1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
## Copyright (C) 1995, 1996, 1997 Kurt Hornik
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2, or (at your option)
## any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this file. If not, write to the Free Software Foundation,
## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
## Performs ordinal logistic regression.
##
## Suppose Y takes values in k ordered categories, and let gamma_i (x)
## be the cumulative probability that Y falls in one of the first i
## categories given the covariate x. Then
## [theta, beta] =
## logistic_regression (y, x)
## fits the model
## logit (gamma_i (x)) = theta_i - beta' * x, i = 1, ..., k-1.
## The number of ordinal categories, k, is taken to be the number of
## distinct values of round (y) . If k equals 2, y is binary and the
## model is ordinary logistic regression. X is assumed to have full
## column rank.
##
## theta = logistic_regression (y)
## fits the model with baseline logit odds only.
##
## The full form is
## [theta, beta, dev, dl, d2l, gamma] =
## logistic_regression (y, x, print, theta, beta)
## in which all output arguments and all input arguments except y are
## optional.
##
## print = 1 requests summary information about the fitted model to be
## displayed; print = 2 requests information about convergence at each
## iteration. Other values request no information to be displayed. The
## input arguments `theta' and `beta' give initial estimates for theta
## and beta.
##
## `dev' holds minus twice the log-likelihood.
##
## `dl' and `d2l' are the vector of first and the matrix of second
## derivatives of the log-likelihood with respect to theta and beta.
##
## `p' holds estimates for the conditional distribution of Y given x.
## Original for MATLAB written by Gordon K Smyth <gks@maths.uq.oz.au>,
## U of Queensland, Australia, on Nov 19, 1990. Last revision Aug 3,
## 1992.
## Author: Gordon K Smyth <gks@maths.uq.oz.au>,
## Adapted-By: KH <Kurt.Hornik@ci.tuwien.ac.at>
## Description: Ordinal logistic regression
## Uses the auxiliary functions logistic_regression_derivatives and
## logistic_regression_likelihood.
function [theta, beta, dev, dl, d2l, p] ...
= logistic_regression (y, x, print, theta, beta)
## check input
y = round (vec (y));
[my, ny] = size (y);
if (nargin < 2)
x = zeros (my, 0);
endif;
[mx, nx] = size (x);
if (mx != my)
error ("x and y must have the same number of observations");
endif
## initial calculations
x = -x;
tol = 1e-6; incr = 10; decr = 2;
ymin = min (y); ymax = max (y); yrange = ymax - ymin;
z = (y * ones (1, yrange)) == ((y * 0 + 1) * (ymin : (ymax - 1)));
z1 = (y * ones (1, yrange)) == ((y * 0 + 1) * ((ymin + 1) : ymax));
z = z(:, any (z));
z1 = z1 (:, any(z1));
[mz, nz] = size (z);
## starting values
if (nargin < 3)
print = 0;
endif;
if (nargin < 4)
beta = zeros (nx, 1);
endif;
if (nargin < 5)
g = cumsum (sum (z))' ./ my;
theta = log (g ./ (1 - g));
endif;
tb = [theta; beta];
## likelihood and derivatives at starting values
[g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1);
[dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p);
epsilon = std (vec (d2l)) / 1000;
## maximize likelihood using Levenberg modified Newton's method
iter = 0;
while (abs (dl' * (d2l \ dl) / length (dl)) > tol)
iter = iter + 1;
tbold = tb;
devold = dev;
tb = tbold - d2l \ dl;
[g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1);
if ((dev - devold) / (dl' * (tb - tbold)) < 0)
epsilon = epsilon / decr;
else
while ((dev - devold) / (dl' * (tb - tbold)) > 0)
epsilon = epsilon * incr;
if (epsilon > 1e+15)
error ("epsilon too large");
endif
tb = tbold - (d2l - epsilon * eye (size (d2l))) \ dl;
[g, g1, p, dev] = logistic_regression_likelihood (y, x, tb, z, z1);
disp ("epsilon"); disp (epsilon);
endwhile
endif
[dl, d2l] = logistic_regression_derivatives (x, z, z1, g, g1, p);
if (print == 2)
disp ("Iteration"); disp (iter);
disp ("Deviance"); disp (dev);
disp ("First derivative"); disp (dl');
disp ("Eigenvalues of second derivative"); disp (eig (d2l)');
endif
endwhile
## tidy up output
theta = tb (1 : nz, 1);
beta = tb ((nz + 1) : (nz + nx), 1);
if (print >= 1)
printf ("\n");
printf ("Logistic Regression Results:\n");
printf ("\n");
printf ("Number of Iterations: %d\n", iter);
printf ("Deviance: %f\n", dev);
printf ("Parameter Estimates:\n");
printf (" Theta S.E.\n");
se = sqrt (diag (inv (-d2l)));
for i = 1 : nz
printf (" %8.4f %8.4f\n", tb (i), se (i));
endfor
if (nx > 0)
printf (" Beta S.E.\n");
for i = (nz + 1) : (nz + nx)
printf (" %8.4f %8.4f\n", tb (i), se (i));
endfor
endif
endif
if (nargout == 6)
if (nx > 0)
e = ((x * beta) * ones (1, nz)) + ((y * 0 + 1) * theta');
else
e = (y * 0 + 1) * theta';
endif
gamma = diff ([(y * 0), (exp (e) ./ (1 + exp (e))), ((y * 0 + 1))]')';
endif
endfunction
|