1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
|
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.51
from ./octave.texi on 18 June 1999 -->
<TITLE>GNU Octave - Statements</TITLE>
</HEAD>
<BODY>
Go to the <A HREF="octave_1.html">first</A>, <A HREF="octave_10.html">previous</A>, <A HREF="octave_12.html">next</A>, <A HREF="octave_40.html">last</A> section, <A HREF="octave_toc.html">table of contents</A>.
<P><HR><P>
<H1><A NAME="SEC78" HREF="octave_toc.html#TOC78">Statements</A></H1>
<P>
<A NAME="IDX392"></A>
</P>
<P>
Statements may be a simple constant expression or a complicated list of
nested loops and conditional statements.
</P>
<P>
<STRONG>Control statements</STRONG> such as <CODE>if</CODE>, <CODE>while</CODE>, and so on
control the flow of execution in Octave programs. All the control
statements start with special keywords such as <CODE>if</CODE> and
<CODE>while</CODE>, to distinguish them from simple expressions.
Many control statements contain other statements; for example, the
<CODE>if</CODE> statement contains another statement which may or may not be
executed.
</P>
<P>
<A NAME="IDX393"></A>
Each control statement has a corresponding <STRONG>end</STRONG> statement that
marks the end of the end of the control statement. For example, the
keyword <CODE>endif</CODE> marks the end of an <CODE>if</CODE> statement, and
<CODE>endwhile</CODE> marks the end of a <CODE>while</CODE> statement. You can use
the keyword <CODE>end</CODE> anywhere a more specific end keyword is expected,
but using the more specific keywords is preferred because if you use
them, Octave is able to provide better diagnostics for mismatched or
missing end tokens.
</P>
<P>
The list of statements contained between keywords like <CODE>if</CODE> or
<CODE>while</CODE> and the corresponding end statement is called the
<STRONG>body</STRONG> of a control statement.
</P>
<H2><A NAME="SEC79" HREF="octave_toc.html#TOC79">The <CODE>if</CODE> Statement</A></H2>
<P>
<A NAME="IDX394"></A>
<A NAME="IDX395"></A>
<A NAME="IDX396"></A>
<A NAME="IDX397"></A>
</P>
<P>
The <CODE>if</CODE> statement is Octave's decision-making statement. There
are three basic forms of an <CODE>if</CODE> statement. In its simplest form,
it looks like this:
</P>
<PRE>
if (<VAR>condition</VAR>)
<VAR>then-body</VAR>
endif
</PRE>
<P>
<VAR>condition</VAR> is an expression that controls what the rest of the
statement will do. The <VAR>then-body</VAR> is executed only if
<VAR>condition</VAR> is true.
</P>
<P>
The condition in an <CODE>if</CODE> statement is considered true if its value
is non-zero, and false if its value is zero. If the value of the
conditional expression in an <CODE>if</CODE> statement is a vector or a
matrix, it is considered true only if <EM>all</EM> of the elements are
non-zero.
</P>
<P>
The second form of an if statement looks like this:
</P>
<PRE>
if (<VAR>condition</VAR>)
<VAR>then-body</VAR>
else
<VAR>else-body</VAR>
endif
</PRE>
<P>
If <VAR>condition</VAR> is true, <VAR>then-body</VAR> is executed; otherwise,
<VAR>else-body</VAR> is executed.
</P>
<P>
Here is an example:
</P>
<PRE>
if (rem (x, 2) == 0)
printf ("x is even\n");
else
printf ("x is odd\n");
endif
</PRE>
<P>
In this example, if the expression <CODE>rem (x, 2) == 0</CODE> is true (that
is, the value of <CODE>x</CODE> is divisible by 2), then the first
<CODE>printf</CODE> statement is evaluated, otherwise the second <CODE>printf</CODE>
statement is evaluated.
</P>
<P>
The third and most general form of the <CODE>if</CODE> statement allows
multiple decisions to be combined in a single statement. It looks like
this:
</P>
<PRE>
if (<VAR>condition</VAR>)
<VAR>then-body</VAR>
elseif (<VAR>condition</VAR>)
<VAR>elseif-body</VAR>
else
<VAR>else-body</VAR>
endif
</PRE>
<P>
Any number of <CODE>elseif</CODE> clauses may appear. Each condition is
tested in turn, and if one is found to be true, its corresponding
<VAR>body</VAR> is executed. If none of the conditions are true and the
<CODE>else</CODE> clause is present, its body is executed. Only one
<CODE>else</CODE> clause may appear, and it must be the last part of the
statement.
