File: linalg.texi

package info (click to toggle)
octave 2.0.16-2
  • links: PTS
  • area: main
  • in suites: potato
  • size: 26,276 kB
  • ctags: 16,450
  • sloc: cpp: 67,548; fortran: 41,514; ansic: 26,682; sh: 7,361; makefile: 4,077; lex: 2,008; yacc: 1,849; lisp: 1,702; perl: 1,676; exp: 123
file content (848 lines) | stat: -rw-r--r-- 18,117 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
@c Copyright (C) 1996, 1997 John W. Eaton
@c This is part of the Octave manual.
@c For copying conditions, see the file gpl.texi.

@node Linear Algebra, Nonlinear Equations, Arithmetic, Top
@chapter Linear Algebra

This chapter documents the linear algebra functions of Octave.
Reference material for many of these functions may be found in
Golub and Van Loan, @cite{Matrix Computations, 2nd Ed.}, Johns Hopkins,
1989, and in @cite{@sc{Lapack} Users' Guide}, SIAM, 1992.

@menu
* Basic Matrix Functions::      
* Matrix Factorizations::       
* Functions of a Matrix::       
@end menu

@node Basic Matrix Functions, Matrix Factorizations, Linear Algebra, Linear Algebra
@section Basic Matrix Functions

@deftypefn {Loadable Function} {@var{aa} =} balance (@var{a}, @var{opt})
@deftypefnx {Loadable Function} {[@var{dd}, @var{aa}] =} balance (@var{a}, @var{opt})
@deftypefnx {Loadable Function} {[@var{cc}, @var{dd}, @var{aa}, @var{bb]} =} balance (@var{a}, @var{b}, @var{opt})

@code{[dd, aa] = balance (a)} returns @code{aa = dd \ a * dd}.
@code{aa} is a matrix whose row and column norms are roughly equal in
magnitude, and @code{dd} = @code{p * d}, where @code{p} is a permutation
matrix and @code{d} is a diagonal matrix of powers of two.  This allows
the equilibration to be computed without roundoff.  Results of
eigenvalue calculation are typically improved by balancing first.

@code{[cc, dd, aa, bb] = balance (a, b)} returns @code{aa = cc*a*dd} and
@code{bb = cc*b*dd)}, where @code{aa} and @code{bb} have non-zero
elements of approximately the same magnitude and @code{cc} and @code{dd}
are permuted diagonal matrices as in @code{dd} for the algebraic
eigenvalue problem.

The eigenvalue balancing option @code{opt} is selected as follows:

@table @asis
@item @code{"N"}, @code{"n"}
No balancing; arguments copied, transformation(s) set to identity.

@item @code{"P"}, @code{"p"}
Permute argument(s) to isolate eigenvalues where possible.

@item @code{"S"}, @code{"s"}
Scale to improve accuracy of computed eigenvalues.

@item @code{"B"}, @code{"b"}
Permute and scale, in that order. Rows/columns of a (and b)
that are isolated by permutation are not scaled.  This is the default
behavior.
@end table

Algebraic eigenvalue balancing uses standard @sc{Lapack} routines.

Generalized eigenvalue problem balancing uses Ward's algorithm
(SIAM Journal on Scientific and Statistical Computing, 1981).
@end deftypefn

@deftypefn {} {} cond (@var{a})
Compute the (two-norm) condition number of a matrix. @code{cond (a)} is
defined as @code{norm (a) * norm (inv (a))}, and is computed via a
singular value decomposition.
@end deftypefn

@deftypefn {Loadable Function} {} det (@var{a})
Compute the determinant of @var{a} using @sc{Linpack}.
@end deftypefn

@deftypefn {Loadable Function} {@var{lambda} =} eig (@var{a})
@deftypefnx {Loadable Function} {[@var{v}, @var{lambda}] =} eig (@var{a})
The eigenvalues (and eigenvectors) of a matrix are computed in a several
step process which begins with a Hessenberg decomposition, followed by a
Schur decomposition, from which the eigenvalues are apparent.  The
eigenvectors, when desired, are computed by further manipulations of the
Schur decomposition.
@end deftypefn

@deftypefn {Loadable Function} {@var{G} =} givens (@var{x}, @var{y})
@deftypefnx {Loadable Function} {[@var{c}, @var{s}] =} givens (@var{x}, @var{y})
@iftex
@tex
Return a $2\times 2$ orthogonal matrix
$$
 G = \left[\matrix{c & s\cr -s'& c\cr}\right]
$$
such that
$$
 G \left[\matrix{x\cr y}\right] = \left[\matrix{\ast\cr 0}\right]
$$
with $x$ and $y$ scalars.
@end tex
@end iftex
@ifinfo
Return a 2 by 2 orthogonal matrix
@code{@var{G} = [@var{c} @var{s}; -@var{s}' @var{c}]} such that
@code{@var{G} [@var{x}; @var{y}] = [*; 0]} with @var{x} and @var{y} scalars.
@end ifinfo

