1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
########################################################################
##
## Copyright (C) 2018-2025 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{slcidx} =} movslice (@var{N}, @var{wlen})
## @deftypefnx {} {@var{slcidx} =} movslice (@var{N}, @var{wlen}, @var{samplepoints})
## @deftypefnx {} {[@var{slcidx}, @var{C}, @var{Cpre}, @var{Cpost}, @var{win}, @var{wlen}, @var{scalar_wlen}] =} movslice (@dots{})
## Generate indices to slice a vector of length @var{N} into windows of length
## @var{wlen}.
##
## The input @var{N} must be a positive integer.
##
## The moving window length input @var{wlen} can either be a numeric scalar
## or a 2-element numeric array. The elements included in the moving window
## will depend on the size and value of @var{wlen} as well as whether the
## @var{samplepoints} input was specified.
##
## The optional input @var{samplepoints} is a sorted, numeric vector of unique
## positions of the @var{N} data points. The default value is the vector
## @code{[1 : @var{N}]}. When a non-default @var{samplepoints} vector is
## specified, the moving window length @var{wlen} is measured
## against the @var{samplepoints} positions to determine which points are
## included in each window slice. It should be noted that @var{samplepoints}
## need not be uniformly spaced which can result in window slices containing
## different numbers of points. Because of this, as specified below the
## shape and content of some @code{movslice} outputs will be different when
## a non-default @var{samplepoints} is used.
##
## The moving window size and included elements will be defined as follows:
##
## @itemize
## @item
## If @var{samplepoints} has the default value of @code{1:@var{N}} (or has
## not been specified):
##
## @itemize
## @item
## For integer-valued @var{wlen}:
##
## @itemize
## @item
## For odd, integer-valued, scalar @var{wlen} the window is symmetric and
## includes @w{@code{(@var{wlen} - 1) / 2}}@ elements on either side of the
## central element. For example, the window slice at index 5 with a window
## length of 3 will include the elements @w{@code{[4, 5, 6]}}.
##
## @item
## For even, integer-valued, scalar @var{wlen} the window is asymmetric and
## has @w{@code{@var{wlen}/2}}@ elements to the left of the central element
## and @w{@code{@var{wlen}/2 - 1}}@ elements to the right of the central
## element. For example, the window slice at index 5 with a window length of
## 4 will include the elements @w{@code{[3, 4, 5, 6]}}.
##
## @item
## For integer-valued vector @var{wlen} of the form
## @w{@code{[@var{nb}, @var{na}]}}@ where @var{nb} and @var{na} are integer
## valued the window includes @var{nb} elements to the left of the central
## element and @var{na} elements to the right of the central element. For
## example, given @w{@code{@var{wlen} = [3, 1]}}, the window slice at index 5
## will include the elements @w{@code{[2, 3, 4, 5, 6]}}.
## @end itemize
##
## @item
## For non-integer-valued scalar @var{wlen}:
##
## @itemize
## @item
## Non-integer-valued scalar @var{wlen} will be converted to
## two-element vector form with
## @w{@code{@var{nb} = @var{na} = fix (@var{wlen} / 2)}}, and then processed
## as stated above for integer-valued vectors. For example, the window slice
## at index 5 with @w{@code{@var{wlen} = 2.5}}@ will include the elements
## @w{@code{[3, 4, 5, 6, 7]}}.
##
## @item
## Non-integer-valued vector @var{wlen} will be truncated to integer values
## with @w{@code{@var{wlen} = fix (@var{wlen})}}@ and then processed as
## stated above for integer-valued vectors. For example, the window slice
## at index 5 with @w{@code{@var{wlen} = [1.2, 2.3]}}@ will include the
## elements @w{@code{[4, 5, 6, 7]}}.
## @end itemize
## @end itemize
##
## @item
## If @var{samplepoints} has been specified with a non-default vector:
##
## @itemize
## @item
## For vector @var{wlen} specified as @w{@code{[@var{nb}, @var{na}]}}, the
## window will include all points within a distance less than or equal to
## @var{nb} before and @var{na} after the central element's position, with
## point positions defined by the elements of @var{samplepoints}. For
## example, at index 5 with @w{@code{@var{wlen} = [2, 3]}}@ and the 3rd-8th
## elements of @var{samplepoints} being @w{@code{[1, 3, 5, 7, 8 ,9]}}, the
## window slice will include the elements @w{@code{[4, 5, 6, 7]}}@
## corresponding to @var{samplepoints} @w{@code{[3, 5, 7, 8]}}.