</P>
<P>
In the following example, if the first condition is true (that is, the
value of <CODE>x</CODE> is divisible by 2), then the first <CODE>printf</CODE>
statement is executed. If it is false, then the second condition is
tested, and if it is true (that is, the value of <CODE>x</CODE> is divisible
by 3), then the second <CODE>printf</CODE> statement is executed. Otherwise,
the third <CODE>printf</CODE> statement is performed.
</P>
<PRE>
if (rem (x, 2) == 0)
printf ("x is even\n");
elseif (rem (x, 3) == 0)
printf ("x is odd and divisible by 3\n");
else
printf ("x is odd\n");
endif
</PRE>
<P>
Note that the <CODE>elseif</CODE> keyword must not be spelled <CODE>else if</CODE>,
as is allowed in Fortran. If it is, the space between the <CODE>else</CODE>
and <CODE>if</CODE> will tell Octave to treat this as a new <CODE>if</CODE>
statement within another <CODE>if</CODE> statement's <CODE>else</CODE> clause. For
example, if you write
</P>
<PRE>
if (<VAR>c1</VAR>)
<VAR>body-1</VAR>
else if (<VAR>c2</VAR>)
<VAR>body-2</VAR>
endif
</PRE>
<P>
Octave will expect additional input to complete the first <CODE>if</CODE>
statement. If you are using Octave interactively, it will continue to
prompt you for additional input. If Octave is reading this input from a
file, it may complain about missing or mismatched <CODE>end</CODE> statements,
or, if you have not used the more specific <CODE>end</CODE> statements
(<CODE>endif</CODE>, <CODE>endfor</CODE>, etc.), it may simply produce incorrect
results, without producing any warning messages.
</P>
<P>
It is much easier to see the error if we rewrite the statements above
like this,
</P>
<PRE>
if (<VAR>c1</VAR>)
<VAR>body-1</VAR>
else
if (<VAR>c2</VAR>)
<VAR>body-2</VAR>
endif
</PRE>
<P>
using the indentation to show how Octave groups the statements.
See section <A HREF="octave_12.html#SEC89">Functions and Script Files</A>.
</P>
<P>
<DL>
<DT><U>Built-in Variable:</U> <B>warn_assign_as_truth_value</B>
<DD><A NAME="IDX398"></A>
If the value of <CODE>warn_assign_as_truth_value</CODE> is nonzero, a
warning is issued for statements like
</P>
<PRE>
if (s = t)
...
</PRE>
<P>
since such statements are not common, and it is likely that the intent
was to write
</P>
<PRE>
if (s == t)
...
</PRE>
<P>
instead.
</P>
<P>
There are times when it is useful to write code that contains
assignments within the condition of a <CODE>while</CODE> or <CODE>if</CODE>
statement. For example, statements like
</P>
<PRE>
while (c = getc())
...
</PRE>
<P>
are common in C programming.
</P>
<P>
It is possible to avoid all warnings about such statements by setting
<CODE>warn_assign_as_truth_value</CODE> to 0, but that may also
let real errors like
</P>
<PRE>
if (x = 1) # intended to test (x == 1)!
...
</PRE>
<P>
slip by.
</P>
<P>
In such cases, it is possible suppress errors for specific statements by
writing them with an extra set of parentheses. For example, writing the
previous example as
</P>
<PRE>
while ((c = getc()))
...
</PRE>
<P>
will prevent the warning from being printed for this statement, while
allowing Octave to warn about other assignments used in conditional
contexts.
</P>
<P>
The default value of <CODE>warn_assign_as_truth_value</CODE> is 1.
</DL>
</P>
<H2><A NAME="SEC80" HREF="octave_toc.html#TOC80">The <CODE>switch</CODE> Statement</A></H2>
<P>
<A NAME="IDX399"></A>
<A NAME="IDX400"></A>
<A NAME="IDX401"></A>
<A NAME="IDX402"></A>
</P>
<P>
The <CODE>switch</CODE> statement was introduced in Octave 2.0.5. It should
be considered experimental, and details of the implementation may change
slightly in future versions of Octave. If you have comments or would
like to share your experiences in trying to use this new command in real
programs, please send them to
@email{octave-maintainers@bevo.che.wisc.edu}. (But if you think you've
found a bug, please report it to @email{bug-octave@bevo.che.wisc.edu}.
