File: gls.m

package info (click to toggle)
octave 2.0.13-4
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 23,828 kB
  • ctags: 13,172
  • sloc: cpp: 66,241; fortran: 37,245; ansic: 26,548; sh: 7,269; makefile: 3,808; lex: 1,943; yacc: 1,844; perl: 1,676; lisp: 1,662; exp: 123
file content (69 lines) | stat: -rw-r--r-- 1,943 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
## Copyright (C) 1996 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2, or (at your option)
## any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, write to the Free
## Software Foundation, 59 Temple Place - Suite 330, Boston, MA
## 02111-1307, USA.

## usage: [BETA, v [,R]] = gls (Y, X, O)
##
## Generalized Least Squares (GLS) estimation for the multivariate model
##
##   Y = X*B + E,  mean(E) = 0,  cov(vec(E)) = (s^2)*O
##
## with Y ...  T x p      As usual, each row of Y and X is an observation
##      X ...  T x k      and each column a variable.
##      B ...  k x p
##      E ...  T x p
##      O ... Tp x Tp.
##
## BETA is the GLS estimator for B.
## v is the GLS estimator for s^2.
## R = Y - X*BETA is the matrix of GLS residuals.

## Author: Teresa Twaroch <twaroch@ci.tuwien.ac.at>
## Created: May 1993
## Adapted-By: jwe

function [BETA, v, R] = gls (Y, X, O)

  if (nargin != 3)
    usage ("[BETA, v [, R]] = gls (Y, X, O)");
  endif

  [rx, cx] = size (X);
  [ry, cy] = size (Y);
  if (rx != ry)
    error ("gls: incorrect matrix dimensions");
  endif

  O = O^(-1/2);
  Z = kron (eye (cy), X);
  Z = O * Z;
  Y1 = O * reshape (Y, ry*cy, 1);
  U = Z' * Z;
  r = rank (U);

  if (r == cx*cy)
    B = inv (U) * Z' * Y1;
  else
    B = pinv (Z) * Y1;
  endif

  BETA = reshape (B, cx, cy);
  R = Y - X * BETA;
  v = (reshape (R, ry*cy, 1))' * (O^2) * reshape (R, ry*cy, 1) / (rx*cy - r);

endfunction