots{}, "last")
@deftypefnx {} {[@var{y}, @var{i}, @var{j}] =} unique (@dots{}, "legacy")
Return the unique elements of @var{x}.

If the input @var{x} is a column vector then return a column vector;
Otherwise, return a row vector.  @var{x} may also be a cell array of
strings.

If the optional argument @qcode{"rows"} is given then return the unique
rows of @var{x}.  The input must be a 2-D numeric matrix to use this option.

The optional argument @qcode{"sorted"}/@qcode{"stable"} controls the order
in which unique values appear in the output.  The default is
@qcode{"sorted"} and values in the output are placed in ascending order.
The alternative @qcode{"stable"} preserves the order found in the input
@var{x}.

If requested, return column index vectors @var{i} and @var{j} such that
@code{@var{y} = @var{x}(@var{i})} and @code{@var{x} = @var{y}(@var{j})}.

Additionally, if @var{i} is a requested output then one of the flags
@qcode{"first"} or @qcode{"last"} may be given.  If @qcode{"last"} is
specified, return the highest possible indices in @var{i}, otherwise, if
@qcode{"first"} is specified, return the lowest.  The default is
@qcode{"first"}.

Example 1 : sort order

@example
@group
unique ([3, 1, 1, 2])
@result{} [1, 2, 3]
unique ([3, 1, 1, 2], "stable")
@result{} [3, 1, 2]
@end group
@end example

Example 2 : index selection

@example
@group
[~, @var{i}] = unique ([3, 1, 1, 2], "first")
@result{} @var{i} = [2; 4; 1]
[~, @var{i}] = unique ([3, 1, 1, 2], "last")
@result{} @var{i} = [3; 4; 1]
@end group
@end example

Programming Notes: The input flag @qcode{"legacy"} changes the algorithm
to be compatible with @sc{matlab} releases prior to R2012b.  Specifically,
The index ordering flag is changed to @qcode{"last"}, and the shape of the
outputs @var{i}, @var{j} will follow the shape of the input @var{x} rather
than always being column vectors.

@xseealso{@ref{XREFuniquetol,,uniquetol}, @ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFsetxor,,setxor}, @ref{XREFismember,,ismember}}
@end deftypefn


@c uniquetol scripts/set/uniquetol.m
@anchor{XREFuniquetol}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{c} =} uniquetol (@var{A})
@deftypefnx {} {@var{c} =} uniquetol (@var{A}, @var{tol})
@deftypefnx {} {@var{c} =} uniquetol (@dots{}, @var{property}, @var{value})
@deftypefnx {} {[@var{c}, @var{ia}, @var{ic}] =} uniquetol (@dots{})
Return the unique elements of @var{A} within tolerance @var{tol}.

Two values, @var{x} and @var{y}, are within relative tolerance if
@code{abs (@var{x} - @var{y}) <= @var{tol} * max (abs (@var{A}(:)))}.

The input @var{A} must be a real (non-complex) floating point type (double
or single).

If @var{tol} is unspecified, the default tolerance is 1e-12 for double
precision input or 1e-6 for single precision input.

The function may also be called with the following optional property/value
pairs.  Property/value pairs must be passed after other input arguments:

@table @asis
@item @qcode{"ByRows"} (default: @code{false})
When true, return the unique rows of @var{A}.  @var{A} must be a 2-D array
to use this option.  For rows, the criteria for uniqueness is changed to
@code{all (abs (@var{x} - @var{y}) <= @var{tol}*max (abs (@var{A}),[],1))}
which compares each column component of a row against a column-specific
tolerance.

@item @qcode{"DataScale"}
The tolerance test is changed to
@code{abs (@var{x} - @var{y}) <= @var{tol}*@var{DS}} where @var{DS} is a
scalar unless the property @qcode{"ByRows"} is true.  In that case, @var{DS}
can either be a scalar or a vector with a length equal to the number of
columns in @var{A}.  Using a value of @code{1.0} for @var{DS} will change
the tolerance from a relative one to an absolute tolerance.  Using a value
of @code{Inf} will disable testing.

@item @qcode{"OutputAllIndices"} (default: @code{false})
When true, @var{ia} is a cell array (not a vector) that contains the indices
for @emph{all} elements in @var{A} that are within tolerance of a value in
@var{C}.  That is, each cell in @var{ia} corresponds to a single unique
value in @var{C}, and the values in each cell correspond to locations in
@var{A}.
@end table

The output @var{c} is a row vector if the input @var{A} is a row vector.
For all other cases, a column vector is returned.

