File: arith.texi

package info (click to toggle)
octave 2.0.16-2
  • links: PTS
  • area: main
  • in suites: potato
  • size: 26,276 kB
  • ctags: 16,450
  • sloc: cpp: 67,548; fortran: 41,514; ansic: 26,682; sh: 7,361; makefile: 4,077; lex: 2,008; yacc: 1,849; lisp: 1,702; perl: 1,676; exp: 123
file content (861 lines) | stat: -rw-r--r-- 20,374 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
@c Copyright (C) 1996, 1997 John W. Eaton
@c This is part of the Octave manual.
@c For copying conditions, see the file gpl.texi.

@node Arithmetic, Linear Algebra, Matrix Manipulation, Top
@chapter Arithmetic

Unless otherwise noted, all of the functions described in this chapter
will work for real and complex scalar or matrix arguments.

@menu
* Utility Functions::           
* Complex Arithmetic::          
* Trigonometry::                
* Sums and Products::           
* Special Functions::           
* Mathematical Constants::      
@end menu

@node Utility Functions, Complex Arithmetic, Arithmetic, Arithmetic
@section Utility Functions

The following functions are available for working with complex numbers.
Each expects a single argument.  They are called @dfn{mapping functions}
because when given a matrix argument, they apply the given function to
each element of the matrix.

@deftypefn {Mapping Function} {} ceil (@var{x})
Return the smallest integer not less than @var{x}.  If @var{x} is
complex, return @code{ceil (real (@var{x})) + ceil (imag (@var{x})) * I}.
@end deftypefn

@deftypefn {Mapping Function} {} exp (@var{x})
Compute the exponential of @var{x}.  To compute the matrix exponential,
see @ref{Linear Algebra}.
@end deftypefn

@deftypefn {Mapping Function} {} fix (@var{x})
Truncate @var{x} toward zero.  If @var{x} is complex, return
@code{fix (real (@var{x})) + fix (imag (@var{x})) * I}.
@end deftypefn

@deftypefn {Mapping Function} {} floor (@var{x})
Return the largest integer not greater than @var{x}.  If @var{x} is
complex, return @code{floor (real (@var{x})) + floor (imag (@var{x})) * I}.
@end deftypefn

@deftypefn {Mapping Function} {} gcd (@var{x}, @code{...})
Compute the greatest common divisor of the elements of @var{x}, or the
list of all the arguments.  For example, 

@example
gcd (a1, ..., ak)
@end example

@noindent
is the same as

@example
gcd ([a1, ..., ak])
@end example

An optional second return value, @var{v}
contains an integer vector such that

@example
g = v(1) * a(k) + ... + v(k) * a(k)
@end example
@end deftypefn

@deftypefn {Mapping Function} {} lcm (@var{x}, @code{...})
Compute the least common multiple of the elements elements of @var{x}, or
the list of all the arguments.  For example, 

@example
lcm (a1, ..., ak)
@end example

@noindent
is the same as

@example
lcm ([a1, ..., ak]).
@end example
@end deftypefn

@deftypefn {Mapping Function} {} log (@var{x})
Compute the natural logarithm of @var{x}.  To compute the matrix logarithm, 
see @ref{Linear Algebra}.
@end deftypefn

@deftypefn {Mapping Function} {} log10 (@var{x})
Compute the base-10 logarithm of @var{x}.
@end deftypefn

@deftypefn {Mapping Function} {@var{y} =} log2 (@var{x})
@deftypefnx {Mapping Function} {[@var{f}, @var{e}]} log2 (@var{x})
Compute the base-2 logarithm of @var{x}.  With two outputs, returns
@var{f} and @var{e} such that
@iftex
@tex
 $1/2 <= |f| < 1$ and $x = f \cdot 2^e$.
@end tex
@end iftex
@ifinfo
 1/2 <= abs(f) < 1 and x = f * 2^e.
@end ifinfo
@end deftypefn

@deftypefn {Loadable Function} {} max (@var{x})
For a vector argument, return the maximum value.  For a matrix argument,
return the maximum value from each column, as a row vector.  Thus,

@example
max (max (@var{x}))
@end example

@noindent
returns the largest element of @var{x}.

