File: CollocWt.cc

package info (click to toggle)
octave 10.3.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 145,484 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 660; xml: 192
file content (511 lines) | stat: -rw-r--r-- 12,965 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1993-2025 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <cmath>

#include <limits>
#include <ostream>

#include "Array.h"
#include "CollocWt.h"
#include "lo-error.h"
#include "lo-mappers.h"

// The following routines jcobi, dif, and dfopr are based on the code
// found in Villadsen, J. and M. L. Michelsen, Solution of Differential
// Equation Models by Polynomial Approximation, Prentice-Hall (1978)
// pages 418-420.
//
// Translated to C++ by jwe.

OCTAVE_BEGIN_NAMESPACE(octave)

// Compute the first three derivatives of the node polynomial.
//
//                 n0     (alpha,beta)           n1
//   p  (x)  =  (x)   *  p (x)         *  (1 - x)
//    nt                   n
//
// at the interpolation points.  Each of the parameters n0 and n1
// may be given the value 0 or 1.  The total number of points
// nt = n + n0 + n1
//
// The values of root must be known before a call to dif is possible.
// They may be computed using jcobi.

static void dif (octave_idx_type nt, double *root, double *dif1,
                 double *dif2, double *dif3)
{
  // Evaluate derivatives of node polynomial using recursion formulas.

  for (octave_idx_type i = 0; i < nt; i++)
    {
      double x = root[i];

      dif1[i] = 1.0;
      dif2[i] = 0.0;
      dif3[i] = 0.0;

      for (octave_idx_type j = 0; j < nt; j++)
        {
          if (j != i)
            {
              double y = x - root[j];

              dif3[i] = y * dif3[i] + 3.0 * dif2[i];
              dif2[i] = y * dif2[i] + 2.0 * dif1[i];
              dif1[i] = y * dif1[i];
            }
        }
    }
}

// Compute the zeros of the Jacobi polynomial.
//
//    (alpha,beta)
//   p  (x)
//    n
//
// Use dif to compute the derivatives of the node
// polynomial
//
//                 n0     (alpha,beta)           n1
//   p  (x)  =  (x)   *  p (x)         *  (1 - x)
//    nt                   n
//
// at the interpolation points.
//
// See Villadsen and Michelsen, pages 131-132 and 418.
//
// Input parameters:
//
//   nd     : the dimension of the vectors dif1, dif2, dif3, and root
//
//   n      : the degree of the jacobi polynomial, (i.e., the number
//            of interior interpolation points)
//
//   n0     : determines whether x = 0 is included as an
//            interpolation point
//
//              n0 = 0  ==>  x = 0 is not included
//              n0 = 1  ==>  x = 0 is included
//
//   n1     : determines whether x = 1 is included as an
//            interpolation point
//
//              n1 = 0  ==>  x = 1 is not included
//              n1 = 1  ==>  x = 1 is included
//
//   alpha  : the value of alpha in the description of the jacobi
//            polynomial
//
//   beta   : the value of beta in the description of the jacobi
//            polynomial
//
//   For a more complete explanation of alpha an beta, see Villadsen
//   and Michelsen, pages 57 to 59.
//
// Output parameters:
//
//   root   : one dimensional vector containing on exit the
//            n + n0 + n1 zeros of the node polynomial used in the
//            interpolation routine
//
//   dif1   : one dimensional vector containing the first derivative
//            of the node polynomial at the zeros
//
//   dif2   : one dimensional vector containing the second derivative
//            of the node polynomial at the zeros
//
//   dif3   : one dimensional vector containing the third derivative
//            of the node polynomial at the zeros

static bool
jcobi (octave_idx_type n, octave_idx_type n0, octave_idx_type n1,
       double alpha, double beta, double *dif1, double *dif2,
       double *dif3, double *root)
{
  liboctave_panic_unless (n0 == 0 || n0 == 1);
  liboctave_panic_unless (n1 == 0 || n1 == 1);

  octave_idx_type nt = n + n0 + n1;

  liboctave_panic_unless (nt >= 1);

  // -- first evaluation of coefficients in recursion formulas.
  // -- recursion coefficients are stored in dif1 and dif2.

