File: Polynomial-Interpolation.html

package info (click to toggle)
octave 3.6.2-5%2Bdeb7u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 71,636 kB
  • sloc: cpp: 241,186; fortran: 23,651; sh: 14,790; ansic: 7,153; lex: 3,761; objc: 3,404; yacc: 3,386; makefile: 2,073; awk: 985; perl: 838
file content (235 lines) | stat: -rw-r--r-- 13,127 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
<html lang="en">
<head>
<title>Polynomial Interpolation - GNU Octave</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Octave">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Polynomial-Manipulations.html#Polynomial-Manipulations" title="Polynomial Manipulations">
<link rel="prev" href="Derivatives-_002f-Integrals-_002f-Transforms.html#Derivatives-_002f-Integrals-_002f-Transforms" title="Derivatives / Integrals / Transforms">
<link rel="next" href="Miscellaneous-Functions.html#Miscellaneous-Functions" title="Miscellaneous Functions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<a name="Polynomial-Interpolation"></a>
<p>
Next:&nbsp;<a rel="next" accesskey="n" href="Miscellaneous-Functions.html#Miscellaneous-Functions">Miscellaneous Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Derivatives-_002f-Integrals-_002f-Transforms.html#Derivatives-_002f-Integrals-_002f-Transforms">Derivatives / Integrals / Transforms</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Polynomial-Manipulations.html#Polynomial-Manipulations">Polynomial Manipulations</a>
<hr>
</div>

<h3 class="section">28.5 Polynomial Interpolation</h3>

<p>Octave comes with good support for various kinds of interpolation,
most of which are described in <a href="Interpolation.html#Interpolation">Interpolation</a>.  One simple alternative
to the functions described in the aforementioned chapter, is to fit
a single polynomial to some given data points.  To avoid a highly
fluctuating polynomial, one most often wants to fit a low-order polynomial
to data.  This usually means that it is necessary to fit the polynomial
in a least-squares sense, which just is what the <code>polyfit</code> function does.

<!-- polyfit scripts/polynomial/polyfit.m -->
   <p><a name="doc_002dpolyfit"></a>

<div class="defun">
&mdash; Function File: <var>p</var> = <b>polyfit</b> (<var>x, y, n</var>)<var><a name="index-polyfit-2729"></a></var><br>
&mdash; Function File: [<var>p</var>, <var>s</var>] = <b>polyfit</b> (<var>x, y, n</var>)<var><a name="index-polyfit-2730"></a></var><br>
&mdash; Function File: [<var>p</var>, <var>s</var>, <var>mu</var>] = <b>polyfit</b> (<var>x, y, n</var>)<var><a name="index-polyfit-2731"></a></var><br>
<blockquote><p>Return the coefficients of a polynomial <var>p</var>(<var>x</var>) of degree
<var>n</var> that minimizes the least-squares-error of the fit to the points
<code>[</code><var>x</var><code>, </code><var>y</var><code>]</code>.

        <p>The polynomial coefficients are returned in a row vector.

        <p>The optional output <var>s</var> is a structure containing the following fields:

          <dl>
<dt>&lsquo;<samp><span class="samp">R</span></samp>&rsquo;<dd>Triangular factor R from the QR&nbsp;decomposition.

          <br><dt>&lsquo;<samp><span class="samp">X</span></samp>&rsquo;<dd>The Vandermonde matrix used to compute the polynomial coefficients.

          <br><dt>&lsquo;<samp><span class="samp">df</span></samp>&rsquo;<dd>The degrees of freedom.

          <br><dt>&lsquo;<samp><span class="samp">normr</span></samp>&rsquo;<dd>The norm of the residuals.

          <br><dt>&lsquo;<samp><span class="samp">yf</span></samp>&rsquo;<dd>The values of the polynomial for each value of <var>x</var>. 
</dl>

        <p>The second output may be used by <code>polyval</code> to calculate the
statistical error limits of the predicted values.