For complex arguments, the magnitude of the elements are used for
comparison.
@end deftypefn

@deftypefn {Loadable Function} {} min (@var{x})
Like @code{max}, but return the minimum value.
@end deftypefn

@deftypefn {Function File} {} nextpow2 (@var{x})
If @var{x} is a scalar, returns the first integer @var{n} such that
@iftex
@tex
 $2^n \ge |x|$.
@end tex
@end iftex
@ifinfo
 2^n >= abs (x).
@end ifinfo

If @var{x} is a vector, return @code{nextpow2 (length (@var{x}))}.
@end deftypefn

@deftypefn {Mapping Function} {} pow2 (@var{x})
@deftypefnx {Mapping Function} {} pow2 (@var{f}, @var{e})
With one argument, computes
@iftex
@tex
 $2^x$
@end tex
@end iftex
@ifinfo
 2 .^ x
@end ifinfo
for each element of @var{x}.  With two arguments, returns
@iftex
@tex
 $f \cdot 2^e$.
@end tex
@end iftex
@ifinfo
 f .* (2 .^ e).
@end ifinfo
@end deftypefn

@deftypefn {Mapping Function} {} rem (@var{x}, @var{y})
Return the remainder of @code{@var{x} / @var{y}}, computed using the
expression

@example
x - y .* fix (x ./ y)
@end example

An error message is printed if the dimensions of the arguments do not
agree, or if either of the arguments is complex.
@end deftypefn

@deftypefn {Mapping Function} {} round (@var{x})
Return the integer nearest to @var{x}.  If @var{x} is complex, return
@code{round (real (@var{x})) + round (imag (@var{x})) * I}.
@end deftypefn

@deftypefn {Mapping Function} {} sign (@var{x})
Compute the @dfn{signum} function, which is defined as
@iftex
@tex
$$
{\rm sign} (@var{x}) = \cases{1,&$x>0$;\cr 0,&$x=0$;\cr -1,&$x<0$.\cr}
$$
@end tex
@end iftex
@ifinfo

@example
           -1, x < 0;
sign (x) =  0, x = 0;
            1, x > 0.
@end example
@end ifinfo

For complex arguments, @code{sign} returns @code{x ./ abs (@var{x})}.
@end deftypefn

@deftypefn {Mapping Function} {} sqrt (@var{x})
Compute the square root of @var{x}.  If @var{x} is negative, a complex
result is returned.  To compute the matrix square root, see
@ref{Linear Algebra}.
@end deftypefn

@deftypefn {Mapping Function} {} xor (@var{x}, @var{y})
Return the `exclusive or' of the entries of @var{x} and @var{y}.
For boolean expressions @var{x} and @var{y},
@code{xor (@var{x}, @var{y})} is true if and only if @var{x} or @var{y}
is true, but not if both @var{x} and @var{y} are true.
@end deftypefn

@node Complex Arithmetic, Trigonometry, Utility Functions, Arithmetic
@section Complex Arithmetic

The following functions are available for working with complex
numbers.  Each expects a single argument.  Given a matrix they work on
an element by element basis.  In the descriptions of the following
functions,
@iftex
@tex
$z$ is the complex number $x + iy$, where $i$ is defined as
$\sqrt{-1}$.
@end tex
@end iftex
@ifinfo
@var{z} is the complex number @var{x} + @var{i}@var{y}, where @var{i} is
defined as @code{sqrt (-1)}.
@end ifinfo

@deftypefn {Mapping Function} {} abs (@var{z})
Compute the magnitude of @var{z}, defined as
@iftex
@tex
$|z| = \sqrt{x^2 + y^2}$.
@end tex
@end iftex
@ifinfo
|@var{z}| = @code{sqrt (x^2 + y^2)}.
@end ifinfo

For example,

@example
@group
abs (3 + 4i)
     @result{} 5
@end group
@end example
@end deftypefn

@deftypefn {Mapping Function} {} arg (@var{z})
@deftypefnx {Mapping Function} {} angle (@var{z})
Compute the argument of @var{z}, defined as
@iftex
@tex
$\theta = \tan^{-1}(y/x)$.
@end tex
@end iftex
@ifinfo
@var{theta} = @code{atan (@var{y}/@var{x})}.
@end ifinfo

@noindent
in radians. 

