File: dim-vector.h

package info (click to toggle)
octave 10.3.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 145,484 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 660; xml: 192
file content (537 lines) | stat: -rw-r--r-- 14,031 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2003-2025 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// or <https://octave.org/copyright/>.
//
// Copyirght (C) 2009, 2010 VZLU Prague
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if ! defined (octave_dim_vector_h)
#define octave_dim_vector_h 1

#include "octave-config.h"

#include <algorithm>
#include <initializer_list>
#include <string>

#include "Array-fwd.h"
#include "oct-atomic.h"
#include "oct-refcount.h"

//! Vector representing the dimensions (size) of an Array.
//!
//! A dim_vector is used to represent dimensions of an Array.  It is used
//! on its constructor to specify its size, or when reshaping it.
//!
//! @code{.cc}
//! // Matrix with 10 rows and 20 columns.
//! Matrix m Matrix (dim_vector (10, 20));
//!
//! // Change its size to 5 rows and 40 columns.
//! Matrix m2 = m.reshape (dim_vector (5, 40));
//!
//! // Five dimensional Array of length 10, 20, 3, 8, 7 on each dimension.
//! NDArray a (dim_vector (10, 20, 3, 8, 7));
//!
//! // Uninitialized array of same size as other.
//! NDArray b (a.dims ());
//! @endcode
//!
//! The main thing to understand about this class, is that methods such as
//! ndims() and numel(), return the value for an Array of these dimensions,
//! not the actual number of elements in the dim_vector.
//!
//! @code{.cc}
//! dim_vector d (10, 5, 3);
//! octave_idx_type n = d.numel (); // returns 150
//! octave_idx_type nd = d.ndims (); // returns 3
//! @endcode
//!
//! ## Implementation details ##
//!
//! This implementation is more tricky than Array, but the big plus is that
//! dim_vector requires only one allocation instead of two.  It is (slightly)
//! patterned after GCC's basic_string implementation.  rep is a pointer to an
//! array of memory, comprising count, length, and the data:
//!
//! @verbatim
//!        <count>
//!        <ndims>
//! rep --> <dims[0]>
//!        <dims[1]>
//!        ...
//! @endverbatim
//!
//! The inlines count(), ndims() recover this data from the rep.  Note
//! that rep points to the beginning of dims to grant faster access
//! (reinterpret_cast is assumed to be an inexpensive operation).

class OCTAVE_API dim_vector
{
private:

  octave_idx_type m_num_dims;

  octave_idx_type *m_dims;

public:

  //! Construct dim_vector for a N dimensional array.
  //!
  //! Each argument to constructor defines the length of an additional
  //! dimension.  A dim_vector always represents a minimum of 2 dimensions
  //! (just like an Array has at least 2 dimensions) and there is no
  //! upper limit on the number of dimensions.
  //!
  //! @code{.cc}
  //! dim_vector dv (7, 5);
  //! Matrix mat (dv);
  //! @endcode
  //!
  //! The constructed dim_vector @c dv will have two elements, @f$[7, 5]@f$,
  //! one for each dimension.  It can then be used to construct a Matrix
  //! with such dimensions, i.e., 7 rows and 5 columns.
  //!
  //! @code{.cc}
  //! NDArray x (dim_vector (7, 5, 10));
  //! @endcode
  //!
  //! This will construct a 3 dimensional NDArray of lengths 7, 5, and 10,
  //! on the first, second, and third dimension (rows, columns, and pages)
  //! respectively.
  //!
  //! Note that that there is no constructor that accepts only one
  //! dimension length to avoid confusion.  The source for such confusion
  //! is that constructor could mean:
  //!   - a column vector, i.e., assume @f$[N, 1]@f$;
  //!   - a square matrix, i.e., as is common in Octave interpreter;
  //!   - support for a 1 dimensional Array (does not exist);
  //!
  //! Using r, c, and lengths... as arguments, allow us to check at compile
  //! time that there's at least 2 dimensions specified, while maintaining
  //! type safety.

  template <typename... Ints>
  dim_vector (const octave_idx_type r, const octave_idx_type c,
              Ints... lengths)
    : m_num_dims (2 + sizeof... (Ints)), m_dims (new octave_idx_type [m_num_dims])
  {
    std::initializer_list<octave_idx_type> all_lengths = {r, c, lengths...};
    octave_idx_type *ptr = m_dims;
    for (const octave_idx_type l: all_lengths)
      *ptr++ = l;
  }

  // Fast access with absolutely no checking

  octave_idx_type& xelem (int i) { return m_dims[i]; }

  octave_idx_type xelem (int i) const { return m_dims[i]; }

  // Safe access to to elements

  octave_idx_type& elem (int i)
  {
    return xelem (i);
  }

  octave_idx_type elem (int i) const { return xelem (i); }

  void chop_trailing_singletons ()
  {
    while (m_num_dims > 2 && xelem(m_num_dims-1) == 1)
      m_num_dims--;
  }

