File: octave_7.html

package info (click to toggle)
octave 2.0.16-2
  • links: PTS
  • area: main
  • in suites: potato
  • size: 26,276 kB
  • ctags: 16,450
  • sloc: cpp: 67,548; fortran: 41,514; ansic: 26,682; sh: 7,361; makefile: 4,077; lex: 2,008; yacc: 1,849; lisp: 1,702; perl: 1,676; exp: 123
file content (246 lines) | stat: -rw-r--r-- 4,826 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.51
     from ./octave.texi on 18 June 1999 -->

<TITLE>GNU Octave - Data Structures</TITLE>
</HEAD>
<BODY>
Go to the <A HREF="octave_1.html">first</A>, <A HREF="octave_6.html">previous</A>, <A HREF="octave_8.html">next</A>, <A HREF="octave_40.html">last</A> section, <A HREF="octave_toc.html">table of contents</A>.
<P><HR><P>


<H1><A NAME="SEC58" HREF="octave_toc.html#TOC58">Data Structures</A></H1>
<P>
<A NAME="IDX207"></A>
<A NAME="IDX208"></A>

</P>
<P>
Octave includes support for organizing data in structures.  The current
implementation uses an associative array with indices limited to
strings, but the syntax is more like C-style structures.  Here are some
examples of using data structures in Octave.

</P>
<P>
Elements of structures can be of any value type.  For example, the three
expressions

</P>

<PRE>
x.a = 1
x.b = [1, 2; 3, 4]
x.c = "string"
</PRE>

<P>
create a structure with three elements.  To print the value of the
structure, you can type its name, just as for any other variable:

</P>

<PRE>
octave:2&#62; x
x =
{
  a = 1
  b =

    1  2
    3  4

  c = string
}
</PRE>

<P>
Note that Octave may print the elements in any order.

</P>
<P>
Structures may be copied.

</P>

<PRE>
octave:1&#62; y = x
y =
{
  a = 1
  b =

    1  2
    3  4

  c = string
}
</PRE>

<P>
Since structures are themselves values, structure elements may reference
other structures.  The following statements change the value of the
element <CODE>b</CODE> of the structure <CODE>x</CODE> to be a data structure
containing the single element <CODE>d</CODE>, which has a value of 3.

</P>

<PRE>
octave:1&#62; x.b.d = 3
x.b.d = 3
octave:2&#62; x.b
ans =
{
  d = 3
}
octave:3&#62; x
x =
{
  a = 1
  b =
  {
    d = 3
  }

  c = string
}
</PRE>

<P>
Note that when Octave prints the value of a structure that contains
other structures, only a few levels are displayed.  For example,

</P>

<PRE>
octave:1&#62; a.b.c.d.e = 1;
octave:2&#62; a
a =
{
  b =
  {
    c = &#60;structure&#62;
  }
}
</PRE>

<P>
This prevents long and confusing output from large deeply nested
structures.

</P>
<P>
<DL>
<DT><U>Built-in Variable:</U> <B>struct_levels_to_print</B>
<DD><A NAME="IDX209"></A>
You can tell Octave how many structure levels to display by setting the
built-in variable <CODE>struct_levels_to_print</CODE>.  The default value is 2.
</DL>

</P>
<P>
Functions can return structures.  For example, the following function
separates the real and complex parts of a matrix and stores them in two
elements of the same structure variable.

</P>

<PRE>
octave:1&#62; function y = f (x)
&#62; y.re = real (x);
&#62; y.im = imag (x);
&#62; endfunction
</PRE>

<P>
When called with a complex-valued argument, <CODE>f</CODE> returns the data
structure containing the real and imaginary parts of the original
function argument.

</P>

<PRE>
octave:2&#62; f (rand (2) + rand (2) * I);
ans =
{
  im =

    0.26475  0.14828
    0.18436  0.83669

  re =

    0.040239  0.242160
    0.238081  0.402523
}
</PRE>

<P>
Function return lists can include structure elements, and they may be
indexed like any other variable.  For example,

</P>

<PRE>
octave:1&#62; [ x.u, x.s(2:3,2:3), x.v ] = svd ([1, 2; 3, 4])
x.u =

  -0.40455  -0.91451
  -0.91451   0.40455

x.s =

  0.00000  0.00000  0.00000
  0.00000  5.46499  0.00000
  0.00000  0.00000  0.36597

x.v =

  -0.57605   0.81742
  -0.81742  -0.57605
</PRE>

<P>
It is also possible to cycle through all the elements of a structure in
a loop, using a special form of the <CODE>for</CODE> statement
(see section <A HREF="octave_11.html#SEC82">The <CODE>for</CODE> Statement</A>)

</P>
<P>
The following functions are available to give you information about
structures.

</P>
<P>
<DL>
<DT><U>Built-in Function:</U>  <B>is_struct</B> <I>(<VAR>expr</VAR>)</I>
<DD><A NAME="IDX210"></A>
Return 1 if the value of the expression <VAR>expr</VAR> is a structure.
</DL>

</P>
<P>
<DL>
<DT><U>Built-in Function:</U>  <B>struct_contains</B> <I>(<VAR>expr</VAR>, <VAR>name</VAR>)</I>
<DD><A NAME="IDX211"></A>
Return 1 if the expression <VAR>expr</VAR> is a structure and it includes an
element named <VAR>name</VAR>.  The first argument must be a structure and
the second must be a string.
</DL>

</P>
<P>
<DL>
<DT><U>Built-in Function:</U>  <B>struct_elements</B> <I>(<VAR>struct</VAR>)</I>
<DD><A NAME="IDX212"></A>
Return a list of strings naming the elements of the structure
<VAR>struct</VAR>.  It is an error to call <CODE>struct_elements</CODE> with an
argument that is not a structure.
</DL>

</P>
<P><HR><P>
Go to the <A HREF="octave_1.html">first</A>, <A HREF="octave_6.html">previous</A>, <A HREF="octave_8.html">next</A>, <A HREF="octave_40.html">last</A> section, <A HREF="octave_toc.html">table of contents</A>.
</BODY>
</HTML>