1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
########################################################################
##
## Copyright (C) 2019-2025 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} ostreamtube (@var{x}, @var{y}, @var{z}, @var{u}, @var{v}, @var{w}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {} ostreamtube (@var{u}, @var{v}, @var{w}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {} ostreamtube (@var{xyz}, @var{x}, @var{y}, @var{z}, @var{u}, @var{v}, @var{w})
## @deftypefnx {} {} ostreamtube (@dots{}, @var{options})
## @deftypefnx {} {} ostreamtube (@var{hax}, @dots{})
## @deftypefnx {} {@var{h} =} ostreamtube (@dots{})
## Calculate and display streamtubes.
##
## Streamtubes are approximated by connecting circular crossflow areas
## along a streamline. The expansion of the flow is determined by the local
## crossflow divergence.
##
## The vector field is given by @code{[@var{u}, @var{v}, @var{w}]} and is
## defined over a rectangular grid given by @code{[@var{x}, @var{y}, @var{z}]}.
## The streamtubes start at the seed points
## @code{[@var{sx}, @var{sy}, @var{sz}]}.
##
## The tubes are colored based on the local vector field strength.
##
## The input parameter @var{options} is a 2-D vector of the form
## @code{[@var{scale}, @var{n}]}. The first parameter scales the start radius
## of the streamtubes (default 1). The second parameter specifies the number
## of vertices that are used to construct the tube circumference (default 20).
##
## @code{ostreamtube} can be called with a cell array containing pre-computed
## streamline data. To do this, @var{xyz} must be created with the
## @code{stream3} function. This option is useful if you need to alter the
## integrator step size or the maximum number of vertices of the streamline.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## The optional return value @var{h} is a graphics handle to the plot
## objects created for each streamtube.
##
## Example:
##
## @example
## @group
## [x, y, z] = meshgrid (-1:0.1:1, -1:0.1:1, -3:0.1:0);
## u = -x / 10 - y;
## v = x - y / 10;
## w = - ones (size (x)) / 10;
## ostreamtube (x, y, z, u, v, w, 1, 0, 0);
## @end group
## @end example
##
## @seealso{stream3, streamline, streamribbon, streamtube}
## @end deftypefn
## References:
##
## @inproceedings{
## title = {Visualization of 3-D vector fields - Variations on a stream},
## author = {Dave Darmofal and Robert Haimes},
## year = {1992}
## }
##
## @article{
## title = {Efficient streamline, streamribbon, and streamtube constructions on unstructured grids},
## author = {Ueng, Shyh-Kuang and Sikorski, C. and Ma, Kwan-Liu},
## year = {1996},
## month = {June},
## publisher = {IEEE Transactions on Visualization and Computer Graphics},
## }
function h = ostreamtube (varargin)
[hax, varargin, nargin] = __plt_get_axis_arg__ ("ostreamtube", varargin{:});
options = [];
xyz = [];
switch (nargin)
case 6
[u, v, w, spx, spy, spz] = varargin{:};
[m, n, p] = size (u);
[x, y, z] = meshgrid (1:n, 1:m, 1:p);
case 7
if (iscell (varargin{1}))
[xyz, x, y, z, u, v, w] = varargin{:};
else
[u, v, w, spx, spy, spz, options] = varargin{:};
[m, n, p] = size (u);
[x, y, z] = meshgrid (1:n, 1:m, 1:p);