  OCTAVE_API void chop_all_singletons ();

private:

  explicit dim_vector (octave_idx_type ndims)
    : m_num_dims (ndims < 2 ? 2 : ndims), m_dims (new octave_idx_type [m_num_dims])
  {
    std::fill_n (m_dims, m_num_dims, 0);
  }

public:

  static OCTAVE_API octave_idx_type dim_max ();

  explicit dim_vector ()
    : m_num_dims (2), m_dims (new octave_idx_type [m_num_dims])
  {
    std::fill_n (m_dims, m_num_dims, 0);
  }

  dim_vector (const dim_vector& dv)
    : m_num_dims (dv.m_num_dims), m_dims (new octave_idx_type [m_num_dims])
  {
    std::copy_n (dv.m_dims, m_num_dims, m_dims);
  }

  dim_vector (dim_vector&& dv)
    : m_num_dims (0), m_dims (nullptr)
  {
    *this = std::move (dv);
  }

  static dim_vector alloc (int n)
  {
    return dim_vector (n);
  }

  dim_vector& operator = (const dim_vector& dv)
  {
    if (&dv != this)
      {
        delete [] m_dims;

        m_num_dims = dv.m_num_dims;
        m_dims = new octave_idx_type [m_num_dims];

        std::copy_n (dv.m_dims, m_num_dims, m_dims);
      }

    return *this;
  }

  dim_vector& operator = (dim_vector&& dv)
  {
    if (&dv != this)
      {
        // Because we define a move constructor and a move assignment
        // operator, m_dims may be a nullptr here.  We should only need to
        // protect the destructor in a similar way.

        delete [] m_dims;

        m_num_dims = dv.m_num_dims;
        m_dims = dv.m_dims;

        dv.m_num_dims = 0;
        dv.m_dims = nullptr;
      }

    return *this;
  }

  ~dim_vector ()
  {
    // Because we define a move constructor and a move assignment
    // operator, m_dims may be a nullptr here.  We should only need to
    // protect the move assignment operator in a similar way.

    delete [] m_dims;
  }

  //! Number of dimensions.
  //!
  //! Returns the number of dimensions of the dim_vector.  This is number of
  //! elements in the dim_vector including trailing singletons.  It is also
  //! the number of dimensions an Array with this dim_vector would have.

  octave_idx_type ndims () const { return m_num_dims; }

  //! Number of dimensions.
  //! Synonymous with ndims().
  //!
  //! While this method is not officially deprecated, consider using ndims()
  //! instead to avoid confusion.  Array does not have length because of its
  //! odd definition as length of the longest dimension.

  int length () const { return ndims (); }

  octave_idx_type& operator () (int i) { return elem (i); }

  octave_idx_type operator () (int i) const { return elem (i); }

  void resize (int n, int fill_value = 0)
  {
    if (n < 2)
      n = 2;

    if (n == m_num_dims)
      return;

    if (n < m_num_dims)
      {
        m_num_dims = n;
        return;
      }

    octave_idx_type *new_rep = new octave_idx_type [n];

    std::copy_n (m_dims, m_num_dims, new_rep);
    std::fill_n (new_rep + m_num_dims, n - m_num_dims, fill_value);

    delete [] m_dims;

    m_dims = new_rep;

    m_num_dims = n;
  }

  OCTAVE_API std::string str (char sep = 'x') const;

  bool all_zero () const
  {
    return std::all_of (m_dims, m_dims + ndims (),
                        [] (octave_idx_type dim) { return dim == 0; });
  }

  bool empty_2d () const
  {
    return ndims () == 2 && (xelem (0) == 0 || xelem (1) == 0);
  }

  bool zero_by_zero () const
  {
    return ndims () == 2 && xelem (0) == 0 && xelem (1) == 0;
  }

  bool any_zero () const
  {
    return std::any_of (m_dims, m_dims + ndims (),
                        [] (octave_idx_type dim) { return dim == 0; });
  }

  OCTAVE_API int num_ones () const;

  bool all_ones () const
  {
    return (num_ones () == ndims ());
  }

  //! Number of elements that a matrix with this dimensions would have.
  //!
  //! Return the number of elements that a matrix with this dimension
  //! vector would have, NOT the number of dimensions (elements in the
  //! dimension vector).

  octave_idx_type numel (int n = 0) const
  {
    int n_dims = ndims ();

    octave_idx_type retval = 1;

    for (int i = n; i < n_dims; i++)
      retval *= elem (i);

    return retval;
  }

  //! The following function will throw a std::bad_alloc ()
  //! exception if the requested size is larger than can be indexed by
  //! octave_idx_type.  This may be smaller than the actual amount of
  //! memory that can be safely allocated on a system.  However, if we
  //! don't fail here, we can end up with a mysterious crash inside a
  //! function that is iterating over an array using octave_idx_type
  //! indices.

