1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
########################################################################
##
## Copyright (C) 2016-2025 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{smoothed_data} =} smooth3 (@var{data})
## @deftypefnx {} {@var{smoothed_data} =} smooth3 (@var{data}, @var{method})
## @deftypefnx {} {@var{smoothed_data} =} smooth3 (@var{data}, @var{method}, @var{sz})
## @deftypefnx {} {@var{smoothed_data} =} smooth3 (@var{data}, @var{method}, @var{sz}, @var{std_dev})
## Smooth values of 3-dimensional matrix @var{data}.
##
## This function may be used, for example, to reduce the impact of noise in
## @var{data} before calculating isosurfaces.
##
## @var{data} must be a non-singleton 3-dimensional matrix. The output
## @var{smoothed_data} is a matrix of the same size as @var{data}.
##
## The option input @var{method} determines which convolution kernel is used
## for the smoothing process. Possible choices:
##
## @table @asis
## @item @qcode{"box"}, @qcode{"b"} (default)
## a convolution kernel with sharp edges.
##
## @item @qcode{"gaussian"}, @qcode{"g"}
## a convolution kernel that is represented by a non-correlated trivariate
## normal distribution function.
## @end table
##
## @var{sz} is either a 3-element vector specifying the size of the
## convolution kernel in the x-, y- and z-directions, or a scalar. In the
## scalar case the same size is used for all three dimensions
## (@code{[@var{sz}, @var{sz}, @var{sz}]}). The default value is 3.
##
## If @var{method} is @qcode{"gaussian"} then the optional input @var{std_dev}
## defines the standard deviation of the trivariate normal distribution
## function. @var{std_dev} is either a 3-element vector specifying the
## standard deviation of the Gaussian convolution kernel in x-, y- and
## z-directions, or a scalar. In the scalar case the same value is used for
## all three dimensions. The default value is 0.65.
##
## @seealso{isosurface, isonormals, patch}
## @end deftypefn
function smoothed_data = smooth3 (data, method = "box", sz = 3, std_dev = 0.65)
if (nargin < 1)
print_usage ();
endif
[data, kernel, sz, std_dev] = ...
__parse_smooth3_args__ (data, method, sz, std_dev);
## Manually pad data by replicating the values at the edges.
## (convn would pad with zeros)
idx = cell (3, 1);
for i_dim = 1:3
sz_dim = size (data, i_dim);
pad_vec = ones (1, (sz(i_dim)-1)/2);
idx{i_dim} = [pad_vec 1:sz_dim sz_dim*pad_vec];
endfor
data_padded = data(idx{:});
smoothed_data = convn (data_padded, kernel, "valid");
endfunction
function [data, conv_kernel, sz, std_dev] = __parse_smooth3_args__ (data, method, sz, std_dev)
if (ndims (data) != 3)
error ("smooth3: DATA must be a 3-D numeric matrix");
endif
if (! isnumeric (data))
if (isinteger (data) || islogical (data))
data = double (data);
else
error ("smooth3: DATA must be a 3-D numeric matrix");
endif
endif
if (! ischar (method))
error ("smooth3: METHOD must be a string");
endif
if (! isreal (sz))
error ("smooth3: SZ must be a real scalar or 3-element vector");
elseif (isscalar (sz))
sz(1:3) = sz;
elseif (numel (sz) != 3)
error (["smooth3: SZ of the convolution kernel must be " ...
"a scalar or 3-element vector"]);
endif
if (any (sz < 1) || any (rem (sz, 2) != 1))
error (["smooth3: SZ of the convolution kernel must consist " ...
"of positive odd integers"]);
endif
switch (lower (method))
case {"b", "box"}
conv_kernel = ones (sz) / prod (sz);
case {"g", "gaussian"}
## check std_dev
if (! isreal (std_dev))
error ("smooth3: STD_DEV must be a real scalar or 3-element vector");
elseif (isscalar (std_dev))
std_dev(1:3) = std_dev;
elseif (numel (std_dev) != 3)
error (["smooth3: STD_DEV of the Gaussian convolution kernel " ...
"must be scalar or 3-element vector"]);
endif
conv_kernel = __smooth3_gaussian3__ (sz, std_dev);
otherwise
error ("smooth3: invalid METHOD '%s'", method);
endswitch
endfunction
function gaussian3 = __smooth3_gaussian3__ (sz, std_dev)
## trivariate non-correlated Gaussian distribution function
x = (-(sz(2)-1)/2:(sz(2)-1)/2) / std_dev(2);
y = (-(sz(1)-1)/2:(sz(1)-1)/2) / std_dev(1);
z = (-(sz(3)-1)/2:(sz(3)-1)/2) / std_dev(3);
[xx, yy, zz] = meshgrid (x, y, z);
gaussian3 = exp (-(xx.^2 + yy.^2 + zz.^2)/2);
gaussian3 /= sum (gaussian3(:)); # normalize
endfunction
%!demo
%! hf = clf;
%! [x, y, z] = meshgrid (-.2:0.02:.2, -.2:0.02:.2, -.2:0.02:.2);
%! data = (x.^2 + y.^2 + z.^2) + randn (size (x)) * 0.003;
%! hax(1) = subplot (1, 2, 1, "parent", hf);
%! patch (hax(1), isosurface (data, .035), ...
