1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
|
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2003-2025 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// or <https://octave.org/copyright/>.
//
// Copyirght (C) 2009, 2010 VZLU Prague
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING. If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
#if ! defined (octave_dim_vector_h)
#define octave_dim_vector_h 1
#include "octave-config.h"
#include <algorithm>
#include <initializer_list>
#include <string>
#include "Array-fwd.h"
#include "oct-atomic.h"
#include "oct-refcount.h"
//! Vector representing the dimensions (size) of an Array.
//!
//! A dim_vector is used to represent dimensions of an Array. It is used
//! on its constructor to specify its size, or when reshaping it.
//!
//! @code{.cc}
//! // Matrix with 10 rows and 20 columns.
//! Matrix m Matrix (dim_vector (10, 20));
//!
//! // Change its size to 5 rows and 40 columns.
//! Matrix m2 = m.reshape (dim_vector (5, 40));
//!
//! // Five dimensional Array of length 10, 20, 3, 8, 7 on each dimension.
//! NDArray a (dim_vector (10, 20, 3, 8, 7));
//!
//! // Uninitialized array of same size as other.
//! NDArray b (a.dims ());
//! @endcode
//!
//! The main thing to understand about this class, is that methods such as
//! ndims() and numel(), return the value for an Array of these dimensions,
//! not the actual number of elements in the dim_vector.
//!
//! @code{.cc}
//! dim_vector d (10, 5, 3);
//! octave_idx_type n = d.numel (); // returns 150
//! octave_idx_type nd = d.ndims (); // returns 3
//! @endcode
//!
//! ## Implementation details ##
//!
//! This implementation is more tricky than Array, but the big plus is that
//! dim_vector requires only one allocation instead of two. It is (slightly)
//! patterned after GCC's basic_string implementation. rep is a pointer to an
//! array of memory, comprising count, length, and the data:
//!
//! @verbatim
//! <count>
//! <ndims>
//! rep --> <dims[0]>
//! <dims[1]>
//! ...
//! @endverbatim
//!
//! The inlines count(), ndims() recover this data from the rep. Note
//! that rep points to the beginning of dims to grant faster access
//! (reinterpret_cast is assumed to be an inexpensive operation).
class OCTAVE_API dim_vector
{
private:
octave_idx_type m_num_dims;
octave_idx_type *m_dims;
public:
//! Construct dim_vector for a N dimensional array.
//!
//! Each argument to constructor defines the length of an additional
//! dimension. A dim_vector always represents a minimum of 2 dimensions
//! (just like an Array has at least 2 dimensions) and there is no
//! upper limit on the number of dimensions.
//!
//! @code{.cc}
//! dim_vector dv (7, 5);
//! Matrix mat (dv);
//! @endcode
//!
//! The constructed dim_vector @c dv will have two elements, @f$[7, 5]@f$,
//! one for each dimension. It can then be used to construct a Matrix
//! with such dimensions, i.e., 7 rows and 5 columns.
//!
//! @code{.cc}
//! NDArray x (dim_vector (7, 5, 10));
//! @endcode
//!
//! This will construct a 3 dimensional NDArray of lengths 7, 5, and 10,
//! on the first, second, and third dimension (rows, columns, and pages)
//! respectively.
//!
//! Note that that there is no constructor that accepts only one
//! dimension length to avoid confusion. The source for such confusion
//! is that constructor could mean:
//! - a column vector, i.e., assume @f$[N, 1]@f$;
//! - a square matrix, i.e., as is common in Octave interpreter;
//! - support for a 1 dimensional Array (does not exist);
//!
//! Using r, c, and lengths... as arguments, allow us to check at compile
//! time that there's at least 2 dimensions specified, while maintaining
//! type safety.