</P>
<P>
The general form of the <CODE>switch</CODE> statement is
</P>
<PRE>
switch <VAR>expression</VAR>
case <VAR>label</VAR>
<VAR>command_list</VAR>
case <VAR>label</VAR>
<VAR>command_list</VAR>
...
otherwise
<VAR>command_list</VAR>
endswitch
</PRE>
<UL>
<LI>
The identifiers <CODE>switch</CODE>, <CODE>case</CODE>, <CODE>otherwise</CODE>, and
<CODE>endswitch</CODE> are now keywords.
<LI>
The <VAR>label</VAR> may be any expression.
<LI>
Duplicate <VAR>label</VAR> values are not detected. The <VAR>command_list</VAR>
corresponding to the first match will be executed.
<LI>
You must have at least one <CODE>case <VAR>label</VAR> <VAR>command_list</VAR></CODE>
clause.
<LI>
The <CODE>otherwise <VAR>command_list</VAR></CODE> clause is optional.
<LI>
As with all other specific <CODE>end</CODE> keywords, <CODE>endswitch</CODE> may be
replaced by <CODE>end</CODE>, but you can get better diagnostics if you use
the specific forms.
<LI>
Cases are exclusive, so they don't `fall through' as do the cases
in the switch statement of the C language.
<LI>
The <VAR>command_list</VAR> elements are not optional. Making the list
optional would have meant requiring a separator between the label and
the command list. Otherwise, things like
<PRE>
switch (foo)
case (1) -2
...
</PRE>
would produce surprising results, as would
<PRE>
switch (foo)
case (1)
case (2)
doit ();
...
</PRE>
particularly for C programmers.
<LI>
The implementation is simple-minded and currently offers no real
performance improvement over an equivalent <CODE>if</CODE> block, even if all
the labels are integer constants. Perhaps a future variation on this
could detect all constant integer labels and improve performance by
using a jump table.
</UL>
<P>
<DL>
<DT><U>Built-in Variable:</U> <B>warn_variable_switch_label</B>
<DD><A NAME="IDX403"></A>
If the value of this variable is nonzero, Octave will print a warning if
a switch label is not a constant or constant expression
</DL>
</P>
<H2><A NAME="SEC81" HREF="octave_toc.html#TOC81">The <CODE>while</CODE> Statement</A></H2>
<P>
<A NAME="IDX404"></A>
<A NAME="IDX405"></A>
<A NAME="IDX406"></A>
<A NAME="IDX407"></A>
</P>
<P>
In programming, a <STRONG>loop</STRONG> means a part of a program that is (or at least can
be) executed two or more times in succession.
</P>
<P>
The <CODE>while</CODE> statement is the simplest looping statement in Octave.
It repeatedly executes a statement as long as a condition is true. As
with the condition in an <CODE>if</CODE> statement, the condition in a
<CODE>while</CODE> statement is considered true if its value is non-zero, and
false if its value is zero. If the value of the conditional expression
in a <CODE>while</CODE> statement is a vector or a matrix, it is considered
true only if <EM>all</EM> of the elements are non-zero.
</P>
<P>
Octave's <CODE>while</CODE> statement looks like this:
</P>
<PRE>
while (<VAR>condition</VAR>)
<VAR>body</VAR>
endwhile
</PRE>
<P>
Here <VAR>body</VAR> is a statement or list of statements that we call the
<STRONG>body</STRONG> of the loop, and <VAR>condition</VAR> is an expression that
controls how long the loop keeps running.
</P>
<P>
The first thing the <CODE>while</CODE> statement does is test <VAR>condition</VAR>.
If <VAR>condition</VAR> is true, it executes the statement <VAR>body</VAR>. After
<VAR>body</VAR> has been executed, <VAR>condition</VAR> is tested again, and if it
is still true, <VAR>body</VAR> is executed again. This process repeats until
<VAR>condition</VAR> is no longer true. If <VAR>condition</VAR> is initially
false, the body of the loop is never executed.
</P>
<P>
This example creates a variable <CODE>fib</CODE> that contains the first ten
elements of the Fibonacci sequence.
</P>
<PRE>
fib = ones (1, 10);
i = 3;
while (i <= 10)
fib (i) = fib (i-1) + fib (i-2);
i++;
endwhile
</PRE>
<P>
Here the body of the loop contains two statements.