For example,

@example
@group
givens (1, 1)
     @result{}   0.70711   0.70711
         -0.70711   0.70711
@end group
@end example
@end deftypefn

@deftypefn {Loadable Function} {} inv (@var{a})
@deftypefnx {Loadable Function} {} inverse (@var{a})
Compute the inverse of the square matrix @var{a}.
@end deftypefn

@deftypefn {Function File} {} norm (@var{a}, @var{p})
Compute the p-norm of the matrix @var{a}.  If the second argument is
missing, @code{p = 2} is assumed.

If @var{a} is a matrix:

@table @asis
@item @var{p} = @code{1}
1-norm, the largest column sum of @var{a}.

@item @var{p} = @code{2}
Largest singular value of @var{a}.

@item @var{p} = @code{Inf}
@cindex infinity norm
Infinity norm, the largest row sum of @var{a}.

@item @var{p} = @code{"fro"}
@cindex Frobenius norm
Frobenius norm of @var{a}, @code{sqrt (sum (diag (@var{a}' * @var{a})))}.
@end table

If @var{a} is a vector or a scalar:

@table @asis
@item @var{p} = @code{Inf}
@code{max (abs (@var{a}))}.

@item @var{p} = @code{-Inf}
@code{min (abs (@var{a}))}.

@item other
p-norm of @var{a}, @code{(sum (abs (@var{a}) .^ @var{p})) ^ (1/@var{p})}.
@end table
@end deftypefn

@deftypefn {Function File} {} null (@var{a}, @var{tol})
Return an orthonormal basis of the null space of @var{a}.

The dimension of the null space is taken as the number of singular
values of @var{a} not greater than @var{tol}.  If the argument @var{tol}
is missing, it is computed as

@example
max (size (@var{a})) * max (svd (@var{a})) * eps
@end example
@end deftypefn

@deftypefn {Function File} {} orth (@var{a}, @var{tol})
Return an orthonormal basis of the range space of @var{a}.

The dimension of the range space is taken as the number of singular
values of @var{a} greater than @var{tol}.  If the argument @var{tol} is
missing, it is computed as

@example
max (size (@var{a})) * max (svd (@var{a})) * eps
@end example
@end deftypefn

@deftypefn {Function File} {} pinv (@var{x}, @var{tol})
Return the pseudoinverse of @var{x}.  Singular values less than
@var{tol} are ignored. 

If the second argument is omitted, it is assumed that

@example
tol = max (size (@var{x})) * sigma_max (@var{x}) * eps,
@end example

@noindent
where @code{sigma_max (@var{x})} is the maximal singular value of @var{x}.
@end deftypefn

@deftypefn {Function File} {} rank (@var{a}, @var{tol})
Compute the rank of @var{a}, using the singular value decomposition.
The rank is taken to be the number  of singular values of @var{a} that
are greater than the specified tolerance @var{tol}.  If the second
argument is omitted, it is taken to be

@example
tol = max (size (@var{a})) * sigma (1) * eps;
@end example

@noindent
where @code{eps} is machine precision and @code{sigma} is the largest
singular value of @var{a}.
@end deftypefn

@deftypefn {Function File} {} trace (@var{a})
Compute the trace of @var{a}, @code{sum (diag (@var{a}))}.
@end deftypefn

@node Matrix Factorizations, Functions of a Matrix, Basic Matrix Functions, Linear Algebra
@section Matrix Factorizations

@deftypefn {Loadable Function} {} chol (@var{a})
@cindex Cholesky factorization
Compute the Cholesky factor, @var{r}, of the symmetric positive definite
matrix @var{a}, where
@iftex
@tex
$ R^T R = A $.
@end tex
@end iftex
@ifinfo

@example
r' * r = a.
@end example
@end ifinfo
@end deftypefn

@deftypefn {Loadable Function} {@var{h} =} hess (@var{a})
@deftypefnx {Loadable Function} {[@var{p}, @var{h}] =} hess (@var{a})
@cindex Hessenberg decomposition
Compute the Hessenberg decomposition of the matrix @var{a}.

