File: octave_23.html

package info (click to toggle)
octave 2.0.16-2
  • links: PTS
  • area: main
  • in suites: potato
  • size: 26,276 kB
  • ctags: 16,450
  • sloc: cpp: 67,548; fortran: 41,514; ansic: 26,682; sh: 7,361; makefile: 4,077; lex: 2,008; yacc: 1,849; lisp: 1,702; perl: 1,676; exp: 123
file content (153 lines) | stat: -rw-r--r-- 4,168 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.51
     from ./octave.texi on 18 June 1999 -->

<TITLE>GNU Octave - Statistics</TITLE>
</HEAD>
<BODY>
Go to the <A HREF="octave_1.html">first</A>, <A HREF="octave_22.html">previous</A>, <A HREF="octave_24.html">next</A>, <A HREF="octave_40.html">last</A> section, <A HREF="octave_toc.html">table of contents</A>.
<P><HR><P>


<H1><A NAME="SEC158" HREF="octave_toc.html#TOC158">Statistics</A></H1>

<P>
I hope that someday Octave will include more statistics functions.  If
you would like to help improve Octave in this area, please contact
@email{bug-octave@bevo.che.wisc.edu}.

</P>
<P>
<DL>
<DT><U>Function File:</U>  <B>mean</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX764"></A>
If <VAR>x</VAR> is a vector, compute the mean of the elements of <VAR>x</VAR>

</P>

<PRE>
mean (x) = SUM_i x(i) / N
</PRE>

<P>
If <VAR>x</VAR> is a matrix, compute the mean for each column and return them
in a row vector.
</DL>

</P>
<P>
<DL>
<DT><U>Function File:</U>  <B>median</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX765"></A>
If <VAR>x</VAR> is a vector, compute the median value of the elements of
<VAR>x</VAR>.

</P>

<PRE>
            x(ceil(N/2)),             N odd
median(x) = 
            (x(N/2) + x((N/2)+1))/2,  N even
</PRE>

<P>
If <VAR>x</VAR> is a matrix, compute the median value for each
column and return them in a row vector.
</DL>

</P>
<P>
<DL>
<DT><U>Function File:</U>  <B>std</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX766"></A>
If <VAR>x</VAR> is a vector, compute the standard deviation of the elements
of <VAR>x</VAR>.

</P>

<PRE>
std (x) = sqrt (sumsq (x - mean (x)) / (n - 1))
</PRE>

<P>
If <VAR>x</VAR> is a matrix, compute the standard deviation for
each column and return them in a row vector.
</DL>

</P>
<P>
<DL>
<DT><U>Function File:</U>  <B>cov</B> <I>(<VAR>x</VAR>, <VAR>y</VAR>)</I>
<DD><A NAME="IDX767"></A>
If each row of <VAR>x</VAR> and <VAR>y</VAR> is an observation and each column is
a variable, the (<VAR>i</VAR>,<VAR>j</VAR>)-th entry of
<CODE>cov (<VAR>x</VAR>, <VAR>y</VAR>)</CODE> is the covariance between the <VAR>i</VAR>-th
variable in <VAR>x</VAR> and the <VAR>j</VAR>-th variable in <VAR>y</VAR>.  If called
with one argument, compute <CODE>cov (<VAR>x</VAR>, <VAR>x</VAR>)</CODE>.
</DL>

</P>
<P>
<DL>
<DT><U>Function File:</U>  <B>corrcoef</B> <I>(<VAR>x</VAR>, <VAR>y</VAR>)</I>
<DD><A NAME="IDX768"></A>
If each row of <VAR>x</VAR> and <VAR>y</VAR> is an observation and each column is
a variable, the (<VAR>i</VAR>,<VAR>j</VAR>)-th entry of
<CODE>corrcoef (<VAR>x</VAR>, <VAR>y</VAR>)</CODE> is the correlation between the
<VAR>i</VAR>-th variable in <VAR>x</VAR> and the <VAR>j</VAR>-th variable in <VAR>y</VAR>.
If called with one argument, compute <CODE>corrcoef (<VAR>x</VAR>, <VAR>x</VAR>)</CODE>.
</DL>

</P>
<P>
<DL>
<DT><U>Function File:</U>  <B>kurtosis</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX769"></A>
If <VAR>x</VAR> is a vector of length <VAR>N</VAR>, return the kurtosis

</P>

<PRE>
kurtosis (x) = N^(-1) std(x)^(-4) sum ((x - mean(x)).^4) - 3
</PRE>

<P>
of <VAR>x</VAR>.  If <VAR>x</VAR> is a matrix, return the row vector containing
the kurtosis of each column.
</DL>

</P>
<P>
<DL>
<DT><U>Function File:</U>  <B>mahalanobis</B> <I>(<VAR>x</VAR>, <VAR>y</VAR>)</I>
<DD><A NAME="IDX770"></A>
Return the Mahalanobis' D-square distance between the multivariate
samples <VAR>x</VAR> and <VAR>y</VAR>, which must have the same number of
components (columns), but may have a different number of observations
(rows).
</DL>

</P>
<P>
<DL>
<DT><U>Function File:</U>  <B>skewness</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX771"></A>
If <VAR>x</VAR> is a vector of length <VAR>N</VAR>, return the skewness

</P>

<PRE>
skewness (x) = N^(-1) std(x)^(-3) sum ((x - mean(x)).^3)
</PRE>

<P>
of <VAR>x</VAR>.  If <VAR>x</VAR> is a matrix, return the row vector containing
the skewness of each column.
</DL>

</P>
<P><HR><P>
Go to the <A HREF="octave_1.html">first</A>, <A HREF="octave_22.html">previous</A>, <A HREF="octave_24.html">next</A>, <A HREF="octave_40.html">last</A> section, <A HREF="octave_toc.html">table of contents</A>.
</BODY>
</HTML>