The optional output @var{ia} is a column index vector such that
@code{@var{c} = @var{A}(@var{ia})}.  If the @qcode{"ByRows"} property is
true, the condition is @code{@var{c} = @var{A}(@var{ia}, :)}.  If the
@qcode{"OutputAllIndices"} property is true, then the values
@code{@var{A}(@var{ia}@{@var{i}@})} are all within tolerance of the unique
value @code{@var{c}(@var{i})}.

The optional output @var{ic} is a column index vector such that
@code{@var{A} = @var{c}(@var{ic})} when @var{A} is a vector.  When @var{A}
is a matrix, @code{@var{A}(:) = @var{c}(@var{ic})}.  If the @qcode{"ByRows"}
property is true then @code{@var{A} = @var{c}(@var{ic},:)}.

Example: small round-off errors require @code{uniquetol}, not @code{unique}

@example
@group
x = [1:5];
## Inverse_Function (Function (x)) should return exactly x
y = exp (log (x));
D = unique ([x, y])
@result{} [1   2   3   3   4   5   5]
C = uniquetol ([x, y])
@result{} [1   2   3   4   5]
@end group
@end example

@xseealso{@ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFsetxor,,setxor}, @ref{XREFismember,,ismember}}
@end deftypefn


@menu
* Set Operations::
@end menu

@node Set Operations
@section Set Operations

Octave supports several basic set operations.  Octave can compute the union,
intersection, and difference of two sets.  Octave also supports the
@emph{Exclusive Or} set operation.

The functions for set operations all work in the same way by accepting two
input sets and returning a third set.  As an example, assume that @code{a} and
@code{b} contains two sets, then

@example
union (a, b)
@end example

@noindent
computes the union of the two sets.

Finally, determining whether elements belong to a set can be done with the
@code{ismember} function.  Because sets are ordered this operation is very
efficient and is of order O(log2(n)) which is preferable to the @code{find}
function which is of order O(n).

@c intersect scripts/set/intersect.m
@anchor{XREFintersect}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{c} =} intersect (@var{a}, @var{b})
@deftypefnx {} {@var{c} =} intersect (@var{a}, @var{b}, "rows")
@deftypefnx {} {@var{c} =} intersect (@dots{}, "sorted")
@deftypefnx {} {@var{c} =} intersect (@dots{}, "stable")
@deftypefnx {} {@var{c} =} intersect (@dots{}, "legacy")
@deftypefnx {} {[@var{c}, @var{ia}, @var{ib}] =} intersect (@dots{})

Return the unique elements common to both @var{a} and @var{b}.

If @var{a} and @var{b} are both row vectors then return a row vector;
Otherwise, return a column vector.  The inputs may also be cell arrays of
strings.

If the optional input @qcode{"rows"} is given then return the common rows of
@var{a} and @var{b}.  The inputs must be 2-D numeric matrices to use this
option.

The optional argument @qcode{"sorted"}/@qcode{"stable"} controls the order
in which unique values appear in the output.  The default is
@qcode{"sorted"} and values in the output are placed in ascending order.
The alternative @qcode{"stable"} preserves the order found in the input.

If requested, return column index vectors @var{ia} and @var{ib} such that
@code{@var{c} = @var{a}(@var{ia})} and @code{@var{c} = @var{b}(@var{ib})}.

Programming Note: The input flag @qcode{"legacy"} changes the algorithm
to be compatible with @sc{matlab} releases prior to R2012b.

@xseealso{@ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFsetdiff,,setdiff}, @ref{XREFsetxor,,setxor}, @ref{XREFismember,,ismember}}
@end deftypefn


@c union scripts/set/union.m
@anchor{XREFunion}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{c} =} union (@var{a}, @var{b})
@deftypefnx {} {@var{c} =} union (@var{a}, @var{b}, "rows")
@deftypefnx {} {@var{c} =} union (@dots{}, "sorted")
@deftypefnx {} {@var{c} =} union (@dots{}, "stable")
@deftypefnx {} {@var{c} =} union (@dots{}, "legacy")
@deftypefnx {} {[@var{c}, @var{ia}, @var{ib}] =} union (@dots{})

Return the unique elements that are in either @var{a} or @var{b}.

If @var{a} and @var{b} are both row vectors then return a row vector;
Otherwise, return a column vector.  The inputs may also be cell arrays of
strings.

If the optional input @qcode{"rows"} is given then return rows that are in
either @var{a} or @var{b}.  The inputs must be 2-D numeric matrices to use
this option.