The Hessenberg decomposition is usually used as the first step in an
eigenvalue computation, but has other applications as well (see Golub,
Nash, and Van Loan, IEEE Transactions on Automatic Control, 1979.  The
Hessenberg decomposition is
@iftex
@tex
$$
A = PHP^T
$$
where $P$ is a square unitary matrix ($P^HP = I$), and $H$
is upper Hessenberg ($H_{i,j} = 0, \forall i \ge j+1$).
@end tex
@end iftex
@ifinfo
@code{p * h * p' = a} where @code{p} is a square unitary matrix
(@code{p' * p = I}, using complex-conjugate transposition) and @code{h}
is upper Hessenberg (@code{i >= j+1 => h (i, j) = 0}).
@end ifinfo
@end deftypefn

@deftypefn {Loadable Function} {[@var{l}, @var{u}, @var{p}] =} lu (@var{a})
@cindex LU decomposition
Compute the LU decomposition of @var{a}, using subroutines from
@sc{Lapack}.  The result is returned in a permuted form, according to
the optional return value @var{p}.  For example, given the matrix
@code{a = [1, 2; 3, 4]},

@example
[l, u, p] = lu (a)
@end example

@noindent
returns

@example
l =

  1.00000  0.00000
  0.33333  1.00000

u =

  3.00000  4.00000
  0.00000  0.66667

p =

  0  1
  1  0
@end example
@end deftypefn

@deftypefn {Loadable Function} {[@var{q}, @var{r}, @var{p}] =} qr (@var{a})
@cindex QR factorization
Compute the QR factorization of @var{a}, using standard @sc{Lapack}
subroutines.  For example, given the matrix @code{a = [1, 2; 3, 4]},

@example
[q, r] = qr (a)
@end example

@noindent
returns

@example
q =

  -0.31623  -0.94868
  -0.94868   0.31623

r =

  -3.16228  -4.42719
   0.00000  -0.63246
@end example

The @code{qr} factorization has applications in the solution of least
squares problems
@iftex
@tex
$$
\min_x \left\Vert A x - b \right\Vert_2
$$
@end tex
@end iftex
@ifinfo

@example
@code{min norm(A x - b)}
@end example

@end ifinfo
for overdetermined systems of equations (i.e.,
@iftex
@tex
$A$
@end tex
@end iftex
@ifinfo
@code{a}
@end ifinfo
 is a tall, thin matrix).  The QR factorization is
@iftex
@tex
$QR = A$ where $Q$ is an orthogonal matrix and $R$ is upper triangular.
@end tex
@end iftex
@ifinfo
@code{q * r = a} where @code{q} is an orthogonal matrix and @code{r} is
upper triangular.
@end ifinfo

The permuted QR factorization @code{[@var{q}, @var{r}, @var{p}] =
qr (@var{a})} forms the QR factorization such that the diagonal
entries of @code{r} are decreasing in magnitude order.  For example,
given the matrix @code{a = [1, 2; 3, 4]},

@example
[q, r, pi] = qr(a)
@end example

@noindent
returns

@example
q = 

  -0.44721  -0.89443
  -0.89443   0.44721

r =

  -4.47214  -3.13050
   0.00000   0.44721

p =

   0  1
   1  0
@end example

The permuted @code{qr} factorization @code{[q, r, p] = qr (a)}
factorization allows the construction of an orthogonal basis of
@code{span (a)}.
@end deftypefn

