File: stats.texi

package info (click to toggle)
octave 2.0.13.95-1
  • links: PTS
  • area: main
  • in suites: slink
  • size: 26,052 kB
  • ctags: 16,420
  • sloc: cpp: 67,184; fortran: 41,514; ansic: 26,607; sh: 7,291; makefile: 4,089; lex: 1,961; yacc: 1,852; perl: 1,676; lisp: 1,664; exp: 123
file content (140 lines) | stat: -rw-r--r-- 3,750 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
@c Copyright (C) 1996, 1997 John W. Eaton
@c This is part of the Octave manual.
@c For copying conditions, see the file gpl.texi.

@node Statistics, Sets, Optimization, Top
@chapter Statistics

I hope that someday Octave will include more statistics functions.  If
you would like to help improve Octave in this area, please contact
@email{bug-octave@@bevo.che.wisc.edu}.

@deftypefn {Function File} {} mean (@var{x})
If @var{x} is a vector, compute the mean of the elements of @var{x}
@iftex
@tex
$$ {\rm mean}(x) = \bar{x} = {1\over N} \sum_{i=1}^N x_i $$
@end tex
@end iftex
@ifinfo

@example
mean (x) = SUM_i x(i) / N
@end example
@end ifinfo
If @var{x} is a matrix, compute the mean for each column and return them
in a row vector.
@end deftypefn

@deftypefn {Function File} {} median (@var{x})
If @var{x} is a vector, compute the median value of the elements of
@var{x}.
@iftex
@tex
$$
{\rm median} (x) =
  \cases{x(\lceil N/2\rceil), & $N$ odd;\cr
          (x(N/2)+x(N/2+1))/2, & $N$ even.}
$$
@end tex
@end iftex
@ifinfo

@example
@group
            x(ceil(N/2)),             N odd
median(x) = 
            (x(N/2) + x((N/2)+1))/2,  N even
@end group
@end example
@end ifinfo
If @var{x} is a matrix, compute the median value for each
column and return them in a row vector.
@end deftypefn

@deftypefn {Function File} {} std (@var{x})
If @var{x} is a vector, compute the standard deviation of the elements
of @var{x}.
@iftex
@tex
$$
{\rm std} (x) = \sigma (x) = \sqrt{{\sum_{i=1}^N (x_i - \bar{x}) \over N - 1}}
$$
@end tex
@end iftex
@ifinfo

@example
@group
std (x) = sqrt (sumsq (x - mean (x)) / (n - 1))
@end group
@end example
@end ifinfo
If @var{x} is a matrix, compute the standard deviation for
each column and return them in a row vector.
@end deftypefn

@deftypefn {Function File} {} cov (@var{x}, @var{y})
If each row of @var{x} and @var{y} is an observation and each column is
a variable, the (@var{i},@var{j})-th entry of
@code{cov (@var{x}, @var{y})} is the covariance between the @var{i}-th
variable in @var{x} and the @var{j}-th variable in @var{y}.  If called
with one argument, compute @code{cov (@var{x}, @var{x})}.
@end deftypefn

@deftypefn {Function File} {} corrcoef (@var{x}, @var{y})
If each row of @var{x} and @var{y} is an observation and each column is
a variable, the (@var{i},@var{j})-th entry of
@code{corrcoef (@var{x}, @var{y})} is the correlation between the
@var{i}-th variable in @var{x} and the @var{j}-th variable in @var{y}.
If called with one argument, compute @code{corrcoef (@var{x}, @var{x})}.
@end deftypefn

@deftypefn {Function File} {} kurtosis (@var{x})
If @var{x} is a vector of length @var{N}, return the kurtosis
@iftex
@tex
$$
 {\rm kurtosis} (x) = {1\over N \sigma(x)^4} \sum_{i=1}^N (x_i-\bar{x})^4 - 3
$$
@end tex
@end iftex
@ifinfo

@example
kurtosis (x) = N^(-1) std(x)^(-4) sum ((x - mean(x)).^4) - 3
@end example
@end ifinfo

@noindent
of @var{x}.  If @var{x} is a matrix, return the row vector containing
the kurtosis of each column.
@end deftypefn

@deftypefn {Function File} {} mahalanobis (@var{x}, @var{y})
Return the Mahalanobis' D-square distance between the multivariate
samples @var{x} and @var{y}, which must have the same number of
components (columns), but may have a different number of observations
(rows).
@end deftypefn

@deftypefn {Function File} {} skewness (@var{x})
If @var{x} is a vector of length @var{N}, return the skewness
@iftex
@tex
$$
{\rm skewness} (x) = {1\over N \sigma(x)^3} \sum_{i=1}^N (x_i-\bar{x})^3
$$
@end tex
@end iftex
@ifinfo

@example
skewness (x) = N^(-1) std(x)^(-3) sum ((x - mean(x)).^3)
@end example
@end ifinfo

@noindent
of @var{x}.  If @var{x} is a matrix, return the row vector containing
the skewness of each column.
@end deftypefn