1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
*
* -- LAPACK driver routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER JOBZ, UPLO
INTEGER INFO, LDA, LWORK, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DSYEV computes all eigenvalues and, optionally, eigenvectors of a
* real symmetric matrix A.
*
* Arguments
* =========
*
* JOBZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only;
* = 'V': Compute eigenvalues and eigenvectors.
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
* On entry, the symmetric matrix A. If UPLO = 'U', the
* leading N-by-N upper triangular part of A contains the
* upper triangular part of the matrix A. If UPLO = 'L',
* the leading N-by-N lower triangular part of A contains
* the lower triangular part of the matrix A.
* On exit, if JOBZ = 'V', then if INFO = 0, A contains the
* orthonormal eigenvectors of the matrix A.
* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
* or the upper triangle (if UPLO='U') of A, including the
* diagonal, is destroyed.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* W (output) DOUBLE PRECISION array, dimension (N)
* If INFO = 0, the eigenvalues in ascending order.
*
* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The length of the array WORK. LWORK >= max(1,3*N-1).
* For optimal efficiency, LWORK >= (NB+2)*N,
* where NB is the blocksize for DSYTRD returned by ILAENV.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the algorithm failed to converge; i
* off-diagonal elements of an intermediate tridiagonal
* form did not converge to zero.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
LOGICAL LOWER, WANTZ
INTEGER IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
$ LLWORK, LOPT
DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
$ SMLNUM
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANSY
EXTERNAL LSAME, DLAMCH, DLANSY
* ..
* .. External Subroutines ..
EXTERNAL DLASCL, DORGTR, DSCAL, DSTEQR, DSTERF, DSYTRD,
$ XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
WANTZ = LSAME( JOBZ, 'V' )
LOWER = LSAME( UPLO, 'L' )
*
INFO = 0
IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
INFO = -1
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LWORK.LT.MAX( 1, 3*N-1 ) ) THEN
INFO = -8
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DSYEV ', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
IF( N.EQ.1 ) THEN
W( 1 ) = A( 1, 1 )
WORK( 1 ) = 3
IF( WANTZ )
$ A( 1, 1 ) = ONE
RETURN
END IF
*
* Get machine constants.
*
SAFMIN = DLAMCH( 'Safe minimum' )
EPS = DLAMCH( 'Precision' )
SMLNUM = SAFMIN / EPS
BIGNUM = ONE / SMLNUM
RMIN = SQRT( SMLNUM )
RMAX = SQRT( BIGNUM )
*
* Scale matrix to allowable range, if necessary.
*
ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
ISCALE = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
ISCALE = 1
SIGMA = RMIN / ANRM
ELSE IF( ANRM.GT.RMAX ) THEN
ISCALE = 1
SIGMA = RMAX / ANRM
END IF
IF( ISCALE.EQ.1 )
$ CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
*
* Call DSYTRD to reduce symmetric matrix to tridiagonal form.
*
INDE = 1
INDTAU = INDE + N
INDWRK = INDTAU + N
LLWORK = LWORK - INDWRK + 1
CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
$ WORK( INDWRK ), LLWORK, IINFO )
LOPT = 2*N + WORK( INDWRK )
*
* For eigenvalues only, call DSTERF. For eigenvectors, first call
* DORGTR to generate the orthogonal matrix, then call DSTEQR.
*
IF( .NOT.WANTZ ) THEN
CALL DSTERF( N, W, WORK( INDE ), INFO )
ELSE
CALL DORGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
$ LLWORK, IINFO )
CALL DSTEQR( JOBZ, N, W, WORK( INDE ), A, LDA, WORK( INDTAU ),
$ INFO )
END IF
*
* If matrix was scaled, then rescale eigenvalues appropriately.
*
IF( ISCALE.EQ.1 ) THEN
IF( INFO.EQ.0 ) THEN
IMAX = N
ELSE
IMAX = INFO - 1
END IF
CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
END IF
*
* Set WORK(1) to optimal workspace size.
*
WORK( 1 ) = MAX( 3*N-1, LOPT )
*
RETURN
*
* End of DSYEV
*
END
|