@deftypefn {Loadable Function} {@var{s} =} schur (@var{a})
@deftypefnx {Loadable Function} {[@var{u}, @var{s}] =} schur (@var{a}, @var{opt})
@cindex Schur decomposition
The Schur decomposition is used to compute eigenvalues of a
square matrix, and has applications in the solution of algebraic
Riccati equations in control (see @code{are} and @code{dare}).
@code{schur} always returns
@iftex
@tex
$S = U^T A U$
@end tex
@end iftex
@ifinfo
@code{s = u' * a * u}
@end ifinfo
where
@iftex
@tex
$U$
@end tex
@end iftex
@ifinfo
@code{u}
@end ifinfo
 is a unitary matrix
@iftex
@tex
($U^T U$ is identity)
@end tex
@end iftex
@ifinfo
(@code{u'* u} is identity)
@end ifinfo
and
@iftex
@tex
$S$
@end tex
@end iftex
@ifinfo
@code{s}
@end ifinfo
is upper triangular.  The eigenvalues of
@iftex
@tex
$A$ (and $S$)
@end tex
@end iftex
@ifinfo
@code{a} (and @code{s})
@end ifinfo
are the diagonal elements of
@iftex
@tex
$S$
@end tex
@end iftex
@ifinfo
@code{s}
@end ifinfo
If the matrix
@iftex
@tex
$A$
@end tex
@end iftex
@ifinfo
@code{a}
@end ifinfo
is real, then the real Schur decomposition is computed, in which the
matrix
@iftex
@tex
$U$
@end tex
@end iftex
@ifinfo
@code{u}
@end ifinfo
is orthogonal and
@iftex
@tex
$S$
@end tex
@end iftex
@ifinfo
@code{s}
@end ifinfo
is block upper triangular
with blocks of size at most
@iftex
@tex
$2\times 2$
@end tex
@end iftex
@ifinfo
@code{2 x 2}
@end ifinfo
blocks along the diagonal.  The diagonal elements of
@iftex
@tex
$S$
@end tex
@end iftex
@ifinfo
@code{s}
@end ifinfo
(or the eigenvalues of the
@iftex
@tex
$2\times 2$
@end tex
@end iftex
@ifinfo
@code{2 x 2}
@end ifinfo
blocks, when
appropriate) are the eigenvalues of
@iftex
@tex
$A$
@end tex
@end iftex
@ifinfo
@code{a}
@end ifinfo
and
@iftex
@tex
$S$.
@end tex
@end iftex
@ifinfo
@code{s}.
@end ifinfo

The eigenvalues are optionally ordered along the diagonal according to
the value of @code{opt}.  @code{opt = "a"} indicates that all
eigenvalues with negative real parts should be moved to the leading
block of
@iftex
@tex
$S$
@end tex
@end iftex
@ifinfo
@code{s}
@end ifinfo
(used in @code{are}), @code{opt = "d"} indicates that all eigenvalues
with magnitude less than one should be moved to the leading block of
@iftex
@tex
$S$
@end tex
@end iftex
@ifinfo
@code{s}
@end ifinfo
(used in @code{dare}), and @code{opt = "u"}, the default, indicates that
no ordering of eigenvalues should occur.  The leading
@iftex
@tex
$k$
@end tex
@end iftex
@ifinfo
@code{k}
@end ifinfo
columns of
@iftex
@tex
$U$
@end tex
@end iftex
@ifinfo
@code{u}
@end ifinfo
always span the
@iftex
@tex
$A$-invariant
@end tex
@end iftex
@ifinfo
@code{a}-invariant
@end ifinfo
subspace corresponding to the
@iftex
@tex
$k$
@end tex
@end iftex
@ifinfo
@code{k}
@end ifinfo
leading eigenvalues of
@iftex
@tex
$S$.
@end tex
@end iftex
@ifinfo
@code{s}.
@end ifinfo
@end deftypefn

@deftypefn {Loadable Function} {@var{s} =} svd (@var{a})
@deftypefnx {Loadable Function} {[@var{u}, @var{s}, @var{v}] =} svd (@var{a})
@cindex singular value decomposition
Compute the singular value decomposition of @var{a}
@iftex
@tex
$$
 A = U\Sigma V^H
$$
@end tex
@end iftex
@ifinfo

@example
a = u * sigma * v'
@end example
@end ifinfo

The function @code{svd} normally returns the vector of singular values.
If asked for three return values, it computes
@iftex
@tex
$U$, $S$, and $V$.
@end tex
@end iftex
@ifinfo
U, S, and V.
@end ifinfo
For example,

@example
svd (hilb (3))
@end example

@noindent
returns

@example
ans =

  1.4083189
  0.1223271
  0.0026873
@end example

@noindent
and

@example
[u, s, v] = svd (hilb (3))
@end example

@noindent
returns

@example
u =

  -0.82704   0.54745   0.12766
  -0.45986  -0.52829  -0.71375
  -0.32330  -0.64901   0.68867

s =

  1.40832  0.00000  0.00000
  0.00000  0.12233  0.00000
  0.00000  0.00000  0.00269

v =

  -0.82704   0.54745   0.12766
  -0.45986  -0.52829  -0.71375
  -0.32330  -0.64901   0.68867
@end example

If given a second argument, @code{svd} returns an economy-sized
decomposition, eliminating the unnecessary rows or columns of @var{u} or
@var{v}.
@end deftypefn

@node Functions of a Matrix,  , Matrix Factorizations, Linear Algebra
@section Functions of a Matrix

@deftypefn {Loadable Function} {} expm (@var{a})
Return the exponential of a matrix, defined as the infinite Taylor
series
@iftex
@tex
$$
 \exp (A) = I + A + {A^2 \over 2!} + {A^3 \over 3!} + \cdots
$$
@end tex
@end iftex
@ifinfo