##
## @item
## Scalar @var{wlen} will be converted to two-element vector form with
## @w{@code{@var{nb} = @var{na} = @var{wlen} / 2}}. The window will then
## include all points within a distance of less than or equal to @var{nb}
## before and less than, but not equal to, @var{na} after the central
## element's position, @w{@code{[@var{nb}, @var{na})}}. For example, at
## index 5 with @w{@code{@var{wlen} = [2, 3]}}@ and the 3rd-8th elements of
## @var{samplepoints} being @w{@code{[1, 3, 5, 7, 8 ,9]}}, the window slice
## will include the elements @w{@code{[4, 5, 6]}}@ corresponding to
## @var{samplepoints} @w{@code{[3, 5, 7]}}.
## @end itemize
## @end itemize
##
## The output @var{slcidx} is an array of indices of the slices of the vector.
##
## @itemize
## @item
## If @var{samplepoints} is default or unspecified, @var{slcidx} will contain
## only the indices of the slices that fit fully within the vector. Each
## column will be the indices of one slice as the window moves from left to
## right. The slices will have @w{@code{fix (@var{wlen})}}@ elements for
## scalar @var{wlen}, or @w{@code{@var{nb} + @var{na} + 1}}@ elements for array
## valued @var{wlen}.
##
## @item
## If a non-default @var{samplepoints} has been specified, @var{slcidx} will
## be a 2x@var{N} array with the first and second rows containing the first
## and last elements of each slice, respectively.
## @end itemize
##
## Optional output @var{C} is a row vector of window center positions where
## the window stays fully within the vector.
##
## Optional outputs @var{Cpre} and @var{Cpost} contain the vector elements at
## the start and end of the vector, respectively, that result in the window
## extending beyond the ends of the vector.
##
## Optional output @var{win} contains information for creating the moving
## window.
##
## @itemize
## @item
## If @var{samplepoints} is default or unspecified, @var{win} is a column
## vector with the same number of rows as @var{slcidx} that contains the
## moving window defined as a center relative position stencil.
##
## @item
## If a non-default @var{samplepoints} has been specified, @var{win} will
## be a 2x@var{N} array with the first and second rows containing the left and
## right bounds of each window slice, respectively, using the same
## coordinates as @var{samplepoints}. These bounds may lie outside of the
## position vector specified by @var{samplepoints}.
## @end itemize
##
## Optional output @var{wlen} returns the window length used by
## @code{movslice} in two-element @w{@code{[@var{nb}, @var{na}]}}@ form.
##
## Optional logical output @var{scalar_wlen} returns the scalar or vector
## state of the input @var{wlen} so that calling functions can determinine
## whether the moving window should be inclusive or exclusive of the right
## window endpoints. I.e., inclusive @w{@code{[@var{nb}, @var{na}]}}@ for
## vector @var{wlen} or exclusive @w{@code{[@var{nb}, @var{na})}}@ for scalar
## @var{wlen}.
##
## @seealso{movfun}
## @end deftypefn
function [slcidx, C, Cpre, Cpost, win, wlen, scalar_wlen] = movslice (N, wlen, samplepoints = [])
if (nargin < 2)
print_usage ();
endif
## Validate N
if (! (isnumeric (N) && isscalar (N) && isindex (N)))
error ("Octave:invalid-input-arg",
"movslice: N must be a positive integer");
endif
## Validate window length
if (! (isnumeric (wlen) && all (wlen >= 0)))
error ("Octave:invalid-input-arg",
"movslice: WLEN must be a positive scalar or 2-element array");
endif
## Validate or set default samplepoints
if (isempty (samplepoints))
samplepoints = [1:N].';
standard_samplepoints = true;
else
samplepoints = samplepoints(:);
standard_samplepoints = all (diff (samplepoints, 1, 1) == 1);
if (numel (samplepoints) != N)
error ("Octave:invalid-input-arg",
"movslice: SamplePoints must have length N");
endif
endif
scalar_wlen = isscalar (wlen);
if (all (numel (wlen) != [1, 2]))
error ("Octave:invalid-input-arg",
"movslice: WLEN must be a positive scalar or 2-element array");
