File: zgedi.f

package info (click to toggle)
octave 2.0.13-4
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 23,828 kB
  • ctags: 13,172
  • sloc: cpp: 66,241; fortran: 37,245; ansic: 26,548; sh: 7,269; makefile: 3,808; lex: 1,943; yacc: 1,844; perl: 1,676; lisp: 1,662; exp: 123
file content (135 lines) | stat: -rw-r--r-- 3,890 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
      subroutine zgedi(a,lda,n,ipvt,det,work,job)
      integer lda,n,ipvt(1),job
      complex*16 a(lda,1),det(2),work(1)
c
c     zgedi computes the determinant and inverse of a matrix
c     using the factors computed by zgeco or zgefa.
c
c     on entry
c
c        a       complex*16(lda, n)
c                the output from zgeco or zgefa.
c
c        lda     integer
c                the leading dimension of the array  a .
c
c        n       integer
c                the order of the matrix  a .
c
c        ipvt    integer(n)
c                the pivot vector from zgeco or zgefa.
c
c        work    complex*16(n)
c                work vector.  contents destroyed.
c
c        job     integer
c                = 11   both determinant and inverse.
c                = 01   inverse only.
c                = 10   determinant only.
c
c     on return
c
c        a       inverse of original matrix if requested.
c                otherwise unchanged.
c
c        det     complex*16(2)
c                determinant of original matrix if requested.
c                otherwise not referenced.
c                determinant = det(1) * 10.0**det(2)
c                with  1.0 .le. cabs1(det(1)) .lt. 10.0
c                or  det(1) .eq. 0.0 .
c
c     error condition
c
c        a division by zero will occur if the input factor contains
c        a zero on the diagonal and the inverse is requested.
c        it will not occur if the subroutines are called correctly
c        and if zgeco has set rcond .gt. 0.0 or zgefa has set
c        info .eq. 0 .
c
c     linpack. this version dated 08/14/78 .
c     cleve moler, university of new mexico, argonne national lab.
c
c     subroutines and functions
c
c     blas zaxpy,zscal,zswap
c     fortran dabs,dcmplx,mod
c
c     internal variables
c
      complex*16 t
      double precision ten
      integer i,j,k,kb,kp1,l,nm1
c
      complex*16 zdum
      double precision cabs1
      double precision dreal,dimag
      complex*16 zdumr,zdumi
      dreal(zdumr) = zdumr
      dimag(zdumi) = (0.0d0,-1.0d0)*zdumi
      cabs1(zdum) = dabs(dreal(zdum)) + dabs(dimag(zdum))
c
c     compute determinant
c
      if (job/10 .eq. 0) go to 70
         det(1) = (1.0d0,0.0d0)
         det(2) = (0.0d0,0.0d0)
         ten = 10.0d0
         do 50 i = 1, n
            if (ipvt(i) .ne. i) det(1) = -det(1)
            det(1) = a(i,i)*det(1)
c        ...exit
            if (cabs1(det(1)) .eq. 0.0d0) go to 60
   10       if (cabs1(det(1)) .ge. 1.0d0) go to 20
               det(1) = dcmplx(ten,0.0d0)*det(1)
               det(2) = det(2) - (1.0d0,0.0d0)
            go to 10
   20       continue
   30       if (cabs1(det(1)) .lt. ten) go to 40
               det(1) = det(1)/dcmplx(ten,0.0d0)
               det(2) = det(2) + (1.0d0,0.0d0)
            go to 30
   40       continue
   50    continue
   60    continue
   70 continue
c
c     compute inverse(u)
c
      if (mod(job,10) .eq. 0) go to 150
         do 100 k = 1, n
            a(k,k) = (1.0d0,0.0d0)/a(k,k)
            t = -a(k,k)
            call zscal(k-1,t,a(1,k),1)
            kp1 = k + 1
            if (n .lt. kp1) go to 90
            do 80 j = kp1, n
               t = a(k,j)
               a(k,j) = (0.0d0,0.0d0)
               call zaxpy(k,t,a(1,k),1,a(1,j),1)
   80       continue
   90       continue
  100    continue
c
c        form inverse(u)*inverse(l)
c
         nm1 = n - 1
         if (nm1 .lt. 1) go to 140
         do 130 kb = 1, nm1
            k = n - kb
            kp1 = k + 1
            do 110 i = kp1, n
               work(i) = a(i,k)
               a(i,k) = (0.0d0,0.0d0)
  110       continue
            do 120 j = kp1, n
               t = work(j)
               call zaxpy(n,t,a(1,j),1,a(1,k),1)
  120       continue
            l = ipvt(k)
            if (l .ne. k) call zswap(n,a(1,k),1,a(1,l),1)
  130    continue
  140    continue
  150 continue
      return
      end