@example
expm(a) = I + a + a^2/2! + a^3/3! + ...
@end example

@end ifinfo
The Taylor series is @emph{not} the way to compute the matrix
exponential; see Moler and Van Loan, @cite{Nineteen Dubious Ways to
Compute the Exponential of a Matrix}, SIAM Review, 1978.  This routine
uses Ward's diagonal
@iftex
@tex
Pad\'e
@end tex
@end iftex
@ifinfo
Pade'
@end ifinfo
approximation method with three step preconditioning (SIAM Journal on
Numerical Analysis, 1977).  Diagonal
@iftex
@tex
Pad\'e
@end tex
@end iftex
@ifinfo
Pade'
@end ifinfo
 approximations are rational polynomials of matrices
@iftex
@tex
$D_q(a)^{-1}N_q(a)$
@end tex
@end iftex
@ifinfo

@example
     -1
D (a)   N (a)
@end example

@end ifinfo
 whose Taylor series matches the first
@iftex
@tex
$2 q + 1 $
@end tex
@end iftex
@ifinfo
@code{2q+1}
@end ifinfo
terms of the Taylor series above; direct evaluation of the Taylor series
(with the same preconditioning steps) may be desirable in lieu of the
@iftex
@tex
Pad\'e
@end tex
@end iftex
@ifinfo
Pade'
@end ifinfo
approximation when
@iftex
@tex
$D_q(a)$
@end tex
@end iftex
@ifinfo
@code{Dq(a)}
@end ifinfo
is ill-conditioned.
@end deftypefn

@deftypefn {Loadable Function} {} logm (@var{a})
Compute the matrix logarithm of the square matrix @var{a}.  Note that
this is currently implemented in terms of an eigenvalue expansion and
needs to be improved to be more robust.
@end deftypefn

@deftypefn {Loadable Function} {} sqrtm (@var{a})
Compute the matrix square root of the square matrix @var{a}.  Note that
this is currently implemented in terms of an eigenvalue expansion and
needs to be improved to be more robust.
@end deftypefn

@deftypefn {Function File} {} kron (@var{a}, @var{b})
Form the kronecker product of two matrices, defined block by block as

@example
x = [a(i, j) b]
@end example

For example,

@example
@group
kron (1:4, ones (3, 1))
     @result{}  1  2  3  4
         1  2  3  4
         1  2  3  4
@end group
@end example
@end deftypefn

@deftypefn {Function File} {[@var{aa}, @var{bb}, @var{q}, @var{z}] =} qzhess (@var{a}, @var{b})
Compute the Hessenberg-triangular decomposition of the matrix pencil
@code{(@var{a}, @var{b})}, returning
@code{@var{aa} = @var{q} * @var{a} * @var{z}}, 
@code{@var{bb} = @var{q} * @var{b} * @var{z}}, with @var{q} and @var{z}
orthogonal.  For example,

@example
@group
[aa, bb, q, z] = qzhess ([1, 2; 3, 4], [5, 6; 7, 8])
     @result{} aa = [ -3.02244, -4.41741;  0.92998,  0.69749 ]
     @result{} bb = [ -8.60233, -9.99730;  0.00000, -0.23250 ]
     @result{}  q = [ -0.58124, -0.81373; -0.81373,  0.58124 ]
     @result{}  z = [ 1, 0; 0, 1 ]
@end group
@end example

The Hessenberg-triangular decomposition is the first step in
Moler and Stewart's QZ decomposition algorithm.

Algorithm taken from Golub and Van Loan, @cite{Matrix Computations, 2nd
edition}.
@end deftypefn

@deftypefn {Loadable Function} {} qzval (@var{a}, @var{b})
Compute generalized eigenvalues of the matrix pencil 
@iftex
@tex
$a - \lambda b$.
@end tex
@end iftex
@ifinfo
@code{@var{a} - lambda @var{b}}.
@end ifinfo

The arguments @var{a} and @var{b} must be real matrices.
@end deftypefn

@deftypefn {Loadable Function} {@var{x} =} syl (@var{a}, @var{b}, @var{c})
Solve the Sylvester equation
@iftex
@tex
$$
 A X + X B + C = 0
$$
@end tex
@end iftex
@ifinfo

@example
A X + X B + C = 0
@end example
@end ifinfo
using standard @sc{Lapack} subroutines.  For example,

@example
@group
syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])
     @result{} [ -0.50000, -0.66667; -0.66667, -0.50000 ]
@end group
@end example
@end deftypefn