  double ab = alpha + beta;
  double ad = beta - alpha;
  double ap = beta * alpha;

  dif1[0] = (ad / (ab + 2.0) + 1.0) / 2.0;
  dif2[0] = 0.0;

  if (n >= 2)
    {
      for (octave_idx_type i = 1; i < n; i++)
        {
          double z1 = i;
          double z = ab + 2 * z1;

          dif1[i] = (ab * ad / z / (z + 2.0) + 1.0) / 2.0;

          if (i == 1)
            dif2[i] = (ab + ap + z1) / z / z / (z + 1.0);
          else
            {
              z *= z;
              double y = z1 * (ab + z1);
              y *= (ap + y);
              dif2[i] = y / z / (z - 1.0);
            }
        }
    }

  // Root determination by Newton method with suppression of previously
  // determined roots.

  double x = 0.0;

  for (octave_idx_type i = 0; i < n; i++)
    {
      bool done = false;

      int k = 0;

      while (! done)
        {
          double xd = 0.0;
          double xn = 1.0;
          double xd1 = 0.0;
          double xn1 = 0.0;

          for (octave_idx_type j = 0; j < n; j++)
            {
              double xp  = (dif1[j] - x) * xn  - dif2[j] * xd;
              double xp1 = (dif1[j] - x) * xn1 - dif2[j] * xd1 - xn;

              xd  = xn;
              xd1 = xn1;
              xn  = xp;
              xn1 = xp1;
            }

          double zc = 1.0;
          double z = xn / xn1;

          if (i != 0)
            {
              for (octave_idx_type j = 1; j <= i; j++)
                zc -= z / (x - root[j-1]);
            }

          z /= zc;
          x -= z;

          // Famous last words:  100 iterations should be more than
          // enough in all cases.

          if (++k > 100 || math::isnan (z))
            return false;

          if (std::abs (z) <= 100 * std::numeric_limits<double>::epsilon ())
            done = true;
        }

      root[i] = x;
      x += std::sqrt (std::numeric_limits<double>::epsilon ());
    }

  // Add interpolation points at x = 0 and/or x = 1.

  if (n0 != 0)
    {
      for (octave_idx_type i = n; i > 0; i--)
        root[i] = root[i-1];

      root[0] = 0.0;
    }

  if (n1 != 0)
    root[nt-1] = 1.0;

  dif (nt, root, dif1, dif2, dif3);

  return true;
}

// Compute derivative weights for orthogonal collocation.
//
// See Villadsen and Michelsen, pages 133-134, 419.
//
// Input parameters:
//
//   nd     : the dimension of the vectors dif1, dif2, dif3, and root
//
//   n      : the degree of the jacobi polynomial, (i.e., the number
//            of interior interpolation points)
//
//   n0     : determines whether x = 0 is included as an
//            interpolation point
//
//              n0 = 0  ==>  x = 0 is not included
//              n0 = 1  ==>  x = 0 is included
//
//   n1     : determines whether x = 1 is included as an
//            interpolation point
//
//              n1 = 0  ==>  x = 1 is not included
//              n1 = 1  ==>  x = 1 is included
//
//   i      : the index of the node for which the weights are to be
//            calculated
//
//   id     : indicator
//
//              id = 1  ==>  first derivative weights are computed
//              id = 2  ==>  second derivative weights are computed
//              id = 3  ==>  gaussian weights are computed (in this
//                           case, the value of i is irrelevant)
//
// Output parameters:
//
//   dif1   : one dimensional vector containing the first derivative
//            of the node polynomial at the zeros
//
//   dif2   : one dimensional vector containing the second derivative
//            of the node polynomial at the zeros
//
//   dif3   : one dimensional vector containing the third derivative
//            of the node polynomial at the zeros
//
//   vect   : one dimensional vector of computed weights

static void
dfopr (octave_idx_type n, octave_idx_type n0, octave_idx_type n1,
       octave_idx_type i, octave_idx_type id, double *dif1,
       double *dif2, double *dif3, double *root, double *vect)
{
  liboctave_panic_unless (n0 == 0 || n0 == 1);
  liboctave_panic_unless (n1 == 0 || n1 == 1);

  octave_idx_type nt = n + n0 + n1;

  liboctave_panic_unless (nt >= 1);

  liboctave_panic_unless (id == 1 || id == 2 || id == 3);

  if (id != 3)
    liboctave_panic_unless (i >= 0 && i < nt);

  // Evaluate discretization matrices and Gaussian quadrature weights.
  // Quadrature weights are normalized to sum to one.