The optional argument @qcode{"sorted"}/@qcode{"stable"} controls the order
in which unique values appear in the output.  The default is
@qcode{"sorted"} and values in the output are placed in ascending order.
The alternative @qcode{"stable"} preserves the order found in the input.

The optional outputs @var{ia} and @var{ib} are column index vectors such
that @code{@var{a}(@var{ia})} and @code{@var{b}(@var{ib})} are disjoint sets
whose union is @var{c}.

Programming Note: The input flag @qcode{"legacy"} changes the algorithm
to be compatible with @sc{matlab} releases prior to R2012b.

@xseealso{@ref{XREFunique,,unique}, @ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFsetxor,,setxor}, @ref{XREFismember,,ismember}}
@end deftypefn


@c setdiff scripts/set/setdiff.m
@anchor{XREFsetdiff}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{c} =} setdiff (@var{a}, @var{b})
@deftypefnx {} {@var{c} =} setdiff (@var{a}, @var{b}, "rows")
@deftypefnx {} {@var{c} =} setdiff (@dots{}, "sorted")
@deftypefnx {} {@var{c} =} setdiff (@dots{}, "stable")
@deftypefnx {} {@var{c} =} setdiff (@dots{}, "legacy")
@deftypefnx {} {[@var{c}, @var{ia}] =} setdiff (@dots{})
Return the unique elements in @var{a} that are not in @var{b}.

If @var{a} is a row vector return a row vector; Otherwise, return a
column vector.  The inputs may also be cell arrays of strings.

If the optional input @qcode{"rows"} is given then return the rows in
@var{a} that are not in @var{b}.  The inputs must be 2-D numeric matrices to
use this option.

The optional argument @qcode{"sorted"}/@qcode{"stable"} controls the order
in which unique values appear in the output.  The default is
@qcode{"sorted"} and values in the output are placed in ascending order.
The alternative @qcode{"stable"} preserves the order found in the input.

If requested, return the index vector @var{ia} such that
@code{@var{c} = @var{a}(@var{ia})}.

Programming Note: The input flag @qcode{"legacy"} changes the algorithm
to be compatible with @sc{matlab} releases prior to R2012b.

@xseealso{@ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetxor,,setxor}, @ref{XREFismember,,ismember}}
@end deftypefn


@c setxor scripts/set/setxor.m
@anchor{XREFsetxor}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{c} =} setxor (@var{a}, @var{b})
@deftypefnx {} {@var{c} =} setxor (@var{a}, @var{b}, "rows")
@deftypefnx {} {@var{c} =} setxor (@dots{}, "sorted")
@deftypefnx {} {@var{c} =} setxor (@dots{}, "stable")
@deftypefnx {} {@var{c} =} setxor (@dots{}, "legacy")
@deftypefnx {} {[@var{c}, @var{ia}, @var{ib}] =} setxor (@dots{})

Return the unique elements exclusive to sets @var{a} or @var{b}.

If @var{a} and @var{b} are both row vectors then return a row vector;
Otherwise, return a column vector.  The inputs may also be cell arrays of
strings.

If the optional input @qcode{"rows"} is given then return the rows exclusive
to sets @var{a} and @var{b}.  The inputs must be 2-D numeric matrices to use
this option.

The optional argument @qcode{"sorted"}/@qcode{"stable"} controls the order
in which unique values appear in the output.  The default is
@qcode{"sorted"} and values in the output are placed in ascending order.
The alternative @qcode{"stable"} preserves the order found in the input.

The optional outputs @var{ia} and @var{ib} are column index vectors such
that @code{@var{a}(@var{ia})} and @code{@var{b}(@var{ib})} are disjoint sets
whose union is @var{c}.

Programming Note: The input flag @qcode{"legacy"} changes the algorithm
to be compatible with @sc{matlab} releases prior to R2012b.

@xseealso{@ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFismember,,ismember}}
@end deftypefn


@c ismember scripts/set/ismember.m
@anchor{XREFismember}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{tf} =} ismember (@var{a}, @var{s})
@deftypefnx {} {@var{tf} =} ismember (@var{a}, @var{s}, "rows")
@deftypefnx {} {[@var{tf}, @var{s_idx}] =} ismember (@dots{})

Return a logical matrix @var{tf} with the same shape as @var{a} which is
true (1) if the element in @var{a} is found in @var{s} and false (0) if it
is not.

If a second output argument is requested then the index into @var{s} of each
matching element is also returned.

