File: zgefa.f

package info (click to toggle)
octave 2.0.13-4
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 23,828 kB
  • ctags: 13,172
  • sloc: cpp: 66,241; fortran: 37,245; ansic: 26,548; sh: 7,269; makefile: 3,808; lex: 1,943; yacc: 1,844; perl: 1,676; lisp: 1,662; exp: 123
file content (111 lines) | stat: -rw-r--r-- 3,093 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
      subroutine zgefa(a,lda,n,ipvt,info)
      integer lda,n,ipvt(1),info
      complex*16 a(lda,1)
c
c     zgefa factors a complex*16 matrix by gaussian elimination.
c
c     zgefa is usually called by zgeco, but it can be called
c     directly with a saving in time if  rcond  is not needed.
c     (time for zgeco) = (1 + 9/n)*(time for zgefa) .
c
c     on entry
c
c        a       complex*16(lda, n)
c                the matrix to be factored.
c
c        lda     integer
c                the leading dimension of the array  a .
c
c        n       integer
c                the order of the matrix  a .
c
c     on return
c
c        a       an upper triangular matrix and the multipliers
c                which were used to obtain it.
c                the factorization can be written  a = l*u  where
c                l  is a product of permutation and unit lower
c                triangular matrices and  u  is upper triangular.
c
c        ipvt    integer(n)
c                an integer vector of pivot indices.
c
c        info    integer
c                = 0  normal value.
c                = k  if  u(k,k) .eq. 0.0 .  this is not an error
c                     condition for this subroutine, but it does
c                     indicate that zgesl or zgedi will divide by zero
c                     if called.  use  rcond  in zgeco for a reliable
c                     indication of singularity.
c
c     linpack. this version dated 08/14/78 .
c     cleve moler, university of new mexico, argonne national lab.
c
c     subroutines and functions
c
c     blas zaxpy,zscal,izamax
c     fortran dabs
c
c     internal variables
c
      complex*16 t
      integer izamax,j,k,kp1,l,nm1
c
      complex*16 zdum
      double precision cabs1
      double precision dreal,dimag
      complex*16 zdumr,zdumi
      dreal(zdumr) = zdumr
      dimag(zdumi) = (0.0d0,-1.0d0)*zdumi
      cabs1(zdum) = dabs(dreal(zdum)) + dabs(dimag(zdum))
c
c     gaussian elimination with partial pivoting
c
      info = 0
      nm1 = n - 1
      if (nm1 .lt. 1) go to 70
      do 60 k = 1, nm1
         kp1 = k + 1
c
c        find l = pivot index
c
         l = izamax(n-k+1,a(k,k),1) + k - 1
         ipvt(k) = l
c
c        zero pivot implies this column already triangularized
c
         if (cabs1(a(l,k)) .eq. 0.0d0) go to 40
c
c           interchange if necessary
c
            if (l .eq. k) go to 10
               t = a(l,k)
               a(l,k) = a(k,k)
               a(k,k) = t
   10       continue
c
c           compute multipliers
c
            t = -(1.0d0,0.0d0)/a(k,k)
            call zscal(n-k,t,a(k+1,k),1)
c
c           row elimination with column indexing
c
            do 30 j = kp1, n
               t = a(l,j)
               if (l .eq. k) go to 20
                  a(l,j) = a(k,j)
                  a(k,j) = t
   20          continue
               call zaxpy(n-k,t,a(k+1,k),1,a(k+1,j),1)
   30       continue
         go to 50
   40    continue
            info = k
   50    continue
   60 continue
   70 continue
      ipvt(n) = n
      if (cabs1(a(n,n)) .eq. 0.0d0) info = n
      return
      end