1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1993-2025 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING. If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
#if defined (HAVE_CONFIG_H)
# include "config.h"
#endif
#include <cmath>
#include <istream>
#include <limits>
#include <ostream>
#include "Array-util.h"
#include "Range.h"
#include "lo-error.h"
#include "lo-mappers.h"
#include "lo-utils.h"
OCTAVE_BEGIN_NAMESPACE(octave)
template <typename T>
T xtfloor (T x, T ct)
{
// C---------FLOOR(X) is the largest integer algebraically less than
// C or equal to X; that is, the unfuzzy FLOOR function.
// DINT (X) = X - DMOD (X, 1.0);
// FLOOR (X) = DINT (X) - DMOD (2.0 + DSIGN (1.0, X), 3.0);
// C---------Hagerty's FL5 function follows...
T q = 1;
if (x < 0)
q = 1 - ct;
T rmax = q / (2 - ct);
T t1 = 1 + std::floor (x);
t1 = (ct / q) * (t1 < 0 ? -t1 : t1);
t1 = (rmax < t1 ? rmax : t1);
t1 = (ct > t1 ? ct : t1);
t1 = std::floor (x + t1);
if (x <= 0 || (t1 - x) < rmax)
return t1;
else
return t1 - 1;
}
template <typename T>
bool
xteq (T u, T v, T ct = 3 * std::numeric_limits<T>::epsilon ())
{
T tu = std::abs (u);
T tv = std::abs (v);
return std::abs (u - v) < ((tu > tv ? tu : tv) * ct);
}
template <typename T>
octave_idx_type
xnumel_internal (T base, T limit, T inc)
{
octave_idx_type retval = -1;
if (! math::isfinite (base) || ! math::isfinite (inc)
|| math::isnan (limit))
retval = -2;
else if (math::isinf (limit)
&& ((inc > 0 && limit > 0)
|| (inc < 0 && limit < 0)))
retval = std::numeric_limits<octave_idx_type>::max () - 1;
else if (inc == 0
|| (limit > base && inc < 0)
|| (limit < base && inc > 0))
{
retval = 0;
}
else
{
T ct = 3 * std::numeric_limits<T>::epsilon ();
T tmp = xtfloor ((limit - base + inc) / inc, ct);
octave_idx_type n_elt
= (tmp > 0 ? static_cast<octave_idx_type> (tmp) : 0);
// If the final element that we would compute for the range is
// equal to the limit of the range, or is an adjacent floating
// point number, accept it. Otherwise, try a range with one
// fewer element. If that fails, try again with one more
// element.
//
// I'm not sure this is very good, but it seems to work better
// than just using tfloor as above. For example, without it,
// the expression 1.8:0.05:1.9 fails to produce the expected
// result of [1.8, 1.85, 1.9].
if (! xteq (base + (n_elt - 1) * inc, limit))
{
if (xteq (base + (n_elt - 2) * inc, limit))
n_elt--;
else if (xteq (base + n_elt * inc, limit))
n_elt++;
}
retval = (n_elt < std::numeric_limits<octave_idx_type>::max () - 1
? n_elt : -1);
}
return retval;
}
template <typename T>
bool
xall_elements_are_ints (T base, T inc, T final_val, octave_idx_type nel)
{
// If the range is empty or NaN then there are no elements so there
// can be no int elements.
if (nel == 0 || math::isnan (final_val))
return false;
// If the base and increment are ints, all elements will be
// integers.
if (math::nint_big (base) == base && math::nint_big (inc) == inc)
return true;
// If the range has only one element, then the base needs to be an
// integer.
if (nel == 1 && math::nint_big (base))
return true;
return false;
}
template <typename T>
T
xfinal_value (T base, T limit, T inc, octave_idx_type nel)
{
T retval = T (0);
if (nel <= 1)
return base;
// If increment is 0, then numel should also be zero.
retval = base + (nel - 1) * inc;
// On some machines (x86 with extended precision floating point
// arithmetic, for example) it is possible that we can overshoot
// the limit by approximately the machine precision even though
// we were very careful in our calculation of the number of
// elements. Therefore, we clip the result to the limit if it
// overshoots.
// NOTE: The test also includes equality (>= limit) to have
// expressions such as -5:1:-0 result in a -0 endpoint.
if ((inc > T (0) && retval >= limit) || (inc < T (0) && retval <= limit))
retval = limit;
// If all elements are integers, then ensure the final value is.