template <typename... Ints>
dim_vector (const octave_idx_type r, const octave_idx_type c,
Ints... lengths)
: m_num_dims (2 + sizeof... (Ints)), m_dims (new octave_idx_type [m_num_dims])
{
std::initializer_list<octave_idx_type> all_lengths = {r, c, lengths...};
octave_idx_type *ptr = m_dims;
for (const octave_idx_type l: all_lengths)
*ptr++ = l;
}
// Fast access with absolutely no checking
octave_idx_type& xelem (int i) { return m_dims[i]; }
octave_idx_type xelem (int i) const { return m_dims[i]; }
// Safe access to to elements
octave_idx_type& elem (int i)
{
return xelem (i);
}
octave_idx_type elem (int i) const { return xelem (i); }
void chop_trailing_singletons ()
{
while (m_num_dims > 2 && xelem(m_num_dims-1) == 1)
m_num_dims--;
}
OCTAVE_API void chop_all_singletons ();
private:
explicit dim_vector (octave_idx_type ndims)
: m_num_dims (ndims < 2 ? 2 : ndims), m_dims (new octave_idx_type [m_num_dims])
{
std::fill_n (m_dims, m_num_dims, 0);
}
public:
static OCTAVE_API octave_idx_type dim_max ();
explicit dim_vector ()
: m_num_dims (2), m_dims (new octave_idx_type [m_num_dims])
{
std::fill_n (m_dims, m_num_dims, 0);
}
dim_vector (const dim_vector& dv)
: m_num_dims (dv.m_num_dims), m_dims (new octave_idx_type [m_num_dims])
{
std::copy_n (dv.m_dims, m_num_dims, m_dims);
}
dim_vector (dim_vector&& dv)
: m_num_dims (0), m_dims (nullptr)
{
*this = std::move (dv);
}
static dim_vector alloc (int n)
{
return dim_vector (n);
}
dim_vector& operator = (const dim_vector& dv)
{
if (&dv != this)
{
delete [] m_dims;
m_num_dims = dv.m_num_dims;
m_dims = new octave_idx_type [m_num_dims];
std::copy_n (dv.m_dims, m_num_dims, m_dims);
}
return *this;
}
dim_vector& operator = (dim_vector&& dv)
{
if (&dv != this)
{
// Because we define a move constructor and a move assignment
// operator, m_dims may be a nullptr here. We should only need to
// protect the destructor in a similar way.
delete [] m_dims;
m_num_dims = dv.m_num_dims;
m_dims = dv.m_dims;
dv.m_num_dims = 0;
dv.m_dims = nullptr;
}
return *this;
}
~dim_vector ()
{
// Because we define a move constructor and a move assignment
// operator, m_dims may be a nullptr here. We should only need to
// protect the move assignment operator in a similar way.
delete [] m_dims;
}
//! Number of dimensions.
//!
//! Returns the number of dimensions of the dim_vector. This is number of
//! elements in the dim_vector including trailing singletons. It is also
//! the number of dimensions an Array with this dim_vector would have.
octave_idx_type ndims () const { return m_num_dims; }
//! Number of dimensions.
//! Synonymous with ndims().
//!
//! While this method is not officially deprecated, consider using ndims()
//! instead to avoid confusion. Array does not have length because of its
//! odd definition as length of the longest dimension.
int length () const { return ndims (); }
octave_idx_type& operator () (int i) { return elem (i); }
octave_idx_type operator () (int i) const { return elem (i); }
void resize (int n, int fill_value = 0)
{
if (n < 2)
n = 2;
if (n == m_num_dims)
return;
if (n < m_num_dims)
{
m_num_dims = n;
return;
}
octave_idx_type *new_rep = new octave_idx_type [n];
std::copy_n (m_dims, m_num_dims, new_rep);
std::fill_n (new_rep + m_num_dims, n - m_num_dims, fill_value);
delete [] m_dims;
m_dims = new_rep;
m_num_dims = n;
}
OCTAVE_API std::string str (char sep = 'x') const;
bool all_zero () const
{
return std::all_of (m_dims, m_dims + ndims (),
[] (octave_idx_type dim) { return dim == 0; });
}
bool empty_2d () const
{
return ndims () == 2 && (xelem (0) == 0 || xelem (1) == 0);
}
bool zero_by_zero () const
{
return ndims () == 2 && xelem (0) == 0 && xelem (1) == 0;
}
bool any_zero () const
{
return std::any_of (m_dims, m_dims + ndims (),
[] (octave_idx_type dim) { return dim == 0; });
}
OCTAVE_API int num_ones () const;
bool all_ones () const
{
return (num_ones () == ndims ());
}
//! Number of elements that a matrix with this dimensions would have.
//!
//! Return the number of elements that a matrix with this dimension
//! vector would have, NOT the number of dimensions (elements in the
//! dimension vector).
octave_idx_type numel (int n = 0) const
{
int n_dims = ndims ();
octave_idx_type retval = 1;
for (int i = n; i < n_dims; i++)
retval *= elem (i);
return retval;
}
//! The following function will throw a std::bad_alloc ()
//! exception if the requested size is larger than can be indexed by
//! octave_idx_type. This may be smaller than the actual amount of
//! memory that can be safely allocated on a system. However, if we
//! don't fail here, we can end up with a mysterious crash inside a
//! function that is iterating over an array using octave_idx_type
//! indices.