endif
## Process multiple forms of wlen.
intvalued_wlen = all (fix (wlen) == wlen);
if (standard_samplepoints && intvalued_wlen && scalar_wlen)
if (mod (wlen, 2) == 1)
## Symmetric window
nb = na = (wlen - 1) / 2;
wlen = [nb, na];
else
## Asymmetric window
nb = wlen / 2;
na = nb - 1;
wlen = [nb, na];
endif
else
if (scalar_wlen)
wlen = [wlen, wlen] / 2;
endif
if (standard_samplepoints)
wlen = fix (wlen);
endif
endif
if (standard_samplepoints)
Cpre = 1 : min (wlen(1), N); # centers that can't fit the pre-window
Cnf = max (1, N - wlen(2) + 1); # first center that can't fit the post-window
Cpost = Cnf:N; # centers that can't fit centered post-window
C = (wlen(1) + 1):(Cnf - 1);
## Convert C to minimum unsigned integer array large enough to hold indices.
## Because the size of slcidx is numel(C) x numel(win), for large N and/or
## window sizes this can save significant memory in resulting slcidx array
## over using an 8 byte double.
if (N <= 255)
C = uint8 (C);
elseif (N <= 65535)
C = uint16 (C);
elseif (N <= 4294967295)
C = uint32 (C);
else
C = uint64 (C);
endif
win = (-wlen(1):wlen(2)).';
slcidx = C + win;
else
sp_end_spacing = [samplepoints(2) - samplepoints(1), ...
samplepoints(end) - samplepoints(end-1)];
Cpre = samplepoints - wlen(1) <= samplepoints(1) - sp_end_spacing(1);
if (! scalar_wlen)
Cpost = samplepoints + wlen(2) >= samplepoints(end) + sp_end_spacing(2);
else
Cpost = samplepoints + wlen(2) > samplepoints(end) + sp_end_spacing(2);
endif
win = [samplepoints.' - wlen(1); samplepoints.' + wlen(2)];
C = ! (Cpre | Cpost);
## Convert to linear indices.
Cpre = [1:N](Cpre);
Cpost = [1:N](Cpost);
C = [1:N](C);
## Create a 2xN index of start and end samplepoint indices for each slice.
## Use same uintX class assignment as above.
if (N <= 255)
slccls = "uint8";
elseif (N <= 65535)
slccls = "uint16";
elseif (N <= 4294967295)
slccls = "uint32";
else
slccls = "uint64";
endif
slcidx = zeros (2, N, slccls);
[slcidx(1,:), ~] = find (diff ([false(1, N); samplepoints >= win(1, :)], 1, 1));
if (scalar_wlen)
[slcidx(2,:), ~] = find (-diff ([(win(2, :) > samplepoints); false(1, N)], 1, 1));
else
[slcidx(2,:), ~] = find (diff ([(win(2, :) >= samplepoints); false(1, N)], 1, 1));
endif
endif
endfunction
%!assert (double (movslice (10, 2)), [1:9; 2:10])
%!assert (double (movslice (10, 9)), [1:9; 2:10].')
%!assert (double (movslice (10, [1, 0])), [1:9; 2:10])
%!assert (double (movslice (10, [1, 1])), [1:8; 2:9; 3:10])
%!assert (double (movslice (10, [1, 1])), [1:8; 2:9; 3:10])
%!assert (double (movslice (10, [3, 2])), [1:5] + [0:5].')
%!test
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, 4);
%! assert (double (sl), [1:7; 2:8; 3:9; 4:10]);
%! assert (double (c), 3:9);
%! assert (cpre, 1:2);
%! assert (cpost, 10);
%! assert (win, [-2:1:1].');
%! assert (wlen, [2, 1]);
%! assert (sw, true);
%!test
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, [2, 2]);
%! assert (double (sl), [1:6; 2:7; 3:8; 4:9; 5:10]);
%! assert (double (c), 3:8);
%! assert (cpre, 1:2);
%! assert (cpost, 9:10);
%! assert (win, [-2:1:2].');
%! assert (wlen, [2, 2]);
%! assert (sw, false);
%!test
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, 3);
%! assert (double (sl), [1:8; 2:9; 3:10]);
%! assert (double (c), 2:9);
%! assert (cpre, 1);
%! assert (cpost, 10);
%! assert (win, [-1, 0, 1].');
%! assert (wlen, [1, 1]);
%! assert (sw, true);
%!test
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, [1, 1]);
%! assert (double (sl), [1:8; 2:9; 3:10]);
%! assert (double (c), 2:9);
%! assert (cpre, 1);
%! assert (cpost, 10);
%! assert (win, [-1, 0, 1].');
%! assert (wlen, [1, 1]);
%! assert (sw, false);
%!test
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, 10);
%! assert (double (sl), [1:10].');
%! assert (double (c), 6);
%! assert (cpre, 1:5);
%! assert (cpost, 7:10);
%! assert (win, [-5:1:4].');
%! assert (wlen, [5, 4]);
%! assert (sw, true);