// Note that we pass the preliminary computed final value to
// xall_elements_are_ints, but it only checks whether that value is
// NaN.
if (xall_elements_are_ints (base, inc, retval, nel))
retval = std::round (retval);
return retval;
}
template <typename T>
void
xinit (T base, T limit, T inc, bool reverse, T& final_val,
octave_idx_type& nel)
{
// Catch obvious NaN ranges.
if (math::isnan (base) || math::isnan (limit) || math::isnan (inc))
{
final_val = numeric_limits<T>::NaN ();
nel = 1;
return;
}
// Floating point numbers are always signed
if (reverse)
inc = -inc;
// Catch empty ranges.
if (inc == 0
|| (limit < base && inc > 0)
|| (limit > base && inc < 0))
{
nel = 0;
return;
}
// The following case also catches Inf values for increment when
// there will be only one element.
if ((limit <= base && base + inc < limit)
|| (limit >= base && base + inc > limit))
{
final_val = base;
nel = 1;
return;
}
// Any other calculations with Inf will give us either a NaN range
// or an infinite nember of elements.
T dnel = (limit - base) / inc;
if (math::isnan (dnel))
{
nel = 1;
final_val = numeric_limits<T>::NaN ();
return;
}
if (dnel > 0 && math::isinf (dnel))
{
// FIXME: Should this be an immediate error?
nel = std::numeric_limits<octave_idx_type>::max ();
// FIXME: Will this do the right thing in all cases?
final_val = xfinal_value (base, limit, inc, nel);
return;
}
// Now that we have handled all the special cases, we can compute
// the number of elements and the final value in a way that attempts
// to avoid rounding errors as much as possible.
nel = xnumel_internal (base, limit, inc);
final_val = xfinal_value (base, limit, inc, nel);
}
template <typename T>
void
xinit (const octave_int<T>& base, const octave_int<T>& limit,
const octave_int<T>& inc, bool reverse,
octave_int<T>& final_val, octave_idx_type& nel)
{
// We need an integer division that is truncating decimals instead
// of rounding. So, use underlying C++ types instead of
// octave_int<T>.
// FIXME: The numerator might underflow or overflow. Add checks for
// that.
if (reverse)
{
nel = ((inc == octave_int<T> (0)
|| (limit > base && inc > octave_int<T> (0))
|| (limit < base && inc < octave_int<T> (0)))
? 0
: (base.value () - limit.value () + inc.value ())
/ inc.value ());
final_val = base - (nel - 1) * inc;
}
else
{
nel = ((inc == octave_int<T> (0)
|| (limit > base && inc < octave_int<T> (0))
|| (limit < base && inc > octave_int<T> (0)))
? 0
: (limit.value () - base.value () + inc.value ())
/ inc.value ());
final_val = base + (nel - 1) * inc;
}
}
template <typename T>
bool
xis_storable (T base, T limit, octave_idx_type nel)
{
return ! (nel > 1 && (math::isinf (base) || math::isinf (limit)));
}
template <>
bool
range<double>::all_elements_are_ints () const
{
return xall_elements_are_ints (m_base, m_increment, m_final, m_numel);
}
template <>
bool
range<float>::all_elements_are_ints () const
{
return xall_elements_are_ints (m_base, m_increment, m_final, m_numel);
}
template <>
void
range<double>::init ()
{
xinit (m_base, m_limit, m_increment, m_reverse, m_final, m_numel);
}
template <>
void
range<float>::init ()
{
xinit (m_base, m_limit, m_increment, m_reverse, m_final, m_numel);
}
// For now, only define for float and double.
template <>
bool
range<double>::is_storable () const
{
return xis_storable (m_base, m_limit, m_numel);
}
template <>
bool
range<float>::is_storable () const
{
return xis_storable (m_base, m_limit, m_numel);
}
template <typename T>
octave_idx_type
xnnz (T base, T limit, T inc, T final_val, octave_idx_type nel)
{
// Note that the order of the following checks matters.
// If there are no elements, there can be no nonzero elements.
if (nel == 0)
return 0;
// All elements have the same sign, hence there are no zeros.
if ((base > 0 && limit > 0) || (base < 0 && limit < 0))
return nel;
// All elements are equal (inc = 0) but we know from the previous
// condition that they are not positive or negative, therefore all
// elements are zero.
if (inc == 0)
return 0;
// Exactly one zero at beginning or end of range.
if (base == 0 || final_val == 0)
return nel - 1;
// Range crosses negative/positive without hitting zero.
// FIXME: Is this test sufficiently tolerant or do we need to be
// more careful?
if (math::mod (-base, inc) != 0)
return nel;
// Range crosses negative/positive and hits zero.
return nel - 1;
}
template <>
octave_idx_type
range<double>::nnz () const
{
return xnnz (m_base, m_limit, m_increment, m_final, m_numel);
}
template <>
octave_idx_type
range<float>::nnz () const
{
return xnnz (m_base, m_limit, m_increment, m_final, m_numel);
}
OCTAVE_END_NAMESPACE(octave)
|