  if (id != 3)
    {
      for (octave_idx_type j = 0; j < nt; j++)
        {
          if (j == i)
            {
              if (id == 1)
                vect[i] = dif2[i] / dif1[i] / 2.0;
              else
                vect[i] = dif3[i] / dif1[i] / 3.0;
            }
          else
            {
              double y = root[i] - root[j];

              vect[j] = dif1[i] / dif1[j] / y;

              if (id == 2)
                vect[j] = vect[j] * (dif2[i] / dif1[i] - 2.0 / y);
            }
        }
    }
  else
    {
      double y = 0.0;

      for (octave_idx_type j = 0; j < nt; j++)
        {
          double x = root[j];

          double ax = x * (1.0 - x);

          if (n0 == 0)
            ax = ax / x / x;

          if (n1 == 0)
            ax = ax / (1.0 - x) / (1.0 - x);

          vect[j] = ax / (dif1[j] * dif1[j]);

          y += vect[j];
        }

      for (octave_idx_type j = 0; j < nt; j++)
        vect[j] = vect[j] / y;
    }
}

// Error handling.

void
CollocWt::error (const char *msg)
{
  (*current_liboctave_error_handler) ("CollocWt: fatal error '%s'", msg);
}

CollocWt&
CollocWt::set_left (double val)
{
  if (val >= m_rb)
    error ("CollocWt: left bound greater than right bound");

  m_lb = val;
  m_initialized = 0;
  return *this;
}

CollocWt&
CollocWt::set_right (double val)
{
  if (val <= m_lb)
    error ("CollocWt: right bound less than left bound");

  m_rb = val;
  m_initialized = 0;
  return *this;
}

void
CollocWt::init ()
{
  // Check for possible errors.

  double wid = m_rb - m_lb;
  if (wid <= 0.0)
    {
      error ("CollocWt: width less than or equal to zero");
    }

  octave_idx_type nt = m_n + m_inc_left + m_inc_right;

  if (nt < 0)
    error ("CollocWt: total number of collocation points less than zero");
  else if (nt == 0)
    return;

  Array<double> dif1 (dim_vector (nt, 1));
  double *pdif1 = dif1.rwdata ();

  Array<double> dif2 (dim_vector (nt, 1));
  double *pdif2 = dif2.rwdata ();

  Array<double> dif3 (dim_vector (nt, 1));
  double *pdif3 = dif3.rwdata ();

  Array<double> vect (dim_vector (nt, 1));
  double *pvect = vect.rwdata ();

  m_r.resize (nt, 1);
  m_q.resize (nt, 1);
  m_A.resize (nt, nt);
  m_B.resize (nt, nt);

  double *pr = m_r.rwdata ();

  // Compute roots.

  if (! jcobi (m_n, m_inc_left, m_inc_right, m_alpha, m_beta, pdif1,
               pdif2, pdif3, pr))
    error ("jcobi: newton iteration failed");

  octave_idx_type id;

  // First derivative weights.

  id = 1;
  for (octave_idx_type i = 0; i < nt; i++)
    {
      dfopr (m_n, m_inc_left, m_inc_right, i, id, pdif1, pdif2, pdif3,
             pr, pvect);

      for (octave_idx_type j = 0; j < nt; j++)
        m_A(i, j) = vect(j);
    }

  // Second derivative weights.

  id = 2;
  for (octave_idx_type i = 0; i < nt; i++)
    {
      dfopr (m_n, m_inc_left, m_inc_right, i, id, pdif1, pdif2, pdif3,
             pr, pvect);

      for (octave_idx_type j = 0; j < nt; j++)
        m_B(i, j) = vect(j);
    }

  // Gaussian quadrature weights.

  id = 3;
  double *pq = m_q.rwdata ();
  dfopr (m_n, m_inc_left, m_inc_right, id, id, pdif1, pdif2, pdif3, pr, pq);

  m_initialized = 1;
}

std::ostream&
operator << (std::ostream& os, const CollocWt& a)
{
  if (a.left_included ())
    os << "left  boundary is included\n";
  else
    os << "left  boundary is not included\n";

  if (a.right_included ())
    os << "right boundary is included\n";
  else
    os << "right boundary is not included\n";

  os << "\n";

  os << a.m_alpha << ' ' << a.m_beta << "\n\n"
     << a.m_r << "\n\n"
     << a.m_q << "\n\n"
     << a.m_A << "\n"
     << a.m_B << "\n";

  return os;
}

OCTAVE_END_NAMESPACE(octave)