File: slice.m

package info (click to toggle)
octave 10.3.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 145,484 kB
  • sloc: cpp: 335,976; ansic: 82,241; fortran: 20,963; objc: 9,402; sh: 8,756; yacc: 4,392; lex: 4,333; perl: 1,544; java: 1,366; awk: 1,259; makefile: 660; xml: 192
file content (225 lines) | stat: -rw-r--r-- 7,166 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
########################################################################
##
## Copyright (C) 2007-2025 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi})
## @deftypefnx {} {} slice (@var{v}, @var{sx}, @var{sy}, @var{sz})
## @deftypefnx {} {} slice (@var{v}, @var{xi}, @var{yi}, @var{zi})
## @deftypefnx {} {} slice (@dots{}, @var{method})
## @deftypefnx {} {} slice (@var{hax}, @dots{})
## @deftypefnx {} {@var{h} =} slice (@dots{})
## Plot slices of 3-D data/scalar fields.
##
## Each element of the 3-dimensional array @var{v} represents a scalar value at
## a location given by the parameters @var{x}, @var{y}, and @var{z}.  The
## parameters @var{x}, @var{y}, and @var{z} are either 3-dimensional arrays of
## the same size as the array @var{v} in the @qcode{"meshgrid"} format or
## vectors.  The parameters @var{xi}, etc.@: respect a similar format to
## @var{x}, etc., and they represent the points at which the array @var{vi}
## is interpolated using interp3.  The vectors @var{sx}, @var{sy}, and
## @var{sz} contain points of orthogonal slices of the respective axes.
##
## If @var{x}, @var{y}, @var{z} are omitted, they are assumed to be
## @code{x = 1:size (@var{v}, 2)}, @code{y = 1:size (@var{v}, 1)} and
## @code{z = 1:size (@var{v}, 3)}.
##
## @var{method} is one of:
##
## @table @asis
## @item @qcode{"nearest"}
## Return the nearest neighbor.
##
## @item @qcode{"linear"}
## Linear interpolation from nearest neighbors.
##
## @item @qcode{"cubic"}
## Cubic interpolation from four nearest neighbors (not implemented yet).
##
## @item @qcode{"spline"}
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## The default method is @qcode{"linear"}.
##
## If the first argument @var{hax} is an axes handle, then plot into this axes,
## rather than the current axes returned by @code{gca}.
##
## The optional return value @var{h} is a graphics handle to the created
## surface object.
##
## Examples:
##
## @example
## @group
## [x, y, z] = meshgrid (linspace (-8, 8, 32));
## v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
## slice (x, y, z, v, [], 0, []);
##
## [xi, yi] = meshgrid (linspace (-7, 7));
## zi = xi + yi;
## slice (x, y, z, v, xi, yi, zi);
## @end group
## @end example
## @seealso{interp3, surface, pcolor}
## @end deftypefn

function h = slice (varargin)

  [hax, varargin, nargs] = __plt_get_axis_arg__ ("slice", varargin{:});

  method = "linear";

  if (ischar (varargin{end}))
    method = varargin{end};
    nargs -= 1;
  endif

  if (nargs == 4)
    v = varargin{1};
    if (ndims (v) != 3)
      error ("slice: V must be a 3-dimensional array of values");
    endif
    [nx, ny, nz] = size (v);
    [x, y, z] = meshgrid (1:nx, 1:ny, 1:nz);
    sx = varargin{2};
    sy = varargin{3};
    sz = varargin{4};
  elseif (nargs == 7)
    v = varargin{4};
    if (ndims (v) != 3)
      error ("slice: V must be a 3-dimensional array of values");
    endif
    x = varargin{1};
    y = varargin{2};
    z = varargin{3};
    if (isvector (x) && isvector (y) && isvector (z))
      [x, y, z] = meshgrid (x, y, z);
    elseif (ndims (x) == 3 && size_equal (x, y, z))
      ## Do nothing.
    else
      error ("slice: X, Y, Z size mismatch");
    endif
    sx = varargin{5};
    sy = varargin{6};
    sz = varargin{7};
  else
    print_usage ();
  endif

  if (any ([isvector(sx), isvector(sy), isvector(sz)]))
    have_sval = true;
  elseif (ndims (sx) == 2 && size_equal (sx, sy, sz))
    have_sval = false;
  else
    error ("slice: dimensional mismatch for (XI, YI, ZI) or (SX, SY, SZ)");
  endif

  oldfig = [];
  if (! isempty (hax))
    oldfig = get (0, "currentfigure");
  endif
  unwind_protect
    hax = newplot (hax);

    sidx = 1;
    minv = min (v(:));
    maxv = max (v(:));
    set (hax, "clim", double ([minv, maxv]));

    if (have_sval)
      ns = length (sx) + length (sy) + length (sz);
      hs = zeros (ns,1);
      [ny, nx, nz] = size (v);
      if (length (sz) > 0)
        for i = 1:length (sz)
          [xi, yi, zi] = meshgrid (squeeze (x(1,:,1)),
                                   squeeze (y(:,1,1)), sz(i));
          vz = squeeze (interp3 (x, y, z, v, xi, yi, zi, method));
          htmp(sidx++) = surface (xi, yi, sz(i) * ones (size (yi)), vz);
        endfor
      endif

      if (length (sy) > 0)
        for i = length (sy):-1:1
          [xi, yi, zi] = meshgrid (squeeze (x(1,:,1)),
                                   sy(i),
                                   squeeze (z(1,1,:)));
          vy = squeeze (interp3 (x, y, z, v, xi, yi, zi, method));
          htmp(sidx++) = surface (squeeze (xi),
                                  squeeze (sy(i) * ones (size (zi))),
                                  squeeze (zi), vy);
        endfor
      endif

      if (length (sx) > 0)
        for i = length (sx):-1:1
          [xi, yi, zi] = meshgrid (sx(i), squeeze (y(:,1,1)), squeeze (z(1,1,:)));
          vx = squeeze (interp3 (x, y, z, v, xi, yi, zi, method));
          htmp(sidx++) = surface (squeeze (sx(i) * ones (size (zi))),
                                  squeeze (yi), squeeze (zi), vx);
        endfor
      endif
    else
      vi = interp3 (x, y, z, v, sx, sy, sz);
      htmp = surface (sx, sy, sz, vi);
    endif

    if (! ishold ())
      set (hax, "view", [-37.5, 30.0],
                "xgrid", "on", "ygrid", "on", "zgrid", "on");
    endif

  unwind_protect_cleanup
    if (! isempty (oldfig))
      set (0, "currentfigure", oldfig);
    endif
  end_unwind_protect

  if (nargout > 0)
    h = htmp;
  endif

endfunction


%!demo
%! clf;
%! colormap ("default");
%! [x, y, z] = meshgrid (linspace (-8, 8, 32));
%! v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
%! slice (x, y, z, v, [], 0, []);
%! title ("slice() demo #1");

%!demo
%! clf;
%! colormap ("default");
%! [x, y, z] = meshgrid (linspace (-8, 8, 32));
%! v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
%! [xi, yi] = meshgrid (linspace (-7, 7));
%! zi = xi + yi;
%! slice (x, y, z, v, xi, yi, zi);
%! title ("slice() demo #2");