1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
|
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.51
from ./octave.texi on 18 June 1999 -->
<TITLE>GNU Octave - Matrix Manipulation</TITLE>
</HEAD>
<BODY>
Go to the <A HREF="octave_1.html">first</A>, <A HREF="octave_15.html">previous</A>, <A HREF="octave_17.html">next</A>, <A HREF="octave_40.html">last</A> section, <A HREF="octave_toc.html">table of contents</A>.
<P><HR><P>
<H1><A NAME="SEC131" HREF="octave_toc.html#TOC131">Matrix Manipulation</A></H1>
<P>
There are a number of functions available for checking to see if the
elements of a matrix meet some condition, and for rearranging the
elements of a matrix. For example, Octave can easily tell you if all
the elements of a matrix are finite, or are less than some specified
value. Octave can also rotate the elements, extract the upper- or
lower-triangular parts, or sort the columns of a matrix.
</P>
<H2><A NAME="SEC132" HREF="octave_toc.html#TOC132">Finding Elements and Checking Conditions</A></H2>
<P>
The functions <CODE>any</CODE> and <CODE>all</CODE> are useful for determining
whether any or all of the elements of a matrix satisfy some condition.
The <CODE>find</CODE> function is also useful in determining which elements of
a matrix meet a specified condition.
</P>
<P>
<DL>
<DT><U>Built-in Function:</U> <B>any</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX574"></A>
For a vector argument, return 1 if any element of the vector is
nonzero.
</P>
<P>
For a matrix argument, return a row vector of ones and
zeros with each element indicating whether any of the elements of the
corresponding column of the matrix are nonzero. For example,
</P>
<PRE>
any (eye (2, 4))
=> [ 1, 1, 0, 0 ]
</PRE>
<P>
To see if any of the elements of a matrix are nonzero, you can use a
statement like
</P>
<PRE>
any (any (a))
</PRE>
</DL>
<P>
<DL>
<DT><U>Built-in Function:</U> <B>all</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX575"></A>
The function <CODE>all</CODE> behaves like the function <CODE>any</CODE>, except
that it returns true only if all the elements of a vector, or all the
elements in a column of a matrix, are nonzero.
</DL>
</P>
<P>
Since the comparison operators (see section <A HREF="octave_9.html#SEC70">Comparison Operators</A>) return matrices
of ones and zeros, it is easy to test a matrix for many things, not just
whether the elements are nonzero. For example,
</P>
<PRE>
all (all (rand (5) < 0.9))
=> 0
</PRE>
<P>
tests a random 5 by 5 matrix to see if all of its elements are less
than 0.9.
</P>
<P>
Note that in conditional contexts (like the test clause of <CODE>if</CODE> and
<CODE>while</CODE> statements) Octave treats the test as if you had typed
<CODE>all (all (condition))</CODE>.
</P>
<P>
<DL>
<DT><U>Function File:</U> [<VAR>err</VAR>, <VAR>y1</VAR>, ...] = <B>common_size</B> <I>(<VAR>x1</VAR>, ...)</I>
<DD><A NAME="IDX576"></A>
Determine if all input arguments are either scalar or of common
size. If so, <VAR>err</VAR> is zero, and <VAR>yi</VAR> is a matrix of the
common size with all entries equal to <VAR>xi</VAR> if this is a scalar or
<VAR>xi</VAR> otherwise. If the inputs cannot be brought to a common size,
errorcode is 1, and <VAR>yi</VAR> is <VAR>xi</VAR>. For example,
</P>
<PRE>
[errorcode, a, b] = common_size ([1 2; 3 4], 5)
=> errorcode = 0
=> a = [ 1, 2; 3, 4 ]
=> b = [ 5, 5; 5, 5 ]
</PRE>
<P>
This is useful for implementing functions where arguments can either
be scalars or of common size.
</DL>
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>diff</B> <I>(<VAR>x</VAR>, <VAR>k</VAR>)</I>
<DD><A NAME="IDX577"></A>
If <VAR>x</VAR> is a vector of length <VAR>n</VAR>, <CODE>diff (<VAR>x</VAR>)</CODE> is the
vector of first differences
<VAR>x</VAR>(2) - <VAR>x</VAR>(1), ..., <VAR>x</VAR>(n) - <VAR>x</VAR>(n-1).