For example,

@example
@group
arg (3 + 4i)
     @result{} 0.92730
@end group
@end example
@end deftypefn

@deftypefn {Mapping Function} {} conj (@var{z})
Return the complex conjugate of @var{z}, defined as
@iftex
@tex
$\bar{z} = x - iy$.
@end tex
@end iftex
@ifinfo
@code{conj (@var{z})} = @var{x} - @var{i}@var{y}.
@end ifinfo
@end deftypefn

@deftypefn {Mapping Function} {} imag (@var{z})
Return the imaginary part of @var{z} as a real number.
@end deftypefn

@deftypefn {Mapping Function} {} real (@var{z})
Return the real part of @var{z}.
@end deftypefn

@node Trigonometry, Sums and Products, Complex Arithmetic, Arithmetic
@section Trigonometry

Octave provides the following trigonometric functions.  Angles are
specified in radians.  To convert from degrees to radians multipy by
@iftex
@tex
$\pi/180$
@end tex
@end iftex
@ifinfo
@code{pi/180}
@end ifinfo
 (e.g. @code{sin (30 * pi/180)} returns the sine of 30 degrees).

@deftypefn {Mapping Function} {} sin (@var{z})
@deftypefnx {Mapping Function} {} cos (@var{z})
@deftypefnx {Mapping Function} {} tan (@var{z})
@deftypefnx {Mapping Function} {} sec (@var{z})
@deftypefnx {Mapping Function} {} csc (@var{z})
@deftypefnx {Mapping Function} {} cot (@var{z})
The ordinary trigonometric functions.
@end deftypefn

@deftypefn {Mapping Function} {} asin (@var{z})
@deftypefnx {Mapping Function} {} acos (@var{z})
@deftypefnx {Mapping Function} {} atan (@var{z})
@deftypefnx {Mapping Function} {} asec (@var{z})
@deftypefnx {Mapping Function} {} acsc (@var{z})
@deftypefnx {Mapping Function} {} acot (@var{z})
The ordinary inverse trigonometric functions.
@end deftypefn

@deftypefn {Mapping Function} {} sinh (@var{z})
@deftypefnx {Mapping Function} {} cosh (@var{z})
@deftypefnx {Mapping Function} {} tanh (@var{z})
@deftypefnx {Mapping Function} {} sech (@var{z})
@deftypefnx {Mapping Function} {} csch (@var{z})
@deftypefnx {Mapping Function} {} coth (@var{z})
Hyperbolic trigonometric functions.
@end deftypefn

@deftypefn {Mapping Function} {} asinh (@var{z})
@deftypefnx {Mapping Function} {} acosh (@var{z})
@deftypefnx {Mapping Function} {} atanh (@var{z})
@deftypefnx {Mapping Function} {} asech (@var{z})
@deftypefnx {Mapping Function} {} acsch (@var{z})
@deftypefnx {Mapping Function} {} acoth (@var{z})
Inverse hyperbolic trigonometric functions.
@end deftypefn

Each of these functions expect a single argument.  For matrix arguments,
they work on an element by element basis.  For example,

@example
@group
sin ([1, 2; 3, 4])
     @result{}  0.84147   0.90930
         0.14112  -0.75680
@end group
@end example

@deftypefn {Mapping Function} {} atan2 (@var{y}, @var{x})
Return the arctangent of @var{y}/@var{x}.  The signs of the arguments
are used to determine the quadrant of the result, which is in the range
@iftex
@tex
$\pi$ to $-\pi$.
@end tex
@end iftex
@ifinfo
@code{pi} to -@code{pi}.
@end ifinfo
@end deftypefn

@node Sums and Products, Special Functions, Trigonometry, Arithmetic
@section Sums and Products

@deftypefn {Built-in Function} {} sum (@var{x})
For a vector argument, return the sum of all the elements.  For a matrix
argument, return the sum of the elements in each column, as a row
vector.  The sum of an empty matrix is 0 if it has no columns, or a
vector of zeros if it has no rows (@pxref{Empty Matrices}).
@end deftypefn

