File: qzhess.m

package info (click to toggle)
octave 2.0.16-2
  • links: PTS
  • area: main
  • in suites: potato
  • size: 26,276 kB
  • ctags: 16,450
  • sloc: cpp: 67,548; fortran: 41,514; ansic: 26,682; sh: 7,361; makefile: 4,077; lex: 2,008; yacc: 1,849; lisp: 1,702; perl: 1,676; exp: 123
file content (81 lines) | stat: -rw-r--r-- 2,337 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
## Copyright (C) 1996 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2, or (at your option)
## any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, write to the Free
## Software Foundation, 59 Temple Place - Suite 330, Boston, MA
## 02111-1307, USA.

## Usage: [aa, bb, q, z] = qzhess (a, b)
##
## Compute the qz decomposition of the matrix pencil (a - lambda b)
##
## result: (for Matlab compatibility):
##
##   aa = q*a*z and bb = q*b*z, with q, z orthogonal, and
##   v = matrix of generalized eigenvectors.
##
## This ought to be done in a compiled program
##
## Algorithm taken from Golub and Van Loan, Matrix Computations, 2nd ed.

## Author: A. S. Hodel <scotte@eng.auburn.edu>
## Created: August 1993
## Adapted-By: jwe

function [aa, bb, q, z] = qzhess (a, b)

  if (nargin != 2)
    error ("usage: [aa, bb, q, z] = qzhess (a, b)");
  endif

  [na, ma] = size (a);
  [nb, mb] = size (b);
  if (na != ma || na != nb || nb != mb)
    error ("qzhess: incompatible dimensions");
  endif

  ## Reduce to hessenberg-triangular form.

  [q, bb] = qr (b);
  aa = q' * a;
  q = q';
  z = eye (na);
  for j = 1:(na-2)
    for i = na:-1:(j+2)

      ## disp (["zero out aa(", num2str(i), ",", num2str(j), ")"])

      rot = givens (aa (i-1, j), aa (i, j));
      aa ((i-1):i, :) = rot *aa ((i-1):i, :);
      bb ((i-1):i, :) = rot *bb ((i-1):i, :);
      q  ((i-1):i, :) = rot *q  ((i-1):i, :);

      ## disp (["now zero out bb(", num2str(i), ",", num2str(i-1), ")"])

      rot = givens (bb (i, i), bb (i, i-1))';
      bb (:, (i-1):i) = bb (:, (i-1):i) * rot';
      aa (:, (i-1):i) = aa (:, (i-1):i) * rot';
      z  (:, (i-1):i) = z  (:, (i-1):i) * rot';

    endfor
  endfor

  bb (2, 1) = 0.0;
  for i = 3:na
    bb (i, 1:(i-1)) = zeros (1, i-1);
    aa (i, 1:(i-2)) = zeros (1, i-2);
  endfor

endfunction