endif
case 8
[xyz, x, y, z, u, v, w, options] = varargin{:};
case 9
[x, y, z, u, v, w, spx, spy, spz] = varargin{:};
case 10
[x, y, z, u, v, w, spx, spy, spz, options] = varargin{:};
otherwise
print_usage ();
endswitch
scale = 1;
num_circum = 20;
if (! isempty (options))
switch (numel (options))
case 1
scale = options(1);
case 2
scale = options(1);
num_circum = options(2);
otherwise
error ("ostreamtube: OPTIONS must be a 1- or 2-element vector");
endswitch
if (! isreal (scale) || scale <= 0)
error ("ostreamtube: SCALE must be a real scalar > 0");
endif
if (! isreal (num_circum) || num_circum < 3)
error ("ostreamtube: number of tube vertices N must be greater than 2");
endif
num_circum = fix (num_circum);
endif
if (isempty (hax))
hax = gca ();
else
hax = hax(1);
endif
if (isempty (xyz))
xyz = stream3 (x, y, z, u, v, w, spx, spy, spz, 0.2);
endif
div = divergence (x, y, z, u, v, w);
## Use the bounding box diagonal to determine the starting radius
mxx = mnx = mxy = mny = mxz = mnz = [];
j = 1;
for i = 1 : length (xyz)
sl = xyz{i};
if (! isempty (sl))
slx = sl(:,1); sly = sl(:,2); slz = sl(:,3);
mxx(j) = max (slx); mnx(j) = min (slx);
mxy(j) = max (sly); mny(j) = min (sly);
mxz(j) = max (slz); mnz(j) = min (slz);
j += 1;
endif
endfor
dx = max (mxx) - min (mnx);
dy = max (mxy) - min (mny);
dz = max (mxz) - min (mnz);
rstart = scale * sqrt (dx*dx + dy*dy + dz*dz) / 25;
h = [];
for i = 1 : length (xyz)
sl = xyz{i};
num_vertices = rows (sl);
if (! isempty (sl) && num_vertices > 2)
usl = interp3 (x, y, z, u, sl(:,1), sl(:,2), sl(:,3));
vsl = interp3 (x, y, z, v, sl(:,1), sl(:,2), sl(:,3));
wsl = interp3 (x, y, z, w, sl(:,1), sl(:,2), sl(:,3));
vv = sqrt (usl.*usl + vsl.*vsl + wsl.*wsl);
div_sl = interp3 (x, y, z, div, sl(:,1), sl(:,2), sl(:,3));
is_singular_div = find (isnan (div_sl), 1, "first");
if (! isempty (is_singular_div))
max_vertices = is_singular_div - 1;
else
max_vertices = num_vertices;
endif
if (max_vertices > 2)
htmp = plottube (hax, sl, div_sl, vv, max_vertices, ...
rstart, num_circum);
h = [h; htmp];
endif
endif
endfor
endfunction
function h = plottube (hax, sl, div_sl, vv, max_vertices, rstart, num_circum)
phi = linspace (0, 2*pi, num_circum);
cp = cos (phi);
sp = sin (phi);
## 1st streamline segment
X0 = sl(1,:);
X1 = sl(2,:);
R = X1 - X0;
RE = R / norm (R);
## Guide point and its rotation to create a segment
KE = get_normal1 (RE);
K = rstart * KE;
XS0 = rotation (K, RE, cp, sp) + repmat (X0.', 1, num_circum);
## End of first segment
ract = rstart * exp (0.5 * div_sl(2) * norm (R) / vv(2)) * ...
sqrt (vv(1) / vv(2));
rold = ract;
K = ract * KE;
XS = rotation (K, RE, cp, sp) + repmat (X1.', 1, num_circum);
px = zeros (num_circum, max_vertices);
py = zeros (num_circum, max_vertices);
pz = zeros (num_circum, max_vertices);
pc = zeros (num_circum, max_vertices);
px(:,1) = XS0(1,:).';
py(:,1) = XS0(2,:).';
pz(:,1) = XS0(3,:).';
pc(:,1) = vv(1) * ones (num_circum, 1);
px(:,2) = XS(1,:).';
py(:,2) = XS(2,:).';
pz(:,2) = XS(3,:).';
pc(:,2) = vv(2) * ones (num_circum, 1);
for i = 3 : max_vertices
## Next streamline segment
X0 = X1;
X1 = sl(i,:);
R = X1 - X0;
RE = R / norm (R);
## Tube radius
ract = rold * exp (0.5 * div_sl(i) * norm (R) / vv(i)) * ...
