File: octave_5.html

package info (click to toggle)
octave 2.0.16-2
  • links: PTS
  • area: main
  • in suites: potato
  • size: 26,276 kB
  • ctags: 16,450
  • sloc: cpp: 67,548; fortran: 41,514; ansic: 26,682; sh: 7,361; makefile: 4,077; lex: 2,008; yacc: 1,849; lisp: 1,702; perl: 1,676; exp: 123
file content (712 lines) | stat: -rw-r--r-- 15,861 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.51
     from ./octave.texi on 18 June 1999 -->

<TITLE>GNU Octave - Numeric Data Types</TITLE>
</HEAD>
<BODY>
Go to the <A HREF="octave_1.html">first</A>, <A HREF="octave_4.html">previous</A>, <A HREF="octave_6.html">next</A>, <A HREF="octave_40.html">last</A> section, <A HREF="octave_toc.html">table of contents</A>.
<P><HR><P>


<H1><A NAME="SEC48" HREF="octave_toc.html#TOC48">Numeric Data Types</A></H1>
<P>
<A NAME="IDX140"></A>
<A NAME="IDX141"></A>

</P>
<P>
A <STRONG>numeric constant</STRONG> may be a scalar, a vector, or a matrix, and it
may contain complex values.

</P>
<P>
The simplest form of a numeric constant, a scalar, is a single number
that can be an integer, a decimal fraction, a number in scientific
(exponential) notation, or a complex number.  Note that all numeric
constants are represented within Octave in double-precision floating
point format (complex constants are stored as pairs of double-precision
floating point values).  Here are some examples of real-valued numeric
constants, which all have the same value:

</P>

<PRE>
105
1.05e+2
1050e-1
</PRE>

<P>
To specify complex constants, you can write an expression of the form

</P>

<PRE>
3 + 4i
3.0 + 4.0i
0.3e1 + 40e-1i
</PRE>

<P>
all of which are equivalent.  The letter <SAMP>`i'</SAMP> in the previous example
stands for the pure imaginary constant, defined as
  <CODE>sqrt (-1)</CODE>.

</P>
<P>
For Octave to recognize a value as the imaginary part of a complex
constant, a space must not appear between the number and the <SAMP>`i'</SAMP>.
If it does, Octave will print an error message, like this:

</P>

<PRE>
octave:13&#62; 3 + 4 i

parse error:

  3 + 4 i
        ^
</PRE>

<P>
You may also use <SAMP>`j'</SAMP>, <SAMP>`I'</SAMP>, or <SAMP>`J'</SAMP> in place of the
<SAMP>`i'</SAMP> above.  All four forms are equivalent.

</P>



<H2><A NAME="SEC49" HREF="octave_toc.html#TOC49">Matrices</A></H2>
<P>
<A NAME="IDX142"></A>

</P>
<P>
<A NAME="IDX143"></A>
<A NAME="IDX144"></A>
<A NAME="IDX145"></A>
<A NAME="IDX146"></A>

</P>
<P>
It is easy to define a matrix of values in Octave.  The size of the
matrix is determined automatically, so it is not necessary to explicitly
state the dimensions.  The expression

</P>

<PRE>
a = [1, 2; 3, 4]
</PRE>

<P>
results in the matrix

</P>

<PRE>

        /      \
        | 1  2 |
  a  =  |      |
        | 3  4 |
        \      /

</PRE>

<P>
Elements of a matrix may be arbitrary expressions, provided that the
dimensions all make sense when combining the various pieces.  For
example, given the above matrix, the expression

</P>

<PRE>
[ a, a ]
</PRE>

<P>
produces the matrix

</P>

<PRE>
ans =

  1  2  1  2
  3  4  3  4
</PRE>

<P>
but the expression

</P>

<PRE>
[ a, 1 ]
</PRE>

<P>
produces the error

</P>

<PRE>
error: number of rows must match near line 13, column 6
</PRE>

<P>
(assuming that this expression was entered as the first thing on line
13, of course).

</P>
<P>
Inside the square brackets that delimit a matrix expression, Octave
looks at the surrounding context to determine whether spaces and newline
characters should be converted into element and row separators, or
simply ignored, so commands like

</P>

<PRE>
[ linspace (1, 2) ]
</PRE>

<P>
and

</P>

<PRE>
a = [ 1 2
      3 4 ]
</PRE>

<P>
will work.  However, some possible sources of confusion remain.  For
example, in the expression

</P>

<PRE>
[ 1 - 1 ]
</PRE>

<P>
the <SAMP>`-'</SAMP> is treated as a binary operator and the result is the
scalar 0, but in the expression

</P>

<PRE>
[ 1 -1 ]
</PRE>

<P>
the <SAMP>`-'</SAMP> is treated as a unary operator and the result is the
vector <CODE>[ 1, -1 ]</CODE>.