</P>
<P>
If <VAR>x</VAR> is a matrix, <CODE>diff (<VAR>x</VAR>)</CODE> is the matrix of column
differences.
</P>
<P>
The second argument is optional. If supplied, <CODE>diff (<VAR>x</VAR>,
<VAR>k</VAR>)</CODE>, where <VAR>k</VAR> is a nonnegative integer, returns the
<VAR>k</VAR>-th differences.
</DL>
</P>
<P>
<DL>
<DT><U>Mapping Function:</U> <B>isinf</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX578"></A>
Return 1 for elements of <VAR>x</VAR> that are infinite and zero
otherwise. For example,
</P>
<PRE>
isinf ([13, Inf, NaN])
=> [ 0, 1, 0 ]
</PRE>
</DL>
<P>
<DL>
<DT><U>Mapping Function:</U> <B>isnan</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX579"></A>
Return 1 for elements of <VAR>x</VAR> that are NaN values and zero
otherwise. For example,
</P>
<PRE>
isnan ([13, Inf, NaN])
=> [ 0, 0, 1 ]
</PRE>
</DL>
<P>
<DL>
<DT><U>Mapping Function:</U> <B>finite</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX580"></A>
Return 1 for elements of <VAR>x</VAR> that are NaN values and zero
otherwise. For example,
</P>
<PRE>
finite ([13, Inf, NaN])
=> [ 1, 0, 0 ]
</PRE>
</DL>
<P>
<DL>
<DT><U>Loadable Function:</U> <B>find</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX581"></A>
Return a vector of indices of nonzero elements of a matrix. To obtain a
single index for each matrix element, Octave pretends that the columns
of a matrix form one long vector (like Fortran arrays are stored). For
example,
</P>
<PRE>
find (eye (2))
=> [ 1; 4 ]
</PRE>
<P>
If two outputs are requested, <CODE>find</CODE> returns the row and column
indices of nonzero elements of a matrix. For example,
</P>
<PRE>
[i, j] = find (2 * eye (2))
=> i = [ 1; 2 ]
=> j = [ 1; 2 ]
</PRE>
<P>
If three outputs are requested, <CODE>find</CODE> also returns a vector
containing the nonzero values. For example,
</P>
<PRE>
[i, j, v] = find (3 * eye (2))
=> i = [ 1; 2 ]
=> j = [ 1; 2 ]
=> v = [ 3; 3 ]
</PRE>
</DL>
<P>
<H2><A NAME="SEC133" HREF="octave_toc.html#TOC133">Rearranging Matrices</A></H2>
<P>
<DL>
<DT><U>Function File:</U> <B>fliplr</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX582"></A>
Return a copy of <VAR>x</VAR> with the order of the columns reversed. For
example,
</P>
<PRE>
fliplr ([1, 2; 3, 4])
=> 2 1
4 3
</PRE>
</DL>
<P>
<DL>
<DT><U>Function File:</U> <B>flipud</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX583"></A>
Return a copy of <VAR>x</VAR> with the order of the rows reversed. For
example,
</P>
<PRE>
flipud ([1, 2; 3, 4])
=> 3 4
1 2
</PRE>
</DL>
<P>
<DL>
<DT><U>Function File:</U> <B>rot90</B> <I>(<VAR>x</VAR>, <VAR>n</VAR>)</I>
<DD><A NAME="IDX584"></A>
Return a copy of <VAR>x</VAR> with the elements rotated counterclockwise in
90-degree increments. The second argument is optional, and specifies
how many 90-degree rotations are to be applied (the default value is 1).
Negative values of <VAR>n</VAR> rotate the matrix in a clockwise direction.
For example,
</P>
<PRE>
rot90 ([1, 2; 3, 4], -1)
=> 3 1
4 2
</PRE>
<P>
rotates the given matrix clockwise by 90 degrees. The following are all
equivalent statements:
</P>
<PRE>
rot90 ([1, 2; 3, 4], -1)
==
rot90 ([1, 2; 3, 4], 3)
==
rot90 ([1, 2; 3, 4], 7)
</PRE>
</DL>
<P>
<DL>
<DT><U>Function File:</U> <B>reshape</B> <I>(<VAR>a</VAR>, <VAR>m</VAR>, <VAR>n</VAR>)</I>
<DD><A NAME="IDX585"></A>
Return a matrix with <VAR>m</VAR> rows and <VAR>n</VAR> columns whose elements are
taken from the matrix <VAR>a</VAR>. To decide how to order the elements,
Octave pretends that the elements of a matrix are stored in column-major
order (like Fortran arrays are stored).
