1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
SUBROUTINE DGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
$ LDQ, Z, LDZ, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER COMPQ, COMPZ
INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
$ Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* DGGHRD reduces a pair of real matrices (A,B) to generalized upper
* Hessenberg form using orthogonal transformations, where A is a
* general matrix and B is upper triangular: Q' * A * Z = H and
* Q' * B * Z = T, where H is upper Hessenberg, T is upper triangular,
* and Q and Z are orthogonal, and ' means transpose.
*
* The orthogonal matrices Q and Z are determined as products of Givens
* rotations. They may either be formed explicitly, or they may be
* postmultiplied into input matrices Q1 and Z1, so that
*
* Q1 * A * Z1' = (Q1*Q) * H * (Z1*Z)'
* Q1 * B * Z1' = (Q1*Q) * T * (Z1*Z)'
*
* Arguments
* =========
*
* COMPQ (input) CHARACTER*1
* = 'N': do not compute Q;
* = 'I': Q is initialized to the unit matrix, and the
* orthogonal matrix Q is returned;
* = 'V': Q must contain an orthogonal matrix Q1 on entry,
* and the product Q1*Q is returned.
*
* COMPZ (input) CHARACTER*1
* = 'N': do not compute Z;
* = 'I': Z is initialized to the unit matrix, and the
* orthogonal matrix Z is returned;
* = 'V': Z must contain an orthogonal matrix Z1 on entry,
* and the product Z1*Z is returned.
*
* N (input) INTEGER
* The order of the matrices A and B. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* It is assumed that A is already upper triangular in rows and
* columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set
* by a previous call to DGGBAL; otherwise they should be set
* to 1 and N respectively.
* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
* On entry, the N-by-N general matrix to be reduced.
* On exit, the upper triangle and the first subdiagonal of A
* are overwritten with the upper Hessenberg matrix H, and the
* rest is set to zero.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
* On entry, the N-by-N upper triangular matrix B.
* On exit, the upper triangular matrix T = Q' B Z. The
* elements below the diagonal are set to zero.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
* If COMPQ='N': Q is not referenced.
* If COMPQ='I': on entry, Q need not be set, and on exit it
* contains the orthogonal matrix Q, where Q'
* is the product of the Givens transformations
* which are applied to A and B on the left.
* If COMPQ='V': on entry, Q must contain an orthogonal matrix
* Q1, and on exit this is overwritten by Q1*Q.
*
* LDQ (input) INTEGER
* The leading dimension of the array Q.
* LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
*
* Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
* If COMPZ='N': Z is not referenced.
* If COMPZ='I': on entry, Z need not be set, and on exit it
* contains the orthogonal matrix Z, which is
* the product of the Givens transformations
* which are applied to A and B on the right.
* If COMPZ='V': on entry, Z must contain an orthogonal matrix
* Z1, and on exit this is overwritten by Z1*Z.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z.
* LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
*
* Further Details
* ===============
*
* This routine reduces A to Hessenberg and B to triangular form by
* an unblocked reduction, as described in _Matrix_Computations_,
* by Golub and Van Loan (Johns Hopkins Press.)
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL ILQ, ILZ
INTEGER ICOMPQ, ICOMPZ, JCOL, JROW
DOUBLE PRECISION C, S, TEMP
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DLARTG, DLASET, DROT, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Decode COMPQ
*
IF( LSAME( COMPQ, 'N' ) ) THEN
ILQ = .FALSE.
ICOMPQ = 1
ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
ILQ = .TRUE.
ICOMPQ = 2
ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
ILQ = .TRUE.
ICOMPQ = 3
ELSE
ICOMPQ = 0
END IF
*
* Decode COMPZ
*
IF( LSAME( COMPZ, 'N' ) ) THEN
ILZ = .FALSE.
ICOMPZ = 1
ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
ILZ = .TRUE.
ICOMPZ = 2
ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
ILZ = .TRUE.
ICOMPZ = 3
ELSE
ICOMPZ = 0
END IF
*
* Test the input parameters.
*
INFO = 0
IF( ICOMPQ.LE.0 ) THEN
INFO = -1
ELSE IF( ICOMPZ.LE.0 ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( ILO.LT.1 ) THEN
INFO = -4
ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
INFO = -11
ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
INFO = -13
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGGHRD', -INFO )
RETURN
END IF
*
* Initialize Q and Z if desired.
*
IF( ICOMPQ.EQ.3 )
$ CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
IF( ICOMPZ.EQ.3 )
$ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
*
* Quick return if possible
*
IF( N.LE.1 )
$ RETURN
*
* Zero out lower triangle of B
*
DO 20 JCOL = 1, N - 1
DO 10 JROW = JCOL + 1, N
B( JROW, JCOL ) = ZERO
10 CONTINUE
20 CONTINUE
*
* Reduce A and B
*
DO 40 JCOL = ILO, IHI - 2
*
DO 30 JROW = IHI, JCOL + 2, -1
*
* Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL)
*
TEMP = A( JROW-1, JCOL )
CALL DLARTG( TEMP, A( JROW, JCOL ), C, S,
$ A( JROW-1, JCOL ) )
A( JROW, JCOL ) = ZERO
CALL DROT( N-JCOL, A( JROW-1, JCOL+1 ), LDA,
$ A( JROW, JCOL+1 ), LDA, C, S )
CALL DROT( N+2-JROW, B( JROW-1, JROW-1 ), LDB,
$ B( JROW, JROW-1 ), LDB, C, S )
IF( ILQ )
$ CALL DROT( N, Q( 1, JROW-1 ), 1, Q( 1, JROW ), 1, C, S )
*
* Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1)
*
TEMP = B( JROW, JROW )
CALL DLARTG( TEMP, B( JROW, JROW-1 ), C, S,
$ B( JROW, JROW ) )
B( JROW, JROW-1 ) = ZERO
CALL DROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, C, S )
CALL DROT( JROW-1, B( 1, JROW ), 1, B( 1, JROW-1 ), 1, C,
$ S )
IF( ILZ )
$ CALL DROT( N, Z( 1, JROW ), 1, Z( 1, JROW-1 ), 1, C, S )
30 CONTINUE
40 CONTINUE
*
RETURN
*
* End of DGGHRD
*
END
|