</P>
<P>
Given <CODE>a = 1</CODE>, the expression

</P>

<PRE>
[ 1 a' ]
</PRE>

<P>
results in the single quote character <SAMP>`''</SAMP> being treated as a
transpose operator and the result is the vector <CODE>[ 1, 1 ]</CODE>, but the
expression

</P>

<PRE>
[ 1 a ' ]
</PRE>

<P>
produces the error message

</P>

<PRE>
error: unterminated string constant
</PRE>

<P>
because to not do so would make it impossible to correctly parse the
valid expression

</P>

<PRE>
[ a 'foo' ]
</PRE>

<P>
For clarity, it is probably best to always use commas and semicolons to
separate matrix elements and rows.  It is possible to enforce this style
by setting the built-in variable <CODE>whitespace_in_literal_matrix</CODE> to
<CODE>"ignore"</CODE>.

</P>
<P>
<DL>
<DT><U>Built-in Variable:</U> <B>whitespace_in_literal_matrix</B>
<DD><A NAME="IDX147"></A>
This variable allows some control over how Octave decides to convert
spaces to commas and semicolons in matrix expressions like
<CODE>[m (1)]</CODE> or

</P>

<PRE>
[ 1, 2,
  3, 4 ]
</PRE>

<P>
If the value of <CODE>whitespace_in_literal_matrix</CODE> is <CODE>"ignore"</CODE>,
Octave will never insert a comma or a semicolon in a literal matrix
list.  For example, the expression <CODE>[1 2]</CODE> will result in an error
instead of being treated the same as <CODE>[1, 2]</CODE>, and the expression

</P>

<PRE>
[ 1, 2,
  3, 4 ]
</PRE>

<P>
will result in the vector <CODE>[ 1, 2, 3, 4 ]</CODE> instead of a matrix.

</P>
<P>
If the value of <CODE>whitespace_in_literal_matrix</CODE> is <CODE>"traditional"</CODE>,
Octave will convert spaces to a comma between identifiers and <SAMP>`('</SAMP>.  For
example, given the matrix

</P>

<PRE>
m = [3 2]
</PRE>

<P>
the expression

</P>

<PRE>
[m (1)]
</PRE>

<P>
will be parsed as

</P>

<PRE>
[m, (1)]
</PRE>

<P>
and will result in

</P>

<PRE>
[3 2 1]
</PRE>

<P>
and the expression

</P>

<PRE>
[ 1, 2,
  3, 4 ]
</PRE>

<P>
will result in a matrix because the newline character is converted to a
semicolon (row separator) even though there is a comma at the end of the
first line (trailing commas or semicolons are ignored).  This is
apparently how MATLAB behaves.

</P>
<P>
Any other value for <CODE>whitespace_in_literal_matrix</CODE> results in behavior
that is the same as traditional, except that Octave does not
convert spaces to a comma between identifiers and <SAMP>`('</SAMP>.  For
example, the expression

</P>

<PRE>
[m (1)]
</PRE>

<P>
will produce <SAMP>`3'</SAMP>.  This is the way Octave has always behaved.
</DL>

</P>
<P>
When you type a matrix or the name of a variable whose value is a
matrix, Octave responds by printing the matrix in with neatly aligned
rows and columns.  If the rows of the matrix are too large to fit on the
screen, Octave splits the matrix and displays a header before each
section to indicate which columns are being displayed.  You can use the
following variables to control the format of the output.

</P>
<P>
<DL>
<DT><U>Built-in Variable:</U> <B>output_max_field_width</B>
<DD><A NAME="IDX148"></A>
This variable specifies the maximum width of a numeric output field.
The default value is 10.
</DL>

</P>
<P>
<DL>
<DT><U>Built-in Variable:</U> <B>output_precision</B>
<DD><A NAME="IDX149"></A>
This variable specifies the minimum number of significant figures to
display for numeric output.  The default value is 5.
</DL>

</P>
<P>
It is possible to achieve a wide range of output styles by using
different values of <CODE>output_precision</CODE> and
<CODE>output_max_field_width</CODE>.  Reasonable combinations can be set using
the <CODE>format</CODE> function.  See section <A HREF="octave_14.html#SEC101">Basic Input and Output</A>.

</P>
<P>
<DL>
<DT><U>Built-in Variable:</U> <B>split_long_rows</B>
<DD><A NAME="IDX150"></A>
For large matrices, Octave may not be able to display all the columns of
a given row on one line of your screen.  This can result in missing
information or output that is nearly impossible to decipher, depending
on whether your terminal truncates or wraps long lines.