</P>
<P>
The loop works like this: first, the value of <CODE>i</CODE> is set to 3.
Then, the <CODE>while</CODE> tests whether <CODE>i</CODE> is less than or equal to
10. This is the case when <CODE>i</CODE> equals 3, so the value of the
<CODE>i</CODE>-th element of <CODE>fib</CODE> is set to the sum of the previous two
values in the sequence. Then the <CODE>i++</CODE> increments the value of
<CODE>i</CODE> and the loop repeats. The loop terminates when <CODE>i</CODE>
reaches 11.
</P>
<P>
A newline is not required between the condition and the
body; but using one makes the program clearer unless the body is very
simple.
</P>
<P>
See section <A HREF="octave_11.html#SEC79">The <CODE>if</CODE> Statement</A> for a description of the variable
<CODE>warn_assign_as_truth_value</CODE>.
</P>
<H2><A NAME="SEC82" HREF="octave_toc.html#TOC82">The <CODE>for</CODE> Statement</A></H2>
<P>
<A NAME="IDX408"></A>
<A NAME="IDX409"></A>
</P>
<P>
The <CODE>for</CODE> statement makes it more convenient to count iterations of a
loop. The general form of the <CODE>for</CODE> statement looks like this:
</P>
<PRE>
for <VAR>var</VAR> = <VAR>expression</VAR>
<VAR>body</VAR>
endfor
</PRE>
<P>
where <VAR>body</VAR> stands for any statement or list of statements,
<VAR>expression</VAR> is any valid expression, and <VAR>var</VAR> may take several
forms. Usually it is a simple variable name or an indexed variable. If
the value of <VAR>expression</VAR> is a structure, <VAR>var</VAR> may also be a
list. See section <A HREF="octave_11.html#SEC83">Looping Over Structure Elements</A>, below.
</P>
<P>
The assignment expression in the <CODE>for</CODE> statement works a bit
differently than Octave's normal assignment statement. Instead of
assigning the complete result of the expression, it assigns each column
of the expression to <VAR>var</VAR> in turn. If <VAR>expression</VAR> is a range,
a row vector, or a scalar, the value of <VAR>var</VAR> will be a scalar each
time the loop body is executed. If <VAR>var</VAR> is a column vector or a
matrix, <VAR>var</VAR> will be a column vector each time the loop body is
executed.
</P>
<P>
The following example shows another way to create a vector containing
the first ten elements of the Fibonacci sequence, this time using the
<CODE>for</CODE> statement:
</P>
<PRE>
fib = ones (1, 10);
for i = 3:10
fib (i) = fib (i-1) + fib (i-2);
endfor
</PRE>
<P>
This code works by first evaluating the expression <CODE>3:10</CODE>, to
produce a range of values from 3 to 10 inclusive. Then the variable
<CODE>i</CODE> is assigned the first element of the range and the body of the
loop is executed once. When the end of the loop body is reached, the
next value in the range is assigned to the variable <CODE>i</CODE>, and the
loop body is executed again. This process continues until there are no
more elements to assign.
</P>
<P>
Although it is possible to rewrite all <CODE>for</CODE> loops as <CODE>while</CODE>
loops, the Octave language has both statements because often a
<CODE>for</CODE> loop is both less work to type and more natural to think of.
Counting the number of iterations is very common in loops and it can be
easier to think of this counting as part of looping rather than as
something to do inside the loop.
</P>
<H3><A NAME="SEC83" HREF="octave_toc.html#TOC83">Looping Over Structure Elements</A></H3>
<P>
<A NAME="IDX410"></A>
<A NAME="IDX411"></A>
</P>
<P>
A special form of the <CODE>for</CODE> statement allows you to loop over all
the elements of a structure:
</P>
<PRE>
for [ <VAR>val</VAR>, <VAR>key</VAR> ] = <VAR>expression</VAR>
<VAR>body</VAR>
endfor
</PRE>
<P>
In this form of the <CODE>for</CODE> statement, the value of <VAR>expression</VAR>
must be a structure. If it is, <VAR>key</VAR> and <VAR>val</VAR> are set to the
name of the element and the corresponding value in turn, until there are
no more elements. For example,
</P>
<PRE>
x.a = 1
x.b = [1, 2; 3, 4]
x.c = "string"
for [val, key] = x
key
val
endfor
-| key = a
-| val = 1
-| key = b
-| val =
-|
-| 1 2
-| 3 4
-|
-| key = c
-| val = string
</PRE>
<P>
The elements are not accessed in any particular order. If you need to
cycle through the list in a particular way, you will have to use the
function <CODE>struct_elements</CODE> and sort the list yourself.
