File: Range.cc

package info (click to toggle)
octave 2.0.13-4
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 23,828 kB
  • ctags: 13,172
  • sloc: cpp: 66,241; fortran: 37,245; ansic: 26,548; sh: 7,269; makefile: 3,808; lex: 1,943; yacc: 1,844; perl: 1,676; lisp: 1,662; exp: 123
file content (249 lines) | stat: -rw-r--r-- 6,036 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*

Copyright (C) 1996 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

*/

#if defined (__GNUG__)
#pragma implementation
#endif

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <cfloat>
#include <climits>
#include <cmath>

#include <iostream.h>

#include "Range.h"
#include "dMatrix.h"
#include "lo-mappers.h"
#include "lo-utils.h"

bool
Range::all_elements_are_ints (void) const
{
  // If the base and increment are ints, the final value in the range
  // will also be an integer, even if the limit is not.

  return (! (xisnan (rng_base) || xisnan (rng_inc))
	  && (double) NINT (rng_base) == rng_base
	  && (double) NINT (rng_inc) == rng_inc);
}

Matrix
Range::matrix_value (void) const
{
  Matrix retval;

  if (rng_nelem > 0)
    {
      retval.resize (1, rng_nelem);
      double b = rng_base;
      double increment = rng_inc;
      for (int i = 0; i < rng_nelem; i++)
	retval.elem (0, i) = b + i * increment;
    }

  return retval;
}

// NOTE: max and min only return useful values if nelem > 0.

double
Range::min (void) const
{
  double retval = 0.0;
  if (rng_nelem > 0)
    {
      if (rng_inc > 0)
	retval = rng_base;
      else
	retval = rng_base + (rng_nelem - 1) * rng_inc;
    }
  return retval;
}

double
Range::max (void) const
{
  double retval = 0.0;
  if (rng_nelem > 0)
    {
      if (rng_inc > 0)
	retval = rng_base + (rng_nelem - 1) * rng_inc;
      else
	retval = rng_base;
    }
  return retval;
}

void
Range::sort (void)
{
  if (rng_base > rng_limit && rng_inc < 0.0)
    {
      double tmp = rng_base;
      rng_base = min ();
      rng_limit = tmp;
      rng_inc = -rng_inc;
    }
}

void
Range::print_range (void)
{
  cerr << "Range: rng_base = " << rng_base
       << " rng_limit " << rng_limit
       << " rng_inc " << rng_inc
       << " rng_nelem " << rng_nelem << "\n";
}

ostream&
operator << (ostream& os, const Range& a)
{
  double b = a.base ();
  double increment = a.inc ();
  int num_elem = a.nelem ();

  for (int i = 0; i < num_elem; i++)
    os << b + i * increment << " ";

  os << "\n";

  return os;
}

istream&
operator >> (istream& is, Range& a)
{
  is >> a.rng_base;
  if (is)
    {
      is >> a.rng_limit;
      if (is)
	{
	  is >> a.rng_inc;
	  a.rng_nelem = a.nelem_internal ();
	}
    }

  return is;
}

Range
operator - (const Range& r)
{
  return Range (-r.base (), -r.limit (), -r.inc ());
}

// C  See Knuth, Art Of Computer Programming, Vol. 1, Problem 1.2.4-5.
// C
// C===Tolerant FLOOR function.
// C
// C    X  -  is given as a Double Precision argument to be operated on.
// C          It is assumed that X is represented with M mantissa bits.
// C    CT -  is   given   as   a   Comparison   Tolerance   such   that
// C          0.LT.CT.LE.3-SQRT(5)/2. If the relative difference between
// C          X and A whole number is  less  than  CT,  then  TFLOOR  is
// C          returned   as   this   whole   number.   By  treating  the
// C          floating-point numbers as a finite ordered set  note  that
// C          the  heuristic  EPS=2.**(-(M-1))   and   CT=3*EPS   causes
// C          arguments  of  TFLOOR/TCEIL to be treated as whole numbers
// C          if they are  exactly  whole  numbers  or  are  immediately
// C          adjacent to whole number representations.  Since EPS,  the
// C          "distance"  between  floating-point  numbers  on  the unit
// C          interval, and M, the number of bits in X'S mantissa, exist
// C          on  every  floating-point   computer,   TFLOOR/TCEIL   are
// C          consistently definable on every floating-point computer.
// C
// C          For more information see the following references:
// C    (1) P. E. Hagerty, "More On Fuzzy Floor And Ceiling," APL  QUOTE
// C        QUAD 8(4):20-24, June 1978. Note that TFLOOR=FL5.
// C    (2) L. M. Breed, "Definitions For Fuzzy Floor And Ceiling",  APL
// C        QUOTE QUAD 8(3):16-23, March 1978. This paper cites FL1 through
// C        FL5, the history of five years of evolutionary development of
// C        FL5 - the seven lines of code below - by open collaboration
// C        and corroboration of the mathematical-computing community.
// C
// C  Penn State University Center for Academic Computing
// C  H. D. Knoble - August, 1978.

static inline double
tfloor (double x, double ct)
{
// C---------FLOOR(X) is the largest integer algebraically less than
// C         or equal to X; that is, the unfuzzy FLOOR function.

//  DINT (X) = X - DMOD (X, 1.0);
//  FLOOR (X) = DINT (X) - DMOD (2.0 + DSIGN (1.0, X), 3.0);

// C---------Hagerty's FL5 function follows...

  double q = 1.0;

  if (x < 0.0)
    q = 1.0 - ct;

  double rmax = q / (2.0 - ct);

  double t1 = 1.0 + floor (x);
  t1 = (ct / q) * (t1 < 0.0 ? -t1 : t1);
  t1 = rmax < t1 ? rmax : t1;
  t1 = ct > t1 ? ct : t1;
  t1 = floor (x + t1);

  if (x <= 0.0 || (t1 - x) < rmax)
    return t1;
  else
    return t1 - 1.0;
}

static inline double
tceil (double x, double ct)
{
  return -tfloor (-x, ct);
}

static inline double
round (double x, double ct)
{
  return tfloor (x+0.5, ct);
}

int
Range::nelem_internal (void) const
{
  double ct = 3.0 * DBL_EPSILON;

  double tmp = tfloor ((rng_limit - rng_base + rng_inc) / rng_inc, ct);

  int n_intervals = (int) (tmp > 0.0 ? tmp : 0);

  return (n_intervals >= INT_MAX - 1) ? -1 : n_intervals;
}

/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; End: ***
*/