1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
## Copyright (C) 1996, 1997 Kurt Hornik
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2, or (at your option)
## any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this file. If not, write to the Free Software Foundation,
## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
## usage: manova (Y, g)
##
## Performs a one-way multivariate analysis of variance (MANOVA). The
## goal is to test whether the p-dimensional population means of data
## taken from k different groups are all equal. All data are assumed
## drawn independently from p-dimensional normal distributions with the
## same covariance matrix.
##
## Y is the data matrix. As usual, rows are observations and columns
## are variables. g is the vector of corresponding group labels (e.g.,
## numbers from 1 to k), so that necessarily, length (g) must be the
## same as rows (Y).
##
## The LR test statistic (Wilks' Lambda) and approximate p-values are
## computed and displayed.
## Three test statistics (Wilks, Hotelling-Lawley, and Pillai-Bartlett)
## and corresponding approximate p-values are calculated and displayed.
## (Currently NOT because the f_cdf respectively betai code is too bad.)
## Author: TF <Thomas.Fuereder@ci.tuwien.ac.at>
## Adapted-By: KH <Kurt.Hornik@ci.tuwien.ac.at>
## Description: One-way multivariate analysis of variance (MANOVA)
function manova (Y, g)
if (nargin != 2)
usage ("manova (Y, g)");
endif
if (is_vector (Y))
error ("manova: Y must not be a vector");
endif
[n, p] = size (Y);
if (!is_vector (g) || (length (g) != n))
error ("manova: g must be a vector of length rows (Y)");
endif
s = sort (g);
i = find (s (2:n) > s(1:(n-1)));
k = length (i) + 1;
if (k == 1)
error ("manova: there should be at least 2 groups");
else
group_label = s ([1, (reshape (i, 1, k - 1) + 1)]);
endif
Y = Y - ones (n, 1) * mean (Y);
SST = Y' * Y;
s = zeros (1, p);
SSB = zeros (p, p);
for i = 1 : k;
v = Y (find (g == group_label (i)), :);
s = sum (v);
SSB = SSB + s' * s / rows (v);
endfor
n_b = k - 1;
SSW = SST - SSB;
n_w = n - k;
l = real (eig (SSB / SSW));
l (l < eps) = 0;
## Wilks' Lambda
## =============
Lambda = prod (1 ./ (1 + l));
delta = n_w + n_b - (p + n_b + 1) / 2
df_num = p * n_b
W_pval_1 = 1 - chisquare_cdf (- delta * log (Lambda), df_num);
if (p < 3)
eta = p;
else
eta = sqrt ((p^2 * n_b^2 - 4) / (p^2 + n_b^2 - 5))
endif
df_den = delta * eta - df_num / 2 + 1
WT = exp (- log (Lambda) / eta) - 1
W_pval_2 = 1 - f_cdf (WT * df_den / df_num, df_num, df_den);
if (0)
## Hotelling-Lawley Test
## =====================
HL = sum (l);
theta = min (p, n_b);
u = (abs (p - n_b) - 1) / 2;
v = (n_w - p - 1) / 2;
df_num = theta * (2 * u + theta + 1);
df_den = 2 * (theta * v + 1);
HL_pval = 1 - f_cdf (HL * df_den / df_num, df_num, df_den);
## Pillai-Bartlett
## ===============
PB = sum (l ./ (1 + l));
df_den = theta * (2 * v + theta + 1);
PB_pval = 1 - f_cdf (PB * df_den / df_num, df_num, df_den);
printf ("\n");
printf ("One-way MANOVA Table:\n");
printf ("\n");
printf ("Test Test Statistic Approximate p\n");
printf ("**************************************************\n");
printf ("Wilks %10.4f %10.9f \n", Lambda, W_pval_1);
printf (" %10.9f \n", W_pval_2);
printf ("Hotelling-Lawley %10.4f %10.9f \n", HL, HL_pval);
printf ("Pillai-Bartlett %10.4f %10.9f \n", PB, PB_pval);
printf ("\n");
endif
printf ("\n");
printf ("MANOVA Results:\n");
printf ("\n");
printf ("# of groups: %d\n", k);
printf ("# of samples: %d\n", n);
printf ("# of variables: %d\n", p);
printf ("\n");
printf ("Wilks' Lambda: %5.4f\n", Lambda);
printf ("Approximate p: %10.9f (chisquare approximation)\n", W_pval_1);
printf (" %10.9f (F approximation)\n", W_pval_2);
printf ("\n");
endfunction
|