File: dlqr.m

package info (click to toggle)
octave 2.0.16-2
  • links: PTS
  • area: main
  • in suites: potato
  • size: 26,276 kB
  • ctags: 16,450
  • sloc: cpp: 67,548; fortran: 41,514; ansic: 26,682; sh: 7,361; makefile: 4,077; lex: 2,008; yacc: 1,849; lisp: 1,702; perl: 1,676; exp: 123
file content (101 lines) | stat: -rw-r--r-- 2,671 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
## Copyright (C) 1996 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2, or (at your option)
## any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, write to the Free
## Software Foundation, 59 Temple Place - Suite 330, Boston, MA
## 02111-1307, USA.

## Usage: [k, p, e] = dlqr (A, B, Q, R {,Z})
##
## Linear quadratic regulator design for the discrete time system
##
##   x[k+1] = A x[k] + B u[k]
##
## to minimize the cost functional
##
##  J = Sum { x' Q x + u' R u } 			Z omitted
##
## or
##
##  J = Sum { x' Q x + u' R u +2 x' Z u}		Z included
##
## Returns:
##
##   k = state feedback gain, (A - B K) is stable
##   p = solution of algebraic Riccati equation
##   e = closed loop poles of (A - B K)

## Author: A. S. Hodel <scotte@eng.auburn.edu>
##         R. B. Tenison <btenison@eng.auburn.edu>
## Created: August 1993
## Adapted-By: jwe

function [k, p, e] = dlqr (a, b, q, r, zz)

  if (nargin != 4 && nargin != 5)
    error ("dlqr: invalid number of arguments");
  endif

  ## Check a.
  if ((n = is_square (a)) == 0)
    error ("dlqr: requires 1st parameter(a) to be square");
  endif

  ## Check b.
  [n1, m] = size (b);
  if (n1 != n)
    error ("dlqr: a,b not conformal");
  endif

  ## Check q.

  if ((n1 = is_square (q)) == 0 || n1 != n)
    error ("dlqr: q must be square and conformal with a");
  endif

  ## Check r.
  if((m1 = is_square(r)) == 0 || m1 != m)
    error ("dlqr: r must be square and conformal with column dimension of b");
  endif

  ## Check if n is there.
  if (nargin == 5)
    [n1, m1] = size (zz);
    if (n1 != n || m1 != m)
      error ("dlqr: z must be identically dimensioned with b");
    endif

    ## Incorporate cross term into a and q.

    ao = a - (b/r)*zz';
    qo = q - (zz/r)*zz';
  else
    zz = zeros (n, m);
    ao = a;
    qo = q;
  endif

  ## Check that q, (r) are symmetric, positive (semi)definite

  if (is_symmetric (q) && is_symmetric (r) ...
      && all (eig (q) >= 0) && all (eig (r) > 0))
    p = dare (ao, b, qo, r);
    k = (r+b'*p*b)\b'*p*ao + r\zz';
    e = eig (a - b*k);
  else
    error ("dlqr: q (r) must be symmetric positive (semi) definite");
  endif

endfunction