%! "facecolor", "g", "edgecolor", "none");
%! title (hax(1), "Original data (including random noise)");
%! axis (hax(1), "vis3d");
%! grid (hax(1), "on");
%! light (hax(1));
%!
%! smoothed_data = smooth3 (data, "g");
%! hax(2) = subplot (1, 2, 2, "parent", hf);
%! patch (hax(2), isosurface (smoothed_data, .035), ...
%! "facecolor", "g", "edgecolor", "none");
%! title (hax(2), "Smoothed data");
%! axis (hax(2), "vis3d");
%! grid (hax(2), "on");
%! light (hax(2));
%!
%! hlink = linkprop (hax, "view");
%! set (hax(1), "userdata", hlink); # keep hlink until figure is closed
%! view (hax(1), 3);
%! rotate3d (hf, "on");
## one input argument (method: "box")
%!test
%! a = rand (10, 8, 7);
%! b = smooth3 (a);
%! assert (size_equal (a, b), true);
## data type of first input argument
%!test <*57276>
%! dt_a = {"double", "single", "uint8", "int8", "uint16", "int16", ...
%! "uint32", "int32", "uint64", "int64", "logical"};
%! dt_b = {"double", "single", "double", "double", "double", "double", ...
%! "double", "double", "double", "double", "double"};
%! for i = 1 : numel (dt_a)
%! a = ones (3, 4, 5, dt_a{i});
%! b = smooth3 (a);
%! assert (class (b), dt_b{i});
%! endfor
## two input argument (method: "gaussian")
%!test
%! a = rand (5, 8, 7);
%! b = smooth3 (a, "gaussian");
%! assert (size_equal (a, b), true);
## three input argument (method: "box")
%!test
%! a = rand (3, 8, 7);
%! b = smooth3 (a, "box", 5);
%! assert (size_equal (a, b), true);
## three input argument (method: "gaussian")
%!test
%! a = rand (3, 8, 7);
%! b = smooth3 (a, "gaussian", 7);
%! assert (size_equal (a, b), true);
## size of convolution kernel = 1: no smoothing (method: "box")
%!test
%! a = rand (9, 8, 7);
%! b = smooth3 (a, "box", 1);
%! assert (a, b);
## size of convolution kernel = 1: no smoothing (method: "gaussian")
%!test
%! a = rand (9, 8, 7);
%! b = smooth3 (a, "gaussian", 1);
%! assert (a, b);
## four input arguments (method: "gaussian")
%!test
%! a = rand (3, 8, 7);
%! b = smooth3 (a, "gaussian", 7, .5);
%! assert (size_equal (a, b), true);
## size of convolution kernel is different in x, y and z (method: "box")
%!test
%! a = rand (3, 8, 7);
%! b = smooth3 (a, "box", [5 3 7]);
%! assert (size_equal (a, b), true);
## size of convolution kernel is different in x, y and z (method: "gaussian")
%!test
%! a = rand (3, 8, 7);
%! b = smooth3 (a, "gaussian", [5 3 7]);
%! assert (size_equal (a, b), true);
## size and width of gaussian convolution kernel is different in x, y and z
## (method: "gaussian")
%!test
%! a = rand (3, 8, 7);
%! b = smooth3 (a, "gaussian", [7 3 5], [.3 .5 .4]);
%! assert (size_equal (a, b), true);
## Test input validation
%!error <Invalid call> smooth3 ()
%!error <DATA must be a 3-D numeric matrix> smooth3 (cell (2,2,2))
%!error <DATA must be a 3-D numeric matrix> smooth3 (1)
%!error <METHOD must be a string> smooth3 (ones (2,2,2), {3})
%!error <SZ must be a real> smooth3 (ones (2,2,2), "b", {3})
%!error <SZ .* must be .* 3-element vector> smooth3 (ones (2,2,2), :, [3 5])
%!error <SZ .* must .* positive .* integers> smooth3 (ones (2,2,2), :, [3 0 5])
%!error <SZ .* must .* odd integers> smooth3 (ones (2,2,2), :, [3 2 5])
%!error <STD_DEV must be a real> smooth3 (ones (2,2,2), "g", :, {0.65})
%!error <STD_DEV .* must be .* 3-element> smooth3 (ones (2,2,2), "g", :, [1 2])
%!error <invalid METHOD 'foobar'> smooth3 (ones (2,2,2), "foobar")
|