1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
########################################################################
##
## Copyright (C) 2007-2025 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi})
## @deftypefnx {} {} slice (@var{v}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {} slice (@var{v}, @var{xi}, @var{yi}, @var{zi})
## @deftypefnx {} {} slice (@dots{}, @var{method})
## @deftypefnx {} {} slice (@var{hax}, @dots{})
## @deftypefnx {} {@var{h} =} slice (@dots{})
## Plot slices of 3-D data/scalar fields.
##
## Each element of the 3-dimensional array @var{v} represents a scalar value at
## a location given by the parameters @var{x}, @var{y}, and @var{z}. The
## parameters @var{x}, @var{y}, and @var{z} are either 3-dimensional arrays of
## the same size as the array @var{v} in the @qcode{"meshgrid"} format or
## vectors. The parameters @var{xi}, etc.@: respect a similar format to
## @var{x}, etc., and they represent the points at which the array @var{vi}
## is interpolated using interp3. The vectors @var{sx}, @var{sy}, and
## @var{sz} contain points of orthogonal slices of the respective axes.
##
## If @var{x}, @var{y}, @var{z} are omitted, they are assumed to be
## @code{x = 1:size (@var{v}, 2)}, @code{y = 1:size (@var{v}, 1)} and
## @code{z = 1:size (@var{v}, 3)}.
##
## @var{method} is one of:
##
## @table @asis
## @item @qcode{"nearest"}
## Return the nearest neighbor.
##
## @item @qcode{"linear"}
## Linear interpolation from nearest neighbors.
##
## @item @qcode{"cubic"}
## Cubic interpolation from four nearest neighbors (not implemented yet).
##
## @item @qcode{"spline"}
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## The default method is @qcode{"linear"}.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## The optional return value @var{h} is a graphics handle to the created
## surface object.
##
## Examples:
##
## @example
## @group
## [x, y, z] = meshgrid (linspace (-8, 8, 32));
## v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
## slice (x, y, z, v, [], 0, []);
##
## [xi, yi] = meshgrid (linspace (-7, 7));
## zi = xi + yi;
## slice (x, y, z, v, xi, yi, zi);
## @end group
## @end example
## @seealso{interp3, surface, pcolor}
## @end deftypefn
function h = slice (varargin)
[hax, varargin, nargs] = __plt_get_axis_arg__ ("slice", varargin{:});
method = "linear";
if (ischar (varargin{end}))
method = varargin{end};
nargs -= 1;
endif
if (nargs == 4)
v = varargin{1};
if (ndims (v) != 3)
error ("slice: V must be a 3-dimensional array of values");
endif
[nx, ny, nz] = size (v);
[x, y, z] = meshgrid (1:nx, 1:ny, 1:nz);
sx = varargin{2};
sy = varargin{3};
sz = varargin{4};
elseif (nargs == 7)
v = varargin{4};
if (ndims (v) != 3)
error ("slice: V must be a 3-dimensional array of values");
endif
x = varargin{1};
y = varargin{2};
z = varargin{3};
if (isvector (x) && isvector (y) && isvector (z))
[x, y, z] = meshgrid (x, y, z);
elseif (ndims (x) == 3 && size_equal (x, y, z))
## Do nothing.
else
error ("slice: X, Y, Z size mismatch");
endif
sx = varargin{5};
sy = varargin{6};
sz = varargin{7};
else
print_usage ();
endif
if (any ([isvector(sx), isvector(sy), isvector(sz)]))
have_sval = true;
elseif (ndims (sx) == 2 && size_equal (sx, sy, sz))
have_sval = false;
else
error ("slice: dimensional mismatch for (XI, YI, ZI) or (SX, SY, SZ)");
endif
oldfig = [];
if (! isempty (hax))
oldfig = get (0, "currentfigure");
endif
unwind_protect
hax = newplot (hax);
sidx = 1;
minv = min (v(:));
maxv = max (v(:));
set (hax, "clim", double ([minv, maxv]));
if (have_sval)
ns = length (sx) + length (sy) + length (sz);
hs = zeros (ns,1);
[ny, nx, nz] = size (v);
if (length (sz) > 0)
for i = 1:length (sz)
[xi, yi, zi] = meshgrid (squeeze (x(1,:,1)),
squeeze (y(:,1,1)), sz(i));
vz = squeeze (interp3 (x, y, z, v, xi, yi, zi, method));
htmp(sidx++) = surface (xi, yi, sz(i) * ones (size (yi)), vz);
endfor
endif
if (length (sy) > 0)
for i = length (sy):-1:1
[xi, yi, zi] = meshgrid (squeeze (x(1,:,1)),
sy(i),
squeeze (z(1,1,:)));
vy = squeeze (interp3 (x, y, z, v, xi, yi, zi, method));
htmp(sidx++) = surface (squeeze (xi),
squeeze (sy(i) * ones (size (zi))),
squeeze (zi), vy);
endfor
endif
if (length (sx) > 0)
for i = length (sx):-1:1
[xi, yi, zi] = meshgrid (sx(i), squeeze (y(:,1,1)), squeeze (z(1,1,:)));
vx = squeeze (interp3 (x, y, z, v, xi, yi, zi, method));
htmp(sidx++) = surface (squeeze (sx(i) * ones (size (zi))),
squeeze (yi), squeeze (zi), vx);
endfor
endif
else
vi = interp3 (x, y, z, v, sx, sy, sz);
htmp = surface (sx, sy, sz, vi);
endif
if (! ishold ())
set (hax, "view", [-37.5, 30.0],
"xgrid", "on", "ygrid", "on", "zgrid", "on");
endif
unwind_protect_cleanup
if (! isempty (oldfig))
set (0, "currentfigure", oldfig);
endif
end_unwind_protect
if (nargout > 0)
h = htmp;
endif
endfunction
%!demo
%! clf;
%! colormap ("default");
%! [x, y, z] = meshgrid (linspace (-8, 8, 32));
%! v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
%! slice (x, y, z, v, [], 0, []);
%! title ("slice() demo #1");
%!demo
%! clf;
%! colormap ("default");
%! [x, y, z] = meshgrid (linspace (-8, 8, 32));
%! v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
%! [xi, yi] = meshgrid (linspace (-7, 7));
%! zi = xi + yi;
%! slice (x, y, z, v, xi, yi, zi);
%! title ("slice() demo #2");
|