@deftypefn {Built-in Function} {} prod (@var{x})
For a vector argument, return the product of all the elements.  For a
matrix argument, return the product of the elements in each column, as a
row vector.  The product of an empty matrix is 1 if it has no columns,
or a vector of ones if it has no rows (@pxref{Empty Matrices}).
@end deftypefn

@deftypefn {Built-in Function} {} cumsum (@var{x})
Return the cumulative sum of each column of @var{x}.  For example,

@example
@group
cumsum ([1, 2; 3, 4])
     @result{}  1  2
         4  6
@end group
@end example
@end deftypefn

@deftypefn {Built-in Function} {} cumprod (@var{x})
Return the cumulative product of each column of @var{x}.  For example,

@example
@group
cumprod ([1, 2; 3, 4])
     @result{}  1  2
         3  8
@end group
@end example
@end deftypefn

@deftypefn {Built-in Function} {} sumsq (@var{x})
For a vector argument, return the sum of the squares of all the
elements.  For a matrix argument, return the sum of the squares of the
elements in each column, as a row vector.
@end deftypefn

@node Special Functions, Mathematical Constants, Sums and Products, Arithmetic
@section Special Functions

@deftypefn {Mapping Function} {} besseli (@var{alpha}, @var{x})
@deftypefnx {Mapping Function} {} besselj (@var{alpha}, @var{x})
@deftypefnx {Mapping Function} {} besselk (@var{alpha}, @var{x})
@deftypefnx {Mapping Function} {} bessely (@var{alpha}, @var{x})
Compute Bessel functions of the following types:

@table @code
@item besselj
Bessel functions of the first kind.

@item bessely
Bessel functions of the second kind.

@item besseli
Modified Bessel functions of the first kind.

@item besselk
Modified Bessel functions of the second kind.
@end table

The second argument, @var{x}, must be a real matrix, vector, or scalar.

The first argument, @var{alpha}, must be greater than or equal to zero.
If @var{alpha} is a range, it must have an increment equal to one.

If @var{alpha} is a scalar, the result is the same size as @var{x}.

If @var{alpha} is a range, @var{x} must be a vector or scalar, and the
result is a matrix with @code{length(@var{x})} rows and
@code{length(@var{alpha})} columns.
@end deftypefn

@deftypefn {Mapping Function} {} beta (@var{a}, @var{b})
Return the Beta function,
@iftex
@tex
$$
 B (a, b) = {\Gamma (a) \Gamma (b) \over \Gamma (a + b)}.
$$
@end tex
@end iftex
@ifinfo

@example
beta (a, b) = gamma (a) * gamma (b) / gamma (a + b).
@end example
@end ifinfo
@end deftypefn

@deftypefn {Mapping Function} {} betai (@var{a}, @var{b}, @var{x})
Return the incomplete Beta function,
@iftex
@tex
$$
 \beta (a, b, x) = B (a, b)^{-1} \int_0^x t^{(a-z)} (1-t)^{(b-1)} dt.
$$
@end tex
@end iftex
@ifinfo

@smallexample
                                    x
                                   /
betai (a, b, x) = beta (a, b)^(-1) | t^(a-1) (1-t)^(b-1) dt.
                                   /
                                t=0
@end smallexample
@end ifinfo

If x has more than one component, both @var{a} and @var{b} must be
scalars.  If @var{x} is a scalar, @var{a} and @var{b} must be of
compatible dimensions.
@end deftypefn

@deftypefn {Mapping Function} {} bincoeff (@var{n}, @var{k})
Return the binomial coefficient of @var{n} and @var{k}, defined as
@iftex
@tex
$$
 {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!}
$$
@end tex
@end iftex
@ifinfo

@example
@group
 /   \
 | n |    n (n-1) (n-2) ... (n-k+1)
 |   |  = -------------------------
 | k |               k!
 \   /
@end group
@end example
@end ifinfo

For example,

@example
@group
bincoeff (5, 2)
     @result{} 10
@end group
@end example
@end deftypefn