</P>
<P>
The <VAR>key</VAR> variable may also be omitted. If it is, the brackets are
also optional. This is useful for cycling through the values of all the
structure elements when the names of the elements do not need to be
known.
</P>
<H2><A NAME="SEC84" HREF="octave_toc.html#TOC84">The <CODE>break</CODE> Statement</A></H2>
<P>
<A NAME="IDX412"></A>
</P>
<P>
The <CODE>break</CODE> statement jumps out of the innermost <CODE>for</CODE> or
<CODE>while</CODE> loop that encloses it. The <CODE>break</CODE> statement may only
be used within the body of a loop. The following example finds the
smallest divisor of a given integer, and also identifies prime numbers:
</P>
<PRE>
num = 103;
div = 2;
while (div*div <= num)
if (rem (num, div) == 0)
break;
endif
div++;
endwhile
if (rem (num, div) == 0)
printf ("Smallest divisor of %d is %d\n", num, div)
else
printf ("%d is prime\n", num);
endif
</PRE>
<P>
When the remainder is zero in the first <CODE>while</CODE> statement, Octave
immediately <STRONG>breaks out</STRONG> of the loop. This means that Octave
proceeds immediately to the statement following the loop and continues
processing. (This is very different from the <CODE>exit</CODE> statement
which stops the entire Octave program.)
</P>
<P>
Here is another program equivalent to the previous one. It illustrates
how the <VAR>condition</VAR> of a <CODE>while</CODE> statement could just as well
be replaced with a <CODE>break</CODE> inside an <CODE>if</CODE>:
</P>
<PRE>
num = 103;
div = 2;
while (1)
if (rem (num, div) == 0)
printf ("Smallest divisor of %d is %d\n", num, div);
break;
endif
div++;
if (div*div > num)
printf ("%d is prime\n", num);
break;
endif
endwhile
</PRE>
<H2><A NAME="SEC85" HREF="octave_toc.html#TOC85">The <CODE>continue</CODE> Statement</A></H2>
<P>
<A NAME="IDX413"></A>
</P>
<P>
The <CODE>continue</CODE> statement, like <CODE>break</CODE>, is used only inside
<CODE>for</CODE> or <CODE>while</CODE> loops. It skips over the rest of the loop
body, causing the next cycle around the loop to begin immediately.
Contrast this with <CODE>break</CODE>, which jumps out of the loop altogether.
Here is an example:
</P>
<PRE>
# print elements of a vector of random
# integers that are even.
# first, create a row vector of 10 random
# integers with values between 0 and 100:
vec = round (rand (1, 10) * 100);
# print what we're interested in:
for x = vec
if (rem (x, 2) != 0)
continue;
endif
printf ("%d\n", x);
endfor
</PRE>
<P>
If one of the elements of <VAR>vec</VAR> is an odd number, this example skips
the print statement for that element, and continues back to the first
statement in the loop.
</P>
<P>
This is not a practical example of the <CODE>continue</CODE> statement, but it
should give you a clear understanding of how it works. Normally, one
would probably write the loop like this:
</P>
<PRE>
for x = vec
if (rem (x, 2) == 0)
printf ("%d\n", x);
endif
endfor
</PRE>
<H2><A NAME="SEC86" HREF="octave_toc.html#TOC86">The <CODE>unwind_protect</CODE> Statement</A></H2>
<P>
<A NAME="IDX414"></A>
<A NAME="IDX415"></A>
<A NAME="IDX416"></A>
</P>
<P>
Octave supports a limited form of exception handling modelled after the
unwind-protect form of Lisp.
</P>
<P>
The general form of an <CODE>unwind_protect</CODE> block looks like this:
</P>
<PRE>
unwind_protect
<VAR>body</VAR>
unwind_protect_cleanup
<VAR>cleanup</VAR>
end_unwind_protect
</PRE>
<P>
Where <VAR>body</VAR> and <VAR>cleanup</VAR> are both optional and may contain any
Octave expressions or commands. The statements in <VAR>cleanup</VAR> are
guaranteed to be executed regardless of how control exits <VAR>body</VAR>.
</P>
<P>
This is useful to protect temporary changes to global variables from
possible errors. For example, the following code will always restore
the original value of the built-in variable <CODE>do_fortran_indexing</CODE>
even if an error occurs while performing the indexing operation.