</P>
<P>
For example,
</P>
<PRE>
reshape ([1, 2, 3, 4], 2, 2)
=> 1 3
2 4
</PRE>
<P>
If the variable <CODE>do_fortran_indexing</CODE> is nonzero, the
<CODE>reshape</CODE> function is equivalent to
</P>
<PRE>
retval = zeros (m, n);
retval (:) = a;
</PRE>
<P>
but it is somewhat less cryptic to use <CODE>reshape</CODE> instead of the
colon operator. Note that the total number of elements in the original
matrix must match the total number of elements in the new matrix.
</DL>
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>shift</B> <I>(<VAR>x</VAR>, <VAR>b</VAR>)</I>
<DD><A NAME="IDX586"></A>
If <VAR>x</VAR> is a vector, perform a circular shift of length <VAR>b</VAR> of
the elements of <VAR>x</VAR>.
</P>
<P>
If <VAR>x</VAR> is a matrix, do the same for each column of <VAR>x</VAR>.
</DL>
</P>
<P>
<DL>
<DT><U>Loadable Function:</U> [<VAR>s</VAR>, <VAR>i</VAR>] = <B>sort</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX587"></A>
Return a copy of <VAR>x</VAR> with the elements elements arranged in
increasing order. For matrices, <CODE>sort</CODE> orders the elements in each
column.
</P>
<P>
For example,
</P>
<PRE>
sort ([1, 2; 2, 3; 3, 1])
=> 1 1
2 2
3 3
</PRE>
<P>
The <CODE>sort</CODE> function may also be used to produce a matrix
containing the original row indices of the elements in the sorted
matrix. For example,
</P>
<PRE>
[s, i] = sort ([1, 2; 2, 3; 3, 1])
=> s = 1 1
2 2
3 3
=> i = 1 3
2 1
3 2
</PRE>
</DL>
<P>
Since the <CODE>sort</CODE> function does not allow sort keys to be specified,
it can't be used to order the rows of a matrix according to the values
of the elements in various columns<A NAME="DOCF6" HREF="octave_foot.html#FOOT6">(6)</A>
in a single call. Using the second output, however, it is possible to
sort all rows based on the values in a given column. Here's an example
that sorts the rows of a matrix based on the values in the second
column.
</P>
<PRE>
a = [1, 2; 2, 3; 3, 1];
[s, i] = sort (a (:, 2));
a (i, :)
=> 3 1
1 2
2 3
</PRE>
<P>
<DL>
<DT><U>Function File:</U> <B>tril</B> <I>(<VAR>a</VAR>, <VAR>k</VAR>)</I>
<DD><A NAME="IDX588"></A>
<DT><U>Function File:</U> <B>triu</B> <I>(<VAR>a</VAR>, <VAR>k</VAR>)</I>
<DD><A NAME="IDX589"></A>
Return a new matrix formed by extracting extract the lower (<CODE>tril</CODE>)
or upper (<CODE>triu</CODE>) triangular part of the matrix <VAR>a</VAR>, and
setting all other elements to zero. The second argument is optional,
and specifies how many diagonals above or below the main diagonal should
also be set to zero.
</P>
<P>
The default value of <VAR>k</VAR> is zero, so that <CODE>triu</CODE> and
<CODE>tril</CODE> normally include the main diagonal as part of the result
matrix.
</P>
<P>
If the value of <VAR>k</VAR> is negative, additional elements above (for
<CODE>tril</CODE>) or below (for <CODE>triu</CODE>) the main diagonal are also
selected.
</P>
<P>
The absolute value of <VAR>k</VAR> must not be greater than the number of
sub- or super-diagonals.
