1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
|
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.51
from ./octave.texi on 9 October 1998 -->
<TITLE>GNU Octave - Statistics</TITLE>
</HEAD>
<BODY>
Go to the <A HREF="octave_1.html">first</A>, <A HREF="octave_22.html">previous</A>, <A HREF="octave_24.html">next</A>, <A HREF="octave_40.html">last</A> section, <A HREF="octave_toc.html">table of contents</A>.
<P><HR><P>
<H1><A NAME="SEC158" HREF="octave_toc.html#TOC158">Statistics</A></H1>
<P>
I hope that someday Octave will include more statistics functions. If
you would like to help improve Octave in this area, please contact
@email{bug-octave@bevo.che.wisc.edu}.
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>mean</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX760"></A>
If <VAR>x</VAR> is a vector, compute the mean of the elements of <VAR>x</VAR>
If <VAR>x</VAR> is a matrix, compute the mean for each column and return them
in a row vector.
</DL>
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>median</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX761"></A>
If <VAR>x</VAR> is a vector, compute the median value of the elements of
<VAR>x</VAR>.
If <VAR>x</VAR> is a matrix, compute the median value for each
column and return them in a row vector.
</DL>
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>std</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX762"></A>
If <VAR>x</VAR> is a vector, compute the standard deviation of the elements
of <VAR>x</VAR>.
If <VAR>x</VAR> is a matrix, compute the standard deviation for
each column and return them in a row vector.
</DL>
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>cov</B> <I>(<VAR>x</VAR>, <VAR>y</VAR>)</I>
<DD><A NAME="IDX763"></A>
If each row of <VAR>x</VAR> and <VAR>y</VAR> is an observation and each column is
a variable, the (<VAR>i</VAR>,<VAR>j</VAR>)-th entry of
<CODE>cov (<VAR>x</VAR>, <VAR>y</VAR>)</CODE> is the covariance between the <VAR>i</VAR>-th
variable in <VAR>x</VAR> and the <VAR>j</VAR>-th variable in <VAR>y</VAR>. If called
with one argument, compute <CODE>cov (<VAR>x</VAR>, <VAR>x</VAR>)</CODE>.
</DL>
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>corrcoef</B> <I>(<VAR>x</VAR>, <VAR>y</VAR>)</I>
<DD><A NAME="IDX764"></A>
If each row of <VAR>x</VAR> and <VAR>y</VAR> is an observation and each column is
a variable, the (<VAR>i</VAR>,<VAR>j</VAR>)-th entry of
<CODE>corrcoef (<VAR>x</VAR>, <VAR>y</VAR>)</CODE> is the correlation between the
<VAR>i</VAR>-th variable in <VAR>x</VAR> and the <VAR>j</VAR>-th variable in <VAR>y</VAR>.
If called with one argument, compute <CODE>corrcoef (<VAR>x</VAR>, <VAR>x</VAR>)</CODE>.
</DL>
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>kurtosis</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX765"></A>
If <VAR>x</VAR> is a vector of length <VAR>N</VAR>, return the kurtosis
</P>
<P>
of <VAR>x</VAR>. If <VAR>x</VAR> is a matrix, return the row vector containing
the kurtosis of each column.
</DL>
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>mahalanobis</B> <I>(<VAR>x</VAR>, <VAR>y</VAR>)</I>
<DD><A NAME="IDX766"></A>
Return the Mahalanobis' D-square distance between the multivariate
samples <VAR>x</VAR> and <VAR>y</VAR>, which must have the same number of
components (columns), but may have a different number of observations
(rows).
</DL>
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>skewness</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX767"></A>
If <VAR>x</VAR> is a vector of length <VAR>N</VAR>, return the skewness
</P>
<P>
of <VAR>x</VAR>. If <VAR>x</VAR> is a matrix, return the row vector containing
the skewness of each column.
</DL>
</P>
<P><HR><P>
Go to the <A HREF="octave_1.html">first</A>, <A HREF="octave_22.html">previous</A>, <A HREF="octave_24.html">next</A>, <A HREF="octave_40.html">last</A> section, <A HREF="octave_toc.html">table of contents</A>.
</BODY>
</HTML>
|