1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
/*
Copyright (C) 1996 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#if defined (__GNUG__)
#pragma implementation
#endif
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <cfloat>
#include <climits>
#include <cmath>
#include <iostream.h>
#include "Range.h"
#include "dMatrix.h"
#include "lo-mappers.h"
#include "lo-utils.h"
bool
Range::all_elements_are_ints (void) const
{
// If the base and increment are ints, the final value in the range
// will also be an integer, even if the limit is not.
return (! (xisnan (rng_base) || xisnan (rng_inc))
&& (double) NINT (rng_base) == rng_base
&& (double) NINT (rng_inc) == rng_inc);
}
Matrix
Range::matrix_value (void) const
{
Matrix retval;
if (rng_nelem > 0)
{
retval.resize (1, rng_nelem);
double b = rng_base;
double increment = rng_inc;
for (int i = 0; i < rng_nelem; i++)
retval.elem (0, i) = b + i * increment;
}
return retval;
}
// NOTE: max and min only return useful values if nelem > 0.
double
Range::min (void) const
{
double retval = 0.0;
if (rng_nelem > 0)
{
if (rng_inc > 0)
retval = rng_base;
else
retval = rng_base + (rng_nelem - 1) * rng_inc;
}
return retval;
}
double
Range::max (void) const
{
double retval = 0.0;
if (rng_nelem > 0)
{
if (rng_inc > 0)
retval = rng_base + (rng_nelem - 1) * rng_inc;
else
retval = rng_base;
}
return retval;
}
void
Range::sort (void)
{
if (rng_base > rng_limit && rng_inc < 0.0)
{
double tmp = rng_base;
rng_base = min ();
rng_limit = tmp;
rng_inc = -rng_inc;
}
}
void
Range::print_range (void)
{
cerr << "Range: rng_base = " << rng_base
<< " rng_limit " << rng_limit
<< " rng_inc " << rng_inc
<< " rng_nelem " << rng_nelem << "\n";
}
ostream&
operator << (ostream& os, const Range& a)
{
double b = a.base ();
double increment = a.inc ();
int num_elem = a.nelem ();
for (int i = 0; i < num_elem; i++)
os << b + i * increment << " ";
os << "\n";
return os;
}
istream&
operator >> (istream& is, Range& a)
{
is >> a.rng_base;
if (is)
{
is >> a.rng_limit;
if (is)
{
is >> a.rng_inc;
a.rng_nelem = a.nelem_internal ();
}
}
return is;
}
Range
operator - (const Range& r)
{
return Range (-r.base (), -r.limit (), -r.inc ());
}
// C See Knuth, Art Of Computer Programming, Vol. 1, Problem 1.2.4-5.
// C
// C===Tolerant FLOOR function.
// C
// C X - is given as a Double Precision argument to be operated on.
// C It is assumed that X is represented with M mantissa bits.
// C CT - is given as a Comparison Tolerance such that
// C 0.LT.CT.LE.3-SQRT(5)/2. If the relative difference between
// C X and A whole number is less than CT, then TFLOOR is
// C returned as this whole number. By treating the
// C floating-point numbers as a finite ordered set note that
// C the heuristic EPS=2.**(-(M-1)) and CT=3*EPS causes
// C arguments of TFLOOR/TCEIL to be treated as whole numbers
// C if they are exactly whole numbers or are immediately
// C adjacent to whole number representations. Since EPS, the
// C "distance" between floating-point numbers on the unit
// C interval, and M, the number of bits in X'S mantissa, exist
// C on every floating-point computer, TFLOOR/TCEIL are
// C consistently definable on every floating-point computer.
// C
// C For more information see the following references:
// C (1) P. E. Hagerty, "More On Fuzzy Floor And Ceiling," APL QUOTE
// C QUAD 8(4):20-24, June 1978. Note that TFLOOR=FL5.
// C (2) L. M. Breed, "Definitions For Fuzzy Floor And Ceiling", APL
// C QUOTE QUAD 8(3):16-23, March 1978. This paper cites FL1 through
// C FL5, the history of five years of evolutionary development of
// C FL5 - the seven lines of code below - by open collaboration
// C and corroboration of the mathematical-computing community.
// C
// C Penn State University Center for Academic Computing
// C H. D. Knoble - August, 1978.
static inline double
tfloor (double x, double ct)
{
// C---------FLOOR(X) is the largest integer algebraically less than
// C or equal to X; that is, the unfuzzy FLOOR function.
// DINT (X) = X - DMOD (X, 1.0);
// FLOOR (X) = DINT (X) - DMOD (2.0 + DSIGN (1.0, X), 3.0);
// C---------Hagerty's FL5 function follows...
double q = 1.0;
if (x < 0.0)
q = 1.0 - ct;
double rmax = q / (2.0 - ct);
double t1 = 1.0 + floor (x);
t1 = (ct / q) * (t1 < 0.0 ? -t1 : t1);
t1 = rmax < t1 ? rmax : t1;
t1 = ct > t1 ? ct : t1;
t1 = floor (x + t1);
if (x <= 0.0 || (t1 - x) < rmax)
return t1;
else
return t1 - 1.0;
}
static inline double
tceil (double x, double ct)
{
return -tfloor (-x, ct);
}
static inline double
round (double x, double ct)
{
return tfloor (x+0.5, ct);
}
int
Range::nelem_internal (void) const
{
double ct = 3.0 * DBL_EPSILON;
double tmp = tfloor ((rng_limit - rng_base + rng_inc) / rng_inc, ct);
int n_intervals = (int) (tmp > 0.0 ? tmp : 0);
return (n_intervals >= INT_MAX - 1) ? -1 : n_intervals;
}
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/
|