</P>
<P>
For example,
</P>
<PRE>
tril (ones (3), -1)
=> 0 0 0
1 0 0
1 1 0
</PRE>
<P>
and
</P>
<PRE>
tril (ones (3), 1)
=> 1 1 0
1 1 1
1 1 1
</PRE>
</DL>
<P>
<DL>
<DT><U>Function File:</U> <B>vec</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX590"></A>
Return the vector obtained by stacking the columns of the matrix <VAR>x</VAR>
one above the other.
</DL>
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>vech</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX591"></A>
Return the vector obtained by eliminating all supradiagonal elements of
the square matrix <VAR>x</VAR> and stacking the result one column above the
other.
</DL>
</P>
<H2><A NAME="SEC134" HREF="octave_toc.html#TOC134">Special Utility Matrices</A></H2>
<P>
<DL>
<DT><U>Built-in Function:</U> <B>eye</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX592"></A>
<DT><U>Built-in Function:</U> <B>eye</B> <I>(<VAR>n</VAR>, <VAR>m</VAR>)</I>
<DD><A NAME="IDX593"></A>
Return an identity matrix. If invoked with a single scalar argument,
<CODE>eye</CODE> returns a square matrix with the dimension specified. If you
supply two scalar arguments, <CODE>eye</CODE> takes them to be the number of
rows and columns. If given a vector with two elements, <CODE>eye</CODE> uses
the values of the elements as the number of rows and columns,
respectively. For example,
</P>
<PRE>
eye (3)
=> 1 0 0
0 1 0
0 0 1
</PRE>
<P>
The following expressions all produce the same result:
</P>
<PRE>
eye (2)
==
eye (2, 2)
==
eye (size ([1, 2; 3, 4])
</PRE>
<P>
For compatibility with MATLAB, calling <CODE>eye</CODE> with no arguments
is equivalent to calling it with an argument of 1.
</DL>
</P>
<P>
<DL>
<DT><U>Built-in Function:</U> <B>ones</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX594"></A>
<DT><U>Built-in Function:</U> <B>ones</B> <I>(<VAR>n</VAR>, <VAR>m</VAR>)</I>
<DD><A NAME="IDX595"></A>
Return a matrix whose elements are all 1. The arguments are handled
the same as the arguments for <CODE>eye</CODE>.
</P>
<P>
If you need to create a matrix whose values are all the same, you should
use an expression like
</P>
<PRE>
val_matrix = val * ones (n, m)
</PRE>
</DL>
<P>
<DL>
<DT><U>Built-in Function:</U> <B>zeros</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX596"></A>
<DT><U>Built-in Function:</U> <B>zeros</B> <I>(<VAR>n</VAR>, <VAR>m</VAR>)</I>
<DD><A NAME="IDX597"></A>
Return a matrix whose elements are all 0. The arguments are handled
the same as the arguments for <CODE>eye</CODE>.
</DL>
</P>
<P>
<DL>
<DT><U>Loadable Function:</U> <B>rand</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX598"></A>
<DT><U>Loadable Function:</U> <B>rand</B> <I>(<VAR>n</VAR>, <VAR>m</VAR>)</I>
<DD><A NAME="IDX599"></A>
<DT><U>Loadable Function:</U> <B>rand</B> <I>(<CODE>"seed"</CODE>, <VAR>x</VAR>)</I>
<DD><A NAME="IDX600"></A>
Return a matrix with random elements uniformly distributed on the
interval (0, 1). The arguments are handled the same as the arguments
for <CODE>eye</CODE>. In
addition, you can set the seed for the random number generator using the
form
</P>
<PRE>
rand ("seed", <VAR>x</VAR>)
</PRE>
<P>
where <VAR>x</VAR> is a scalar value. If called as
</P>
<PRE>
rand ("seed")
</PRE>
<P>
<CODE>rand</CODE> returns the current value of the seed.
