File: octave_21.html

package info (click to toggle)
octave 2.0.16-2
  • links: PTS
  • area: main
  • in suites: potato
  • size: 26,276 kB
  • ctags: 16,450
  • sloc: cpp: 67,548; fortran: 41,514; ansic: 26,682; sh: 7,361; makefile: 4,077; lex: 2,008; yacc: 1,849; lisp: 1,702; perl: 1,676; exp: 123
file content (233 lines) | stat: -rw-r--r-- 6,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.51
     from ./octave.texi on 18 June 1999 -->

<TITLE>GNU Octave - Differential Equations</TITLE>
</HEAD>
<BODY>
Go to the <A HREF="octave_1.html">first</A>, <A HREF="octave_20.html">previous</A>, <A HREF="octave_22.html">next</A>, <A HREF="octave_40.html">last</A> section, <A HREF="octave_toc.html">table of contents</A>.
<P><HR><P>


<H1><A NAME="SEC151" HREF="octave_toc.html#TOC151">Differential Equations</A></H1>

<P>
Octave has two built-in functions for solving differential equations.
Both are based on reliable ODE solvers written in Fortran.

</P>

<P>
<A NAME="IDX748"></A>
<A NAME="IDX749"></A>
<A NAME="IDX750"></A>

</P>


<H2><A NAME="SEC152" HREF="octave_toc.html#TOC152">Ordinary Differential Equations</A></H2>

<P>
The function <CODE>lsode</CODE> can be used Solve ODEs of the form

</P>

<PRE>
dx
-- = f (x, t)
dt
</PRE>

<P>
using Hindmarsh's ODE solver LSODE.

</P>
<P>
<DL>
<DT><U>Loadable Function:</U>  <B>lsode</B> <I>(<VAR>fcn</VAR>, <VAR>x0</VAR>, <VAR>t</VAR>, <VAR>t_crit</VAR>)</I>
<DD><A NAME="IDX751"></A>
Return a matrix of <VAR>x</VAR> as a function of <VAR>t</VAR>, given the initial
state of the system <VAR>x0</VAR>.  Each row in the result matrix corresponds
to one of the elements in the vector <VAR>t</VAR>.  The first element of
<VAR>t</VAR> corresponds to the initial state <VAR>x0</VAR>, so that the first row
of the output is <VAR>x0</VAR>.

</P>
<P>
The first argument, <VAR>fcn</VAR>, is a string that names the function to
call to compute the vector of right hand sides for the set of equations.
It must have the form

</P>

<PRE>
<VAR>xdot</VAR> = f (<VAR>x</VAR>, <VAR>t</VAR>)
</PRE>

<P>
where <VAR>xdot</VAR> and <VAR>x</VAR> are vectors and <VAR>t</VAR> is a scalar.

</P>
<P>
The fourth argument is optional, and may be used to specify a set of
times that the ODE solver should not integrate past.  It is useful for
avoiding difficulties with singularities and points where there is a
discontinuity in the derivative.
</DL>

</P>
<P>
Here is an example of solving a set of three differential equations using
<CODE>lsode</CODE>.  Given the function

</P>
<P>
<A NAME="IDX752"></A>

</P>

<PRE>
function xdot = f (x, t)

  xdot = zeros (3,1);

  xdot(1) = 77.27 * (x(2) - x(1)*x(2) + x(1) \
            - 8.375e-06*x(1)^2);
  xdot(2) = (x(3) - x(1)*x(2) - x(2)) / 77.27;
  xdot(3) = 0.161*(x(1) - x(3));

endfunction
</PRE>

<P>
and the initial condition <CODE>x0 = [ 4; 1.1; 4 ]</CODE>, the set of
equations can be integrated using the command

</P>

<PRE>
t = linspace (0, 500, 1000);

y = lsode ("f", x0, t);
</PRE>

<P>
If you try this, you will see that the value of the result changes
dramatically between <VAR>t</VAR> = 0 and 5, and again around <VAR>t</VAR> = 305.
A more efficient set of output points might be

</P>

<PRE>
t = [0, logspace (-1, log10(303), 150), \
        logspace (log10(304), log10(500), 150)];
</PRE>