sqrt (vv(i-1) / vv(i));
rold = ract;
## Project KE onto RE and get the difference in order to transport
## the normal vector KE along the vertex array
Kp = KE - RE * dot (KE, RE);
KE = Kp / norm (Kp);
K = ract * KE;
## Rotate around RE and collect surface patches
XS = rotation (K, RE, cp, sp) + repmat (X1.', 1, num_circum);
px(:,i) = XS(1,:).';
py(:,i) = XS(2,:).';
pz(:,i) = XS(3,:).';
pc(:,i) = vv(i) * ones (num_circum, 1);
endfor
h = surface (hax, px, py, pz, pc);
endfunction
## Arbitrary N normal to X
function N = get_normal1 (X)
if ((X(3) == 0) && (X(1) == -X(2)))
N = [(- X(2) - X(3)), X(1), X(1)];
else
N = [X(3), X(3), (- X(1) - X(2))];
endif
N /= norm (N);
endfunction
## Rotate X around U where |U| = 1
## cp = cos (angle), sp = sin (angle)
function Y = rotation (X, U, cp, sp)
ux = U(1);
uy = U(2);
uz = U(3);
Y(1,:) = X(1) * (cp + ux * ux * (1 - cp)) + ...
X(2) * (ux * uy * (1 - cp) - uz * sp) + ...
X(3) * (ux * uz * (1 - cp) + uy * sp);
Y(2,:) = X(1) * (uy * ux * (1 - cp) + uz * sp) + ...
X(2) * (cp + uy * uy * (1 - cp)) + ...
X(3) * (uy * uz * (1 - cp) - ux * sp);
Y(3,:) = X(1) * (uz * ux * (1 - cp) - uy * sp) + ...
X(2) * (uz * uy * (1 - cp) + ux * sp) + ...
X(3) * (cp + uz * uz * (1 - cp));
endfunction
%!demo
%! clf;
%! [x, y, z] = meshgrid (-1:0.1:1, -1:0.1:1, -3.5:0.1:0);
%! a = 0.1;
%! b = 0.1;
%! u = - a * x - y;
%! v = x - a * y;
%! w = - b * ones (size (x));
%! sx = 1.0;
%! sy = 0.0;
%! sz = 0.0;
%! ostreamtube (x, y, z, u, v, w, sx, sy, sz, [1.2, 30]);
%! colormap (jet);
%! shading interp;
%! view ([-47, 24]);
%! camlight ();
%! lighting gouraud;
%! grid on;
%! view (3);
%! axis equal;
%! set (gca, "cameraviewanglemode", "manual");
%! title ("Spiral Sink");
%!demo
%! clf;
%! [x, y, z] = meshgrid (-2:0.5:2);
%! t = sqrt (1.0./(x.^2 + y.^2 + z.^2)).^3;
%! u = - x.*t;
%! v = - y.*t;
%! w = - z.*t;
%! [sx, sy, sz] = meshgrid (-2:4:2);
%! xyz = stream3 (x, y, z, u, v, w, sx, sy, sz, [0.1, 60]);
%! ostreamtube (xyz, x, y, z, u, v, w, [2, 50]);
%! colormap (jet);
%! shading interp;
%! view ([-47, 24]);
%! camlight ();
%! lighting gouraud;
%! grid on;
%! view (3);
%! axis equal;
%! set (gca, "cameraviewanglemode", "manual");
%! title ("Integration Towards Sink");
## Test input validation
%!error <Invalid call> ostreamtube ()
%!error <Invalid call> ostreamtube (1)
%!error <Invalid call> ostreamtube (1,2)
%!error <Invalid call> ostreamtube (1,2,3)
%!error <Invalid call> ostreamtube (1,2,3,4)
%!error <Invalid call> ostreamtube (1,2,3,4,5)
%!error <OPTIONS must be a 1- or 2-element> ostreamtube (1,2,3,4,5,6,[1,2,3])
%!error <SCALE must be a real scalar . 0> ostreamtube (1,2,3,4,5,6,[1i])
%!error <SCALE must be a real scalar . 0> ostreamtube (1,2,3,4,5,6,[0])
%!error <N must be greater than 2> ostreamtube (1,2,3,4,5,6,[1,1i])
%!error <N must be greater than 2> ostreamtube (1,2,3,4,5,6,[1,2])
|