  OCTAVE_API octave_idx_type safe_numel () const;

  bool any_neg () const
  {
    return std::any_of (m_dims, m_dims + ndims (),
                        [] (octave_idx_type dim) { return dim < 0; });
  }

  OCTAVE_API dim_vector squeeze () const;

  //! This corresponds to cat().
  OCTAVE_API bool concat (const dim_vector& dvb, int dim);

  //! This corresponds to [,] (horzcat, dim = 0) and [;] (vertcat, dim = 1).
  // The rules are more relaxed here.
  OCTAVE_API bool hvcat (const dim_vector& dvb, int dim);

  //! Force certain dimensionality, preserving numel ().  Missing
  //! dimensions are set to 1, redundant are folded into the trailing
  //! one.  If n = 1, the result is 2d and the second dim is 1
  //! (dim_vectors are always at least 2D).

  OCTAVE_API dim_vector redim (int n) const;

  dim_vector as_column () const
  {
    if (ndims () == 2 && xelem (1) == 1)
      return *this;
    else
      return dim_vector (numel (), 1);
  }

  dim_vector as_row () const
  {
    if (ndims () == 2 && xelem (0) == 1)
      return *this;
    else
      return dim_vector (1, numel ());
  }

  bool isvector () const
  {
    return (ndims () == 2 && (xelem (0) == 1 || xelem (1) == 1));
  }

  bool is_nd_vector () const
  {
    int num_non_one = 0;

    for (int i = 0; i < ndims (); i++)
      {
        if (xelem (i) != 1)
          {
            num_non_one++;

            if (num_non_one > 1)
              break;
          }
      }

    return num_non_one == 1;
  }

  // Create a vector with length N.  If this object is a vector,
  // preserve the orientation, otherwise, create a column vector.

  dim_vector make_nd_vector (octave_idx_type n) const
  {
    dim_vector orig_dims;

    if (is_nd_vector ())
      {
        orig_dims = *this;

        for (int i = 0; i < orig_dims.ndims (); i++)
          {
            if (orig_dims(i) != 1)
              {
                orig_dims(i) = n;
                break;
              }
          }
      }
    else
      orig_dims = dim_vector (n, 1);

    return orig_dims;
  }

  int first_non_singleton (int def = 0) const
  {
    for (int i = 0; i < ndims (); i++)
      {
        if (xelem (i) != 1)
          return i;
      }

    return def;
  }

  //! Linear index from an index tuple.
  octave_idx_type compute_index (const octave_idx_type *idx) const
  { return compute_index (idx, ndims ()); }

  //! Linear index from an incomplete index tuple (nidx < length ()).
  octave_idx_type compute_index (const octave_idx_type *idx, int nidx) const
  {
    octave_idx_type k = 0;
    for (int i = nidx - 1; i >= 0; i--)
      k = xelem(i) * k + idx[i];

    return k;
  }

  //! Increment a multi-dimensional index tuple, optionally starting
  //! from an offset position and return the index of the last index
  //! position that was changed, or length () if just cycled over.

  int increment_index (octave_idx_type *idx, int start = 0) const
  {
    int i;
    for (i = start; i < ndims (); i++)
      {
        if (++(*idx) == xelem(i))
          *idx++ = 0;
        else
          break;
      }
    return i;
  }

  //! Return cumulative dimensions.

  dim_vector cumulative () const
  {
    int nd = ndims ();
    dim_vector retval = alloc (nd);

    octave_idx_type k = 1;
    for (int i = 0; i < nd; i++)
      retval.xelem(i) = (k *= xelem(i));

    return retval;
  }

  //! Compute a linear index from an index tuple.  Dimensions are
  //! required to be cumulative.

  octave_idx_type cum_compute_index (const octave_idx_type *idx) const
  {
    octave_idx_type k = idx[0];

    for (int i = 1; i < ndims (); i++)
      k += xelem(i-1) * idx[i];

    return k;
  }

  friend OCTAVE_API bool
  operator == (const dim_vector& a, const dim_vector& b);

  OCTAVE_API Array<octave_idx_type> as_array () const;
};

inline bool
operator == (const dim_vector& a, const dim_vector& b)
{
  // Fast case.
  if (a.m_dims == b.m_dims)
    return true;

  int a_len = a.ndims ();
  int b_len = b.ndims ();

  if (a_len != b_len)
    return false;

  return std::equal (a.m_dims, a.m_dims + a_len, b.m_dims);
}

inline bool
operator != (const dim_vector& a, const dim_vector& b)
{
  return ! operator == (a, b);
}

#endif