</P>
<P>
If the value of <CODE>split_long_rows</CODE> is nonzero, Octave will display
the matrix in a series of smaller pieces, each of which can fit within
the limits of your terminal width.  Each set of rows is labeled so that
you can easily see which columns are currently being displayed.
For example:

</P>

<PRE>
octave:13&#62; rand (2,10)
ans =

 Columns 1 through 6:

  0.75883  0.93290  0.40064  0.43818  0.94958  0.16467
  0.75697  0.51942  0.40031  0.61784  0.92309  0.40201

 Columns 7 through 10:

  0.90174  0.11854  0.72313  0.73326
  0.44672  0.94303  0.56564  0.82150
</PRE>

<P>
The default value of <CODE>split_long_rows</CODE> is nonzero.
</DL>

</P>
<P>
Octave automatically switches to scientific notation when values become
very large or very small.  This guarantees that you will see several
significant figures for every value in a matrix.  If you would prefer to
see all values in a matrix printed in a fixed point format, you can set
the built-in variable <CODE>fixed_point_format</CODE> to a nonzero value.  But
doing so is not recommended, because it can produce output that can
easily be misinterpreted.

</P>
<P>
<DL>
<DT><U>Built-in Variable:</U> <B>fixed_point_format</B>
<DD><A NAME="IDX151"></A>
If the value of this variable is nonzero, Octave will scale all values
in a matrix so that the largest may be written with one leading digit.
The scaling factor is printed on the first line of output.  For example,

</P>

<PRE>
octave:1&#62; logspace (1, 7, 5)'
ans =

  1.0e+07  *

  0.00000
  0.00003
  0.00100
  0.03162
  1.00000
</PRE>

<P>
Notice that first value appears to be zero when it is actually 1.  For
this reason, you should be careful when setting
<CODE>fixed_point_format</CODE> to a nonzero value.

</P>
<P>
The default value of <CODE>fixed_point_format</CODE> is 0.
</DL>

</P>



<H3><A NAME="SEC50" HREF="octave_toc.html#TOC50">Empty Matrices</A></H3>

<P>
A matrix may have one or both dimensions zero, and operations on empty
matrices are handled as described by Carl de Boor in <CITE>An Empty
Exercise</CITE>, SIGNUM, Volume 25, pages 2--6, 1990 and C. N. Nett and W. M.
Haddad, in <CITE>A System-Theoretic Appropriate Realization of the Empty
Matrix Concept</CITE>, IEEE Transactions on Automatic Control, Volume 38,
Number 5, May 1993.
Briefly, given a scalar <VAR>s</VAR>, an <VAR>m</VAR> by
<VAR>n</VAR> matrix <CODE>M(mxn)</CODE>, and an <VAR>m</VAR> by <VAR>n</VAR> empty matrix
<CODE>[](mxn)</CODE> (with either one or both dimensions equal to zero), the
following are true:

</P>

<PRE>
s * [](mxn) = [](mxn) * s = [](mxn)

    [](mxn) + [](mxn) = [](mxn)

    [](0xm) *  M(mxn) = [](0xn)

     M(mxn) * [](nx0) = [](mx0)

    [](mx0) * [](0xn) =  0(mxn)
</PRE>

<P>
By default, dimensions of the empty matrix are printed along with the
empty matrix symbol, <SAMP>`[]'</SAMP>.  The built-in variable
<CODE>print_empty_dimensions</CODE> controls this behavior.

</P>
<P>
<DL>
<DT><U>Built-in Variable:</U> <B>print_empty_dimensions</B>
<DD><A NAME="IDX152"></A>
If the value of <CODE>print_empty_dimensions</CODE> is nonzero, the
dimensions of empty matrices are printed along with the empty matrix
symbol, <SAMP>`[]'</SAMP>.  For example, the expression

</P>

<PRE>
zeros (3, 0)
</PRE>

<P>
will print

</P>

<PRE>
ans = [](3x0)
</PRE>

</DL>

<P>
Empty matrices may also be used in assignment statements as a convenient
way to delete rows or columns of matrices.
See section <A HREF="octave_9.html#SEC74">Assignment Expressions</A>.

</P>
<P>
Octave will normally issue a warning if it finds an empty matrix in the
list of elements that make up another matrix.  You can use the variable
<CODE>empty_list_elements_ok</CODE> to suppress the warning or to treat it as
an error.

</P>
<P>
<DL>
<DT><U>Built-in Variable:</U> <B>empty_list_elements_ok</B>
<DD><A NAME="IDX153"></A>
This variable controls whether Octave ignores empty matrices in a matrix
list.

</P>
<P>
For example, if the value of <CODE>empty_list_elements_ok</CODE> is
nonzero, Octave will ignore the empty matrices in the expression

</P>

<PRE>
a = [1, [], 3, [], 5]
</PRE>

<P>
and the variable <CODE>a</CODE> will be assigned the value <CODE>[ 1, 3, 5 ]</CODE>.