</DL>
</P>
<P>
<DL>
<DT><U>Loadable Function:</U> <B>randn</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX601"></A>
<DT><U>Loadable Function:</U> <B>randn</B> <I>(<VAR>n</VAR>, <VAR>m</VAR>)</I>
<DD><A NAME="IDX602"></A>
<DT><U>Loadable Function:</U> <B>randn</B> <I>(<CODE>"seed"</CODE>, <VAR>x</VAR>)</I>
<DD><A NAME="IDX603"></A>
Return a matrix with normally distributed random elements. The
arguments are handled the same as the arguments for <CODE>eye</CODE>. In
addition, you can set the seed for the random number generator using the
form
</P>
<PRE>
randn ("seed", <VAR>x</VAR>)
</PRE>
<P>
where <VAR>x</VAR> is a scalar value. If called as
</P>
<PRE>
randn ("seed")
</PRE>
<P>
<CODE>randn</CODE> returns the current value of the seed.
</DL>
</P>
<P>
The <CODE>rand</CODE> and <CODE>randn</CODE> functions use separate generators.
This ensures that
</P>
<PRE>
rand ("seed", 13);
randn ("seed", 13);
u = rand (100, 1);
n = randn (100, 1);
</PRE>
<P>
and
</P>
<PRE>
rand ("seed", 13);
randn ("seed", 13);
u = zeros (100, 1);
n = zeros (100, 1);
for i = 1:100
u(i) = rand ();
n(i) = randn ();
end
</PRE>
<P>
produce equivalent results.
</P>
<P>
Normally, <CODE>rand</CODE> and <CODE>randn</CODE> obtain their initial
seeds from the system clock, so that the sequence of random numbers is
not the same each time you run Octave. If you really do need for to
reproduce a sequence of numbers exactly, you can set the seed to a
specific value.
</P>
<P>
If it is invoked without arguments, <CODE>rand</CODE> and <CODE>randn</CODE> return a
single element of a random sequence.
</P>
<P>
The <CODE>rand</CODE> and <CODE>randn</CODE> functions use Fortran code from
RANLIB, a library of fortran routines for random number generation,
compiled by Barry W. Brown and James Lovato of the Department of
Biomathematics at The University of Texas, M.D. Anderson Cancer Center,
Houston, TX 77030.
</P>
<P>
<DL>
<DT><U>Built-in Function:</U> <B>diag</B> <I>(<VAR>v</VAR>, <VAR>k</VAR>)</I>
<DD><A NAME="IDX604"></A>
Return a diagonal matrix with vector <VAR>v</VAR> on diagonal <VAR>k</VAR>. The
second argument is optional. If it is positive, the vector is placed on
the <VAR>k</VAR>-th super-diagonal. If it is negative, it is placed on the
<VAR>-k</VAR>-th sub-diagonal. The default value of <VAR>k</VAR> is 0, and the
vector is placed on the main diagonal. For example,
</P>
<PRE>
diag ([1, 2, 3], 1)
=> 0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0
</PRE>
</DL>
<P>
The functions <CODE>linspace</CODE> and <CODE>logspace</CODE> make it very easy to
create vectors with evenly or logarithmically spaced elements.
See section <A HREF="octave_5.html#SEC51">Ranges</A>.
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>linspace</B> <I>(<VAR>base</VAR>, <VAR>limit</VAR>, <VAR>n</VAR>)</I>
<DD><A NAME="IDX605"></A>
Return a row vector with <VAR>n</VAR> linearly spaced elements between
<VAR>base</VAR> and <VAR>limit</VAR>. The number of elements, <VAR>n</VAR>, must be
greater than 1. The <VAR>base</VAR> and <VAR>limit</VAR> are always included in
the range. If <VAR>base</VAR> is greater than <VAR>limit</VAR>, the elements are
stored in decreasing order. If the number of points is not specified, a
value of 100 is used.
</P>
<P>
The <CODE>linspace</CODE> function always returns a row vector, regardless of
the value of <CODE>prefer_column_vectors</CODE>.
</DL>
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>logspace</B> <I>(<VAR>base</VAR>, <VAR>limit</VAR>, <VAR>n</VAR>)</I>
<DD><A NAME="IDX606"></A>
Similar to <CODE>linspace</CODE> except that the values are logarithmically
spaced from
10^base to 10^limit.
</P>
<P>
If <VAR>limit</VAR> is equal to
pi,
the points are between
10^base and pi,
<EM>not</EM>
10^base and 10^pi,
in order to be compatible with the corresponding MATLAB function.