OCTAVE_API octave_idx_type safe_numel () const;
bool any_neg () const
{
return std::any_of (m_dims, m_dims + ndims (),
[] (octave_idx_type dim) { return dim < 0; });
}
OCTAVE_API dim_vector squeeze () const;
//! This corresponds to cat().
OCTAVE_API bool concat (const dim_vector& dvb, int dim);
//! This corresponds to [,] (horzcat, dim = 0) and [;] (vertcat, dim = 1).
// The rules are more relaxed here.
OCTAVE_API bool hvcat (const dim_vector& dvb, int dim);
//! Force certain dimensionality, preserving numel (). Missing
//! dimensions are set to 1, redundant are folded into the trailing
//! one. If n = 1, the result is 2d and the second dim is 1
//! (dim_vectors are always at least 2D).
OCTAVE_API dim_vector redim (int n) const;
dim_vector as_column () const
{
if (ndims () == 2 && xelem (1) == 1)
return *this;
else
return dim_vector (numel (), 1);
}
dim_vector as_row () const
{
if (ndims () == 2 && xelem (0) == 1)
return *this;
else
return dim_vector (1, numel ());
}
bool isvector () const
{
return (ndims () == 2 && (xelem (0) == 1 || xelem (1) == 1));
}
bool is_nd_vector () const
{
int num_non_one = 0;
for (int i = 0; i < ndims (); i++)
{
if (xelem (i) != 1)
{
num_non_one++;
if (num_non_one > 1)
break;
}
}
return num_non_one == 1;
}
// Create a vector with length N. If this object is a vector,
// preserve the orientation, otherwise, create a column vector.
dim_vector make_nd_vector (octave_idx_type n) const
{
dim_vector orig_dims;
if (is_nd_vector ())
{
orig_dims = *this;
for (int i = 0; i < orig_dims.ndims (); i++)
{
if (orig_dims(i) != 1)
{
orig_dims(i) = n;
break;
}
}
}
else
orig_dims = dim_vector (n, 1);
return orig_dims;
}
int first_non_singleton (int def = 0) const
{
for (int i = 0; i < ndims (); i++)
{
if (xelem (i) != 1)
return i;
}
return def;
}
//! Linear index from an index tuple.
octave_idx_type compute_index (const octave_idx_type *idx) const
{ return compute_index (idx, ndims ()); }
//! Linear index from an incomplete index tuple (nidx < length ()).
octave_idx_type compute_index (const octave_idx_type *idx, int nidx) const
{
octave_idx_type k = 0;
for (int i = nidx - 1; i >= 0; i--)
k = xelem(i) * k + idx[i];
return k;
}
//! Increment a multi-dimensional index tuple, optionally starting
//! from an offset position and return the index of the last index
//! position that was changed, or length () if just cycled over.
int increment_index (octave_idx_type *idx, int start = 0) const
{
int i;
for (i = start; i < ndims (); i++)
{
if (++(*idx) == xelem(i))
*idx++ = 0;
else
break;
}
return i;
}
//! Return cumulative dimensions.
dim_vector cumulative () const
{
int nd = ndims ();
dim_vector retval = alloc (nd);
octave_idx_type k = 1;
for (int i = 0; i < nd; i++)
retval.xelem(i) = (k *= xelem(i));
return retval;
}
//! Compute a linear index from an index tuple. Dimensions are
//! required to be cumulative.
octave_idx_type cum_compute_index (const octave_idx_type *idx) const
{
octave_idx_type k = idx[0];
for (int i = 1; i < ndims (); i++)
k += xelem(i-1) * idx[i];
return k;
}
friend OCTAVE_API bool
operator == (const dim_vector& a, const dim_vector& b);
OCTAVE_API Array<octave_idx_type> as_array () const;
};
inline bool
operator == (const dim_vector& a, const dim_vector& b)
{
// Fast case.
if (a.m_dims == b.m_dims)
return true;
int a_len = a.ndims ();
int b_len = b.ndims ();
if (a_len != b_len)
return false;
return std::equal (a.m_dims, a.m_dims + a_len, b.m_dims);
}
inline bool
operator != (const dim_vector& a, const dim_vector& b)
{
return ! operator == (a, b);
}
#endif
|