## Verify uint output. Don't test uint64 due to excessive memory usage.
%!test
%! [sl, c] = movslice (10, 10);
%! assert (class (sl), "uint8");
%! assert (class (c), "uint8");
%! [sl, c] = movslice (1000, 1000);
%! assert (class (sl), "uint16");
%! assert (class (c), "uint16");
%! [sl, c] = movslice (100000, 100000);
%! assert (class (sl), "uint32");
%! assert (class (c), "uint32");
## Test non-integer wlen
%!assert <*65928> (double (movslice (10, 2.2)), [1:8; 2:9; 3:10])
%!assert <*65928> (double (movslice (10, 9.1)), [1:9; 2:10].')
%!assert <*65928> (double (movslice (10, 9.999)), [1:9; 2:10].')
%!assert <*65928> (double (movslice (10, [3.2, 0])), [1:7] + [0:3].')
%!assert <*65928> (double (movslice (10, [3.2, 2.1])), [1:5] + [0:5].')
## Test wlen extending beyond N
%!test <*65928>
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, 11);
%! assert (double (sl), zeros (11, 0));
%! assert (double (c), zeros (1, 0));
%! assert (cpre, 1:5);
%! assert (cpost, 6:10);
%! assert (win, [-5:1:5].');
%! assert (wlen, [5, 5]);
%! assert (sw, true);
%!test <*65928>
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, 99);
%! assert (double (sl), zeros (99, 0));
%! assert (double (c), zeros (1, 0));
%! assert (cpre, 1:10);
%! assert (cpost, 1:10);
%! assert (win, [-49:1:49].');
%! assert (wlen, [49, 49]);
%! assert (sw, true);
%!test <*65928>
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, [0, 20]);
%! assert (double (sl), zeros (21, 0));
%! assert (double (c), zeros (1, 0));
%! assert (cpre, zeros (1, 0));
%! assert (cpost, 1:10);
%! assert (win, [0:20].');
%! assert (wlen, [0, 20]);
%! assert (sw, false);
%!test <*65928>
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, [5, 6]);
%! assert (double (sl), zeros (12, 0));
%! assert (double (c), zeros (1, 0));
%! assert (cpre, 1:5);
%! assert (cpost, 5:10);
%! assert (win, [-5:1:6].');
%! assert (wlen, [5, 6]);
%! assert (sw, false);
## Test wlen = 1 or [0, 0]
%!test <*65928>
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, 1);
%! assert (double (sl), 1:10);
%! assert (double (c), 1:10);
%! assert (cpre, zeros (1,0));
%! assert (cpost, zeros (1,0));
%! assert (win, 0);
%! assert (wlen, [0, 0]);
%! assert (sw, true);
%!test <*65928>
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, [0, 0]);
%! assert (double (sl), 1:10);
%! assert (double (c), 1:10);
%! assert (cpre, zeros (1,0));
%! assert (cpost, zeros (1,0));
%! assert (win, 0);
%! assert (wlen, [0, 0]);
%! assert (sw, false);
## Test samplepoints
%!test <*66025> # Standard samplepoints, scalar integer wlen, no output change
%! [sl1, c1, cpre1, cpost1, win1, wlen1, sw1] = movslice (10, 3);
%! [sl2, c2, cpre2, cpost2, win2, wlen2, sw2] = movslice (10, 3, 1:10);
%! assert (sl1, sl2);
%! assert (c1, c2);
%! assert (cpre1, cpre2);
%! assert (cpost1, cpost2);
%! assert (win1, win2);
%! assert (wlen1, wlen2);
%! assert (sw1, sw2);
%!test <*66025> # Standard samplepoints, vector integer wlen, no output change
%! [sl1, c1, cpre1, cpost1, win1, wlen1, sw1] = movslice (10, [2, 3]);