</DL>
</P>
<P>
<DL>
<DT><U>Built-in Variable:</U> <B>treat_neg_dim_as_zero</B>
<DD><A NAME="IDX607"></A>
If the value of <CODE>treat_neg_dim_as_zero</CODE> is nonzero, expressions
like
</P>
<PRE>
eye (-1)
</PRE>
<P>
produce an empty matrix (i.e., row and column dimensions are zero).
Otherwise, an error message is printed and control is returned to the
top level. The default value is 0.
</DL>
</P>
<H2><A NAME="SEC135" HREF="octave_toc.html#TOC135">Famous Matrices</A></H2>
<P>
The following functions return famous matrix forms.
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>hankel</B> <I>(<VAR>c</VAR>, <VAR>r</VAR>)</I>
<DD><A NAME="IDX608"></A>
Return the Hankel matrix constructed given the first column <VAR>c</VAR>, and
(optionally) the last row <VAR>r</VAR>. If the last element of <VAR>c</VAR> is
not the same as the first element of <VAR>r</VAR>, the last element of
<VAR>c</VAR> is used. If the second argument is omitted, the last row is
taken to be the same as the first column.
</P>
<P>
A Hankel matrix formed from an m-vector <VAR>c</VAR>, and an n-vector
<VAR>r</VAR>, has the elements
</P>
<PRE>
H (i, j) = c (i+j-1), i+j-1 <= m;
H (i, j) = r (i+j-m), otherwise
</PRE>
</DL>
<P>
<DL>
<DT><U>Function File:</U> <B>hilb</B> <I>(<VAR>n</VAR>)</I>
<DD><A NAME="IDX609"></A>
Return the Hilbert matrix of order <VAR>n</VAR>. The
i, j
element of a Hilbert matrix is defined as
</P>
<PRE>
H (i, j) = 1 / (i + j - 1)
</PRE>
</DL>
<P>
<DL>
<DT><U>Function File:</U> <B>invhilb</B> <I>(<VAR>n</VAR>)</I>
<DD><A NAME="IDX610"></A>
Return the inverse of a Hilbert matrix of order <VAR>n</VAR>. This is exact.
Compare with the numerical calculation of <CODE>inverse (hilb (n))</CODE>,
which suffers from the ill-conditioning of the Hilbert matrix, and the
finite precision of your computer's floating point arithmetic.
</DL>
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>sylvester_matrix</B> <I>(<VAR>k</VAR>)</I>
<DD><A NAME="IDX611"></A>
Return the Sylvester matrix of order
n = 2^k.
</DL>
</P>
<P>
<DL>
<DT><U>Function File:</U> <B>toeplitz</B> <I>(<VAR>c</VAR>, <VAR>r</VAR>)</I>
<DD><A NAME="IDX612"></A>
Return the Toeplitz matrix constructed given the first column <VAR>c</VAR>,
and (optionally) the first row <VAR>r</VAR>. If the first element of <VAR>c</VAR>
is not the same as the first element of <VAR>r</VAR>, the first element of
<VAR>c</VAR> is used. If the second argument is omitted, the first row is
taken to be the same as the first column.
</P>
<P>
A square Toeplitz matrix has the form
</P>
<PRE>
c(0) r(1) r(2) ... r(n)
c(1) c(0) r(1) r(n-1)
c(2) c(1) c(0) r(n-2)
. .
. .
. .
c(n) c(n-1) c(n-2) ... c(0)
</PRE>
</DL>
<P>
<DL>
<DT><U>Function File:</U> <B>vander</B> <I>(<VAR>c</VAR>)</I>
<DD><A NAME="IDX613"></A>
Return the Vandermonde matrix whose next to last column is <VAR>c</VAR>.
</P>
<P>
A Vandermonde matrix has the form
</P>
<PRE>
c(0)^n ... c(0)^2 c(0) 1
c(1)^n ... c(1)^2 c(1) 1
. . . .
. . . .
. . . .
c(n)^n ... c(n)^2 c(n) 1
</PRE>
</DL>
<P><HR><P>
Go to the <A HREF="octave_1.html">first</A>, <A HREF="octave_15.html">previous</A>, <A HREF="octave_17.html">next</A>, <A HREF="octave_40.html">last</A> section, <A HREF="octave_toc.html">table of contents</A>.
</BODY>
</HTML>
|