@example
@group
a = [3, 10, 1];
s = [0:9];
[tf, s_idx] = ismember (a, s)
     @result{} tf = [1, 0, 1]
     @result{} s_idx = [4, 0, 2]
@end group
@end example

The inputs @var{a} and @var{s} may also be cell arrays.

@example
@group
a = @{"abc"@};
s = @{"abc", "def"@};
[tf, s_idx] = ismember (a, s)
     @result{} tf = 1
     @result{} s_idx = 1
@end group
@end example

If the optional third argument @qcode{"rows"} is given then compare rows
in @var{a} with rows in @var{s}.  The inputs must be 2-D matrices with the
same number of columns to use this option.

@example
@group
a = [1:3; 5:7; 4:6];
s = [0:2; 1:3; 2:4; 3:5; 4:6];
[tf, s_idx] = ismember (a, s, "rows")
     @result{} tf = logical ([1; 0; 1])
     @result{} s_idx = [2; 0; 5];
@end group
@end example

@xseealso{@ref{XREFlookup,,lookup}, @ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFsetxor,,setxor}, @ref{XREFismembertol,,ismembertol}}
@end deftypefn


@c ismembertol scripts/set/ismembertol.m
@anchor{XREFismembertol}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{tf} =} ismembertol (@var{a}, @var{s})
@deftypefnx {} {@var{tf} =} ismembertol (@var{a}, @var{s}, @var{tol})
@deftypefnx {} {@var{tf} =} ismembertol (@var{a}, @var{s}, @var{name}, @var{value})
@deftypefnx {} {[@var{tf}, @var{s_idx}] =} ismembertol (@dots{})
Check if values are members of a set within a tolerance.

This functions returns a logical matrix @var{tf} with the same shape as
@var{a} which is true (1) where the element in @var{a} is close to @var{s}
within a tolerance @var{tol} and false (0) if it is not.  If @var{tol} is
not specified, a default tolerance of @code{1e-6} is used.

If a second output argument is requested then the index into @var{s} of each
matching element is also returned.

The inputs @var{a} and @var{s} must be numeric values.

@example
@group
a = [3, 10, 1];
s = [0:9];
[tf, s_idx] = ismembertol (a, s)
     @result{} tf = [1, 0, 1]
     @result{} s_idx = [4, 0, 2]
@end group
@end example

Optional property/value pairs may be given to change the function's
behavior.  The property may be one of following strings:

@table @asis
@item @qcode{"ByRows"}
If set to @code{false} (default), all elements in @var{a} and @var{s} are
treated separately.  If set to @code{true}, @var{tf} will be @code{true}
for each row in @var{a} that matches a row in @var{s} within the given
tolerance.  Two rows, @var{u} and @var{v}, are within tolerance if they
fulfill the condition @code{all (abs (u-v) <= tol*max (abs ([a;s])))}.

@item @qcode{"OutputAllIndices"}
If set to @code{false} (default), @var{s_idx} contains indices for one
of the matches.  If set to @code{true}, @var{s_idx} is a cell array
containing the indices for all elements in @var{s} that are within tolerance
of the corresponding value in @var{a}.

@item @qcode{"DataScale"}
The provided value @var{DS} is used to change the scale factor in the
tolerance test to @code{abs (u-v) <= tol*@var{DS}}.  By default, the maximum
absolute value in @var{a} and @var{s} is used as the scale factor.
@end table

Example:

@example
@group
s = [1:6].' * pi;
a = 10.^log10 (x);
[tf, s_idx] = ismembertol (a, s);
@end group
@end example

@xseealso{@ref{XREFismember,,ismember}, @ref{XREFlookup,,lookup}, @ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFsetxor,,setxor}}
@end deftypefn


@c powerset scripts/set/powerset.m
@anchor{XREFpowerset}
@html
<span style="display:block; margin-top:-4.5ex;">&nbsp;</span>
@end html


@deftypefn  {} {@var{p} =} powerset (@var{a})
@deftypefnx {} {@var{p} =} powerset (@var{a}, "rows")
Compute the powerset (all subsets) of the set @var{a}.

The set @var{a} must be a numerical matrix or a cell array of strings.  The
output will always be a cell array of either vectors or strings.

With the optional argument @qcode{"rows"}, each row of the set @var{a} is
considered one element of the set.  The input must be a 2-D numeric matrix
to use this argument.

@xseealso{@ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFsetxor,,setxor}, @ref{XREFismember,,ismember}}
@end deftypefn