@deftypefn {Mapping Function} {} erf (@var{z})
Computes the error function,
@iftex
@tex
$$
 {\rm erf} (z) = {2 \over \sqrt{\pi}}\int_0^z e^{-t^2} dt
$$
@end tex
@end iftex
@ifinfo

@smallexample
                         z
                        /
erf (z) = (2/sqrt (pi)) | e^(-t^2) dt
                        /
                     t=0
@end smallexample
@end ifinfo
@end deftypefn

@deftypefn {Mapping Function} {} erfc (@var{z})
Computes the complementary error function,
@iftex
@tex
$1 - {\rm erf} (z)$.
@end tex
@end iftex
@ifinfo
@code{1 - erf (@var{z})}.
@end ifinfo
@end deftypefn

@deftypefn {Mapping Function} {} erfinv (@var{z})
Computes the inverse of the error function,
@end deftypefn

@deftypefn {Mapping Function} {} gamma (@var{z})
Computes the Gamma function,
@iftex
@tex
$$
 \Gamma (z) = \int_0^\infty t^{z-1} e^{-t} dt.
$$
@end tex
@end iftex
@ifinfo

@example
            infinity
            /
gamma (z) = | t^(z-1) exp (-t) dt.
            /
         t=0
@end example
@end ifinfo
@end deftypefn

@deftypefn {Mapping Function} {} gammai (@var{a}, @var{x})
Computes the incomplete gamma function,
@iftex
@tex
$$
 \gamma (a, x) = {\displaystyle\int_0^x e^{-t} t^{a-1} dt \over \Gamma (a)}
$$
@end tex
@end iftex
@ifinfo

@smallexample
                              x
                    1        /
gammai (a, x) = ---------    | exp (-t) t^(a-1) dt
                gamma (a)    /
                          t=0
@end smallexample
@end ifinfo

If @var{a} is scalar, then @code{gammai (@var{a}, @var{x})} is returned
for each element of @var{x} and vice versa.

If neither @var{a} nor @var{x} is scalar, the sizes of @var{a} and
@var{x} must agree, and @var{gammai} is applied element-by-element.
@end deftypefn

@deftypefn {Mapping Function} {} lgamma (@var{a}, @var{x})
@deftypefnx {Mapping Function} {} gammaln (@var{a}, @var{x})
Return the natural logarithm of the gamma function.
@end deftypefn

@deftypefn {Function File} {} cross (@var{x}, @var{y})
Computes the vector cross product of the two 3-dimensional vectors
@var{x} and @var{y}.  For example,

@example
@group
cross ([1,1,0], [0,1,1])
     @result{} [ 1; -1; 1 ]
@end group
@end example
@end deftypefn

@deftypefn {Function File} {} commutation_matrix (@var{m}, @var{n})
Return the commutation matrix
@iftex
@tex
 $K_{m,n}$
@end tex
@end iftex
@ifinfo
 K(m,n)
@end ifinfo
 which is the unique
@iftex
@tex
 $m n \times m n$
@end tex
@end iftex
@ifinfo
 @var{m}*@var{n} by @var{m}*@var{n}
@end ifinfo
 matrix such that
@iftex
@tex
 $K_{m,n} \cdot {\rm vec} (A) = {\rm vec} (A^T)$
@end tex
@end iftex
@ifinfo
 @var{K}(@var{m},@var{n}) * vec (@var{A}) = vec (@var{A}')
@end ifinfo
 for all
@iftex
@tex
 $m\times n$
@end tex
@end iftex
@ifinfo
 @var{m} by @var{n}
@end ifinfo
 matrices
@iftex
@tex
 $A$.
@end tex
@end iftex
@ifinfo
 @var{A}.
@end ifinfo

If only one argument @var{m} is given,
@iftex
@tex
 $K_{m,m}$
@end tex
@end iftex
@ifinfo
 K(m,m)
@end ifinfo
 is returned.