<P>
<DL>
<DT><U>Loadable Function:</U>  <B>lsode_options</B> <I>(<VAR>opt</VAR>, <VAR>val</VAR>)</I>
<DD><A NAME="IDX753"></A>
When called with two arguments, this function allows you set options
parameters for the function <CODE>lsode</CODE>.  Given one argument,
<CODE>lsode_options</CODE> returns the value of the corresponding option.  If
no arguments are supplied, the names of all the available options and
their current values are displayed.
</DL>

</P>
<P>
See Alan C. Hindmarsh, <CITE>ODEPACK, A Systematized Collection of ODE
Solvers</CITE>, in Scientific Computing, R. S. Stepleman, editor, (1983) for
more information about the inner workings of <CODE>lsode</CODE>.

</P>


<H2><A NAME="SEC153" HREF="octave_toc.html#TOC153">Differential-Algebraic Equations</A></H2>

<P>
The function <CODE>dassl</CODE> can be used Solve DAEs of the form

</P>

<PRE>
0 = f (x-dot, x, t),    x(t=0) = x_0, x-dot(t=0) = x-dot_0
</PRE>

<P>
using Petzold's DAE solver DASSL.

</P>
<P>
<DL>
<DT><U>Loadable Function:</U> [<VAR>x</VAR>, <VAR>xdot</VAR>] = <B>dassl</B> <I>(<VAR>fcn</VAR>, <VAR>x0</VAR>, <VAR>xdot0</VAR>, <VAR>t</VAR>, <VAR>t_crit</VAR>)</I>
<DD><A NAME="IDX754"></A>
Return a matrix of states and their first derivatives with respect to
<VAR>t</VAR>.  Each row in the result matrices correspond to one of the
elements in the vector <VAR>t</VAR>.  The first element of <VAR>t</VAR>
corresponds to the initial state <VAR>x0</VAR> and derivative <VAR>xdot0</VAR>, so
that the first row of the output <VAR>x</VAR> is <VAR>x0</VAR> and the first row
of the output <VAR>xdot</VAR> is <VAR>xdot0</VAR>.

</P>
<P>
The first argument, <VAR>fcn</VAR>, is a string that names the function to
call to compute the vector of residuals for the set of equations.
It must have the form

</P>

<PRE>
<VAR>res</VAR> = f (<VAR>x</VAR>, <VAR>xdot</VAR>, <VAR>t</VAR>)
</PRE>

<P>
where <VAR>x</VAR>, <VAR>xdot</VAR>, and <VAR>res</VAR> are vectors, and <VAR>t</VAR> is a
scalar.

</P>
<P>
The second and third arguments to <CODE>dassl</CODE> specify the initial
condition of the states and their derivatives, and the fourth argument
specifies a vector of output times at which the solution is desired, 
including the time corresponding to the initial condition.

</P>
<P>
The set of initial states and derivatives are not strictly required to
be consistent.  In practice, however, DASSL is not very good at
determining a consistent set for you, so it is best if you ensure that
the initial values result in the function evaluating to zero.

</P>
<P>
The fifth argument is optional, and may be used to specify a set of
times that the DAE solver should not integrate past.  It is useful for
avoiding difficulties with singularities and points where there is a
discontinuity in the derivative.
</DL>

</P>
<P>
<DL>
<DT><U>Loadable Function:</U>  <B>dassl_options</B> <I>(<VAR>opt</VAR>, <VAR>val</VAR>)</I>
<DD><A NAME="IDX755"></A>
When called with two arguments, this function allows you set options
parameters for the function <CODE>lsode</CODE>.  Given one argument,
<CODE>dassl_options</CODE> returns the value of the corresponding option.  If
no arguments are supplied, the names of all the available options and
their current values are displayed.
</DL>

</P>
<P>
See K. E. Brenan, et al., <CITE>Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations</CITE>, North-Holland (1989) for
more information about the implementation of DASSL.

</P>
<P><HR><P>
Go to the <A HREF="octave_1.html">first</A>, <A HREF="octave_20.html">previous</A>, <A HREF="octave_22.html">next</A>, <A HREF="octave_40.html">last</A> section, <A HREF="octave_toc.html">table of contents</A>.
</BODY>
</HTML>