</P>
<PRE>
save_do_fortran_indexing = do_fortran_indexing;
unwind_protect
do_fortran_indexing = 1;
elt = a (idx)
unwind_protect_cleanup
do_fortran_indexing = save_do_fortran_indexing;
end_unwind_protect
</PRE>
<P>
Without <CODE>unwind_protect</CODE>, the value of <VAR>do_fortran_indexing</VAR>
would not be restored if an error occurs while performing the indexing
operation because evaluation would stop at the point of the error and
the statement to restore the value would not be executed.
</P>
<H2><A NAME="SEC87" HREF="octave_toc.html#TOC87">The <CODE>try</CODE> Statement</A></H2>
<P>
<A NAME="IDX417"></A>
<A NAME="IDX418"></A>
<A NAME="IDX419"></A>
</P>
<P>
In addition to unwind_protect, Octave supports another limited form of
exception handling.
</P>
<P>
The general form of a <CODE>try</CODE> block looks like this:
</P>
<PRE>
try
<VAR>body</VAR>
catch
<VAR>cleanup</VAR>
end_try_catch
</PRE>
<P>
Where <VAR>body</VAR> and <VAR>cleanup</VAR> are both optional and may contain any
Octave expressions or commands. The statements in <VAR>cleanup</VAR> are
only executed if an error occurs in <VAR>body</VAR>.
</P>
<P>
No warnings or error messages are printed while <VAR>body</VAR> is
executing. If an error does occur during the execution of <VAR>body</VAR>,
<VAR>cleanup</VAR> can access the text of the message that would have been
printed in the builtin constant <CODE>__error_text__</CODE>. This is the same
as <CODE>eval (<VAR>try</VAR>, <VAR>catch</VAR>)</CODE> (which may now also use
<CODE>__error_text__</CODE>) but it is more efficient since the commands do
not need to be parsed each time the <VAR>try</VAR> and <VAR>catch</VAR> statements
are evaluated. See section <A HREF="octave_13.html#SEC99">Error Handling</A>, for more information about the
<CODE>__error_text__</CODE> variable.
</P>
<P>
Octave's <VAR>try</VAR> block is a very limited variation on the Lisp
condition-case form (limited because it cannot handle different classes
of errors separately). Perhaps at some point Octave can have some sort
of classification of errors and try-catch can be improved to be as
powerful as condition-case in Lisp.
</P>
<P>
<A NAME="IDX420"></A>
<A NAME="IDX421"></A>
<A NAME="IDX422"></A>
</P>
<H2><A NAME="SEC88" HREF="octave_toc.html#TOC88">Continuation Lines</A></H2>
<P>
In the Octave language, most statements end with a newline character and
you must tell Octave to ignore the newline character in order to
continue a statement from one line to the next. Lines that end with the
characters <CODE>...</CODE> or <CODE>\</CODE> are joined with the following line
before they are divided into tokens by Octave's parser. For example,
the lines
</P>
<PRE>
x = long_variable_name ...
+ longer_variable_name \
- 42
</PRE>
<P>
form a single statement. The backslash character on the second line
above is interpreted a continuation character, <EM>not</EM> as a division
operator.
</P>
<P>
For continuation lines that do not occur inside string constants,
whitespace and comments may appear between the continuation marker and
the newline character. For example, the statement
</P>
<PRE>
x = long_variable_name ... # comment one
+ longer_variable_name \ # comment two
- 42 # last comment
</PRE>
<P>
is equivalent to the one shown above. Inside string constants, the
continuation marker must appear at the end of the line just before the
newline character.
</P>
<P>
Input that occurs inside parentheses can be continued to the next line
without having to use a continuation marker. For example, it is
possible to write statements like
</P>
<PRE>
if (fine_dining_destination == on_a_boat
|| fine_dining_destination == on_a_train)
suess (i, will, not, eat, them, sam, i, am, i,
will, not, eat, green, eggs, and, ham);
endif
</PRE>
<P>
without having to add to the clutter with continuation markers.
</P>
<P><HR><P>
Go to the <A HREF="octave_1.html">first</A>, <A HREF="octave_10.html">previous</A>, <A HREF="octave_12.html">next</A>, <A HREF="octave_40.html">last</A> section, <A HREF="octave_toc.html">table of contents</A>.
</BODY>
</HTML>
|