</P>
<P>
The default value is <CODE>"warn"</CODE>.
</DL>

</P>
<P>
When Octave parses a matrix expression, it examines the elements of the
list to determine whether they are all constants.  If they are, it
replaces the list with a single matrix constant.

</P>
<P>
<DL>
<DT><U>Built-in Variable:</U> <B>propagate_empty_matrices</B>
<DD><A NAME="IDX154"></A>
If the value of <CODE>propagate_empty_matrices</CODE> is nonzero,
functions like <CODE>inverse</CODE> and <CODE>svd</CODE> will return an empty matrix
if they are given one as an argument.  The default value is 1.
</DL>

</P>


<H2><A NAME="SEC51" HREF="octave_toc.html#TOC51">Ranges</A></H2>
<P>
<A NAME="IDX155"></A>
<A NAME="IDX156"></A>

</P>
<P>
<A NAME="IDX157"></A>

</P>
<P>
A <STRONG>range</STRONG> is a convenient way to write a row vector with evenly
spaced elements.  A range expression is defined by the value of the first
element in the range, an optional value for the increment between
elements, and a maximum value which the elements of the range will not
exceed.  The base, increment, and limit are separated by colons (the
<SAMP>`:'</SAMP> character) and may contain any arithmetic expressions and
function calls.  If the increment is omitted, it is assumed to be 1.
For example, the range

</P>

<PRE>
1 : 5
</PRE>

<P>
defines the set of values <SAMP>`[ 1, 2, 3, 4, 5 ]'</SAMP>, and the range

</P>

<PRE>
1 : 3 : 5
</PRE>

<P>
defines the set of values <SAMP>`[ 1, 4 ]'</SAMP>.

</P>
<P>
Although a range constant specifies a row vector, Octave does <EM>not</EM>
convert range constants to vectors unless it is necessary to do so.
This allows you to write a constant like <SAMP>`1 : 10000'</SAMP> without using
80,000 bytes of storage on a typical 32-bit workstation.

</P>
<P>
Note that the upper (or lower, if the increment is negative) bound on
the range is not always included in the set of values, and that ranges
defined by floating point values can produce surprising results because
Octave uses floating point arithmetic to compute the values in the
range.  If it is important to include the endpoints of a range and the
number of elements is known, you should use the <CODE>linspace</CODE> function
instead (see section <A HREF="octave_16.html#SEC134">Special Utility Matrices</A>).

</P>
<P>
When Octave parses a range expression, it examines the elements of the
expression to determine whether they are all constants.  If they are, it
replaces the range expression with a single range constant.

</P>


<H2><A NAME="SEC52" HREF="octave_toc.html#TOC52">Predicates for Numeric Objects</A></H2>

<P>
<DL>
<DT><U>Function File:</U>  <B>is_matrix</B> <I>(<VAR>a</VAR>)</I>
<DD><A NAME="IDX158"></A>
Return 1 if <VAR>a</VAR> is a matrix.  Otherwise, return 0.
</DL>

</P>
<P>
<DL>
<DT><U>Function File:</U>  <B>is_vector</B> <I>(<VAR>a</VAR>)</I>
<DD><A NAME="IDX159"></A>
Return 1 if <VAR>a</VAR> is a vector.  Otherwise, return 0.
</DL>

</P>
<P>
<DL>
<DT><U>Function File:</U>  <B>is_scalar</B> <I>(<VAR>a</VAR>)</I>
<DD><A NAME="IDX160"></A>
Return 1 if <VAR>a</VAR> is a scalar.  Otherwise, return 0.
</DL>

</P>
<P>
<DL>
<DT><U>Function File:</U>  <B>is_square</B> <I>(<VAR>x</VAR>)</I>
<DD><A NAME="IDX161"></A>
If <VAR>x</VAR> is a square matrix, then return the dimension of <VAR>x</VAR>.
Otherwise, return 0.
</DL>

</P>
<P>
<DL>
<DT><U>Function File:</U>  <B>is_symmetric</B> <I>(<VAR>x</VAR>, <VAR>tol</VAR>)</I>
<DD><A NAME="IDX162"></A>
If <VAR>x</VAR> is symmetric within the tolerance specified by <VAR>tol</VAR>, 
then return the dimension of <VAR>x</VAR>.  Otherwise, return 0.  If
<VAR>tol</VAR> is omitted, use a tolerance equal to the machine precision.
</DL>

</P>
<P><HR><P>
Go to the <A HREF="octave_1.html">first</A>, <A HREF="octave_4.html">previous</A>, <A HREF="octave_6.html">next</A>, <A HREF="octave_40.html">last</A> section, <A HREF="octave_toc.html">table of contents</A>.
</BODY>
</HTML>