%! [sl2, c2, cpre2, cpost2, win2, wlen2, sw2] = movslice (10, [2, 3], 1:10);
%! assert (sl1, sl2);
%! assert (c1, c2);
%! assert (cpre1, cpre2);
%! assert (cpost1, cpost2);
%! assert (win1, win2);
%! assert (wlen1, wlen2);
%! assert (sw1, sw2);
%!test <*66025> # Standard samplepoints, decimal wlen, no output change
%! [sl1, c1, cpre1, cpost1, win1, wlen1, sw1] = movslice (10, 3.3);
%! [sl2, c2, cpre2, cpost2, win2, wlen2, sw2] = movslice (10, 3.3, 1:10);
%! assert (sl1, sl2);
%! assert (c1, c2);
%! assert (cpre1, cpre2);
%! assert (cpost1, cpost2);
%! assert (win1, win2);
%! assert (wlen1, wlen2);
%! assert (sw1, sw2);
%!test <*66025>
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, 4, 0.5:0.5:5);
%! assert (double(sl), [1, 1, 1, 1, 1:6; 4:10, 10, 10, 10]);
%! assert (c, 5:7);
%! assert (cpre, 1:4);
%! assert (cpost, 8:10);
%! assert (win, [0.5:0.5:5] + [-2;2]);
%! assert (wlen, [2, 2]);
%! assert (sw, true);
%!test <*66025>
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, [2, 2], 0.5:0.5:5);
%! assert (double(sl), [1, 1, 1, 1, 1:6; 5:10, 10, 10, 10, 10]);
%! assert (c, 5:6);
%! assert (cpre, 1:4);
%! assert (cpost, 7:10);
%! assert (win, [0.5:0.5:5] + [-2;2]);
%! assert (wlen, [2, 2]);
%! assert (sw, false);
%!test <*66025>
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, 4.1, 0.5:0.5:5);
%! assert (double(sl), [1, 1, 1, 1, 1:6; 5:10, 10, 10, 10, 10]);
%! assert (c, 5:6);
%! assert (cpre, 1:4);
%! assert (cpost, 7:10);
%! assert (win, [0.5:0.5:5] + [-2.05;2.05]);
%! assert (wlen, [2.05, 2.05]);
%! assert (sw, true);
%!test <*66025>
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, 4, [1:9, 11]);
%! assert (double(sl), [1, 1, 1:7, 9; 2:9, 9, 10]);
%! assert (c, 3:10)
%! assert (cpre, 1:2);
%! assert (cpost, ones (1,0));
%! assert (win, [1:9, 11] + [-2;2]);
%! assert (wlen, [2, 2]);
%! assert (sw, true);
%!test <*66025>
%! [sl, c, cpre, cpost, win, wlen, sw] = movslice (10, [2, 2], [1:9, 11]);
%! assert (double(sl), [1, 1, 1:7, 9; 3:9, 9, 10, 10]);
%! assert (c, 3:9);
%! assert (cpre, 1:2);
%! assert (cpost, 10);
%! assert (win, [1:9, 11] + [-2;2]);
%! assert (wlen, [2, 2]);
%! assert (sw, false);
## Test input validation
%!error <Invalid call> movslice ()
%!error <Invalid call> movslice (1)
%!error <N must be a positive integer> movslice ([1 2], 2)
%!error <N must be a positive integer> movslice (0, 2)
%!error <N must be a positive integer> movslice ("N", 2)
%!error <N must be a positive integer> movslice ({1}, 2)
%!error <WLEN must be a positive scalar or 2-element array> movslice (5, {1})
%!error <WLEN must be a positive scalar or 2-element array> movslice (5, -1)
%!error <WLEN must be a positive scalar or 2-element array> movslice (5, "a")
%!error <WLEN must be a positive scalar or 2-element array> movslice (5, [1, 2, 3])
%!error <WLEN must be a positive scalar or 2-element array> movslice (5, [-1, 2])
%!error <WLEN must be a positive scalar or 2-element array> movslice (5, {1, 2})
%!error <WLEN must be a positive scalar or 2-element array> movslice (5, "ab")
%!error <SamplePoints must have length N> movslice (10, 2, 1:5)
|