See Magnus and Neudecker (1988), Matrix differential calculus with
applications in statistics and econometrics.
@end deftypefn

@deftypefn {Function File} {} duplication_matrix (@var{n})
Return the duplication matrix
@iftex
@tex
 $D_n$
@end tex
@end iftex
@ifinfo
 @var{D}_@var{n}
@end ifinfo
 which is the unique
@iftex
@tex
 $n^2 \times n(n+1)/2$
@end tex
@end iftex
@ifinfo
 @var{n}^2 by @var{n}*(@var{n}+1)/2
@end ifinfo
 matrix such that
@iftex
@tex
 $D_n * {\rm vech} (A) = {\rm vec} (A)$
@end tex
@end iftex
@ifinfo
 @var{D}_@var{n} \cdot vech (@var{A}) = vec (@var{A})
@end ifinfo
 for all symmetric
@iftex
@tex
 $n \times n$
@end tex
@end iftex
@ifinfo
 @var{n} by @var{n}
@end ifinfo
 matrices
@iftex
@tex
 $A$.
@end tex
@end iftex
@ifinfo
 @var{A}.
@end ifinfo

See Magnus and Neudecker (1988), Matrix differential calculus with
applications in statistics and econometrics.
@end deftypefn

@node Mathematical Constants,  , Special Functions, Arithmetic
@section Mathematical Constants

@defvr {Built-in Variable} I
@defvrx {Built-in Variable} J
@defvrx {Built-in Variable} i
@defvrx {Built-in Variable} j
A pure imaginary number, defined as
@iftex
@tex
  $\sqrt{-1}$.
@end tex
@end iftex
@ifinfo
  @code{sqrt (-1)}.
@end ifinfo
The @code{I} and @code{J} forms are true constants, and cannot be
modified.  The @code{i} and @code{j} forms are like ordinary variables,
and may be used for other purposes.  However, unlike other variables,
they once again assume their special predefined values if they are
cleared @xref{Status of Variables}.
@end defvr

@defvr {Built-in Variable} Inf
@defvrx {Built-in Variable} inf
Infinity.  This is the result of an operation like 1/0, or an operation
that results in a floating point overflow.
@end defvr

@defvr {Built-in Variable} NaN
@defvrx {Built-in Variable} nan
Not a number.  This is the result of an operation like
@iftex
@tex
$0/0$, or $\infty - \infty$,
@end tex
@end iftex
@ifinfo
0/0, or @samp{Inf - Inf},
@end ifinfo
or any operation with a NaN.

Note that NaN always compares not equal to NaN.  This behavior is
specified by the IEEE standard for floating point arithmetic.  To
find NaN values, you must use the @code{isnan} function.
@end defvr

@defvr {Built-in Variable} pi
The ratio of the circumference of a circle to its diameter.
Internally, @code{pi} is computed as @samp{4.0 * atan (1.0)}.
@end defvr

@defvr {Built-in Variable} e
The base of natural logarithms.  The constant
@iftex
@tex
 $e$
@end tex
@end iftex
@ifinfo
 @var{e}
@end ifinfo
 satisfies the equation
@iftex
@tex
 $\log (e) = 1$.
@end tex
@end iftex
@ifinfo
 @code{log} (@var{e}) = 1.
@end ifinfo
@end defvr

@defvr {Built-in Variable} eps
The machine precision.  More precisely, @code{eps} is the largest
relative spacing between any two adjacent numbers in the machine's
floating point system.  This number is obviously system-dependent.  On
machines that support 64 bit IEEE floating point arithmetic, @code{eps}
is approximately
@ifinfo
 2.2204e-16.
@end ifinfo
@iftex
@tex
 $2.2204\times10^{-16}$.
@end tex
@end iftex
@end defvr

@defvr {Built-in Variable} realmax
The largest floating point number that is representable.  The actual
value is system-dependent.  On machines that support 64 bit IEEE
floating point arithmetic, @code{realmax} is approximately
@ifinfo
 1.7977e+308
@end ifinfo
@iftex
@tex
 $1.7977\times10^{308}$.
@end tex
@end iftex
@end defvr

@defvr {Built-in Variable} realmin
The smallest floating point number that is representable.  The actual
value is system-dependent.  On machines that support 64 bit IEEE
floating point arithmetic, @code{realmin} is approximately
@ifinfo
 2.2251e-308
@end ifinfo
@iftex
@tex
 $2.2251\times10^{-308}$.
@end tex
@end iftex
@end defvr