        <p>When the third output, <var>mu</var>, is present the
coefficients, <var>p</var>, are associated with a polynomial in
<var>xhat</var> = (<var>x</var>-<var>mu</var>(1))/<var>mu</var>(2). 
Where <var>mu</var>(1) = mean (<var>x</var>), and <var>mu</var>(2) = std (<var>x</var>). 
This linear transformation of <var>x</var> improves the numerical
stability of the fit. 
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->

     <p class="noindent"><strong>See also:</strong> <a href="doc_002dpolyval.html#doc_002dpolyval">polyval</a>, <a href="doc_002dpolyaffine.html#doc_002dpolyaffine">polyaffine</a>, <a href="doc_002droots.html#doc_002droots">roots</a>, <a href="doc_002dvander.html#doc_002dvander">vander</a>, <a href="doc_002dzscore.html#doc_002dzscore">zscore</a>. 
</p></blockquote></div>

   <p>In situations where a single polynomial isn't good enough, a solution
is to use several polynomials pieced together.  The function <code>mkpp</code>
creates a piecewise polynomial, <code>ppval</code> evaluates the function
created by <code>mkpp</code>, and <code>unmkpp</code> returns detailed information
about the function.

   <p>The following example shows how to combine two linear functions and a
quadratic into one function.  Each of these functions is expressed
on adjoined intervals.

<pre class="example">     x = [-2, -1, 1, 2];
     p = [ 0,  1, 0;
           1, -2, 1;
           0, -1, 1 ];
     pp = mkpp(x, p);
     xi = linspace(-2, 2, 50);
     yi = ppval(pp, xi);
     plot(xi, yi);
</pre>
   <!-- mkpp scripts/polynomial/mkpp.m -->
   <p><a name="doc_002dmkpp"></a>

<div class="defun">
&mdash; Function File: <var>pp</var> = <b>mkpp</b> (<var>breaks, coefs</var>)<var><a name="index-mkpp-2732"></a></var><br>
&mdash; Function File: <var>pp</var> = <b>mkpp</b> (<var>breaks, coefs, d</var>)<var><a name="index-mkpp-2733"></a></var><br>
<blockquote>
        <p>Construct a piecewise polynomial (pp) structure from sample points
<var>breaks</var> and coefficients <var>coefs</var>.  <var>breaks</var> must be a vector of
strictly increasing values.  The number of intervals is given by
<var>ni</var><code> = length (</code><var>breaks</var><code>) - 1</code>. 
When <var>m</var> is the polynomial order <var>coefs</var> must be of
size: <var>ni</var> x <var>m</var> + 1.

        <p>The i-th row of <var>coefs</var>,
<var>coefs</var><code> (</code><var>i</var><code>,:)</code>, contains the coefficients for the polynomial
over the <var>i</var>-th interval, ordered from highest (<var>m</var>) to
lowest (<var>0</var>).

        <p><var>coefs</var> may also be a multi-dimensional array, specifying a vector-valued
or array-valued polynomial.  In that case the polynomial order is defined
by the length of the last dimension of <var>coefs</var>. 
The size of first dimension(s) are given by the scalar or
vector <var>d</var>.  If <var>d</var> is not given it is set to <code>1</code>. 
In any case <var>coefs</var> is reshaped to a 2-D matrix of
size <code>[</code><var>ni</var><code>*prod(</code><var>d</var> <var>m</var><code>)] </code>

     <!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
     <!-- A simple blank line produces the correct behavior. -->
     <!-- @sp 1 -->
     <p class="noindent"><strong>See also:</strong> <a href="doc_002dunmkpp.html#doc_002dunmkpp">unmkpp</a>, <a href="doc_002dppval.html#doc_002dppval">ppval</a>, <a href="doc_002dspline.html#doc_002dspline">spline</a>, <a href="doc_002dpchip.html#doc_002dpchip">pchip</a>, <a href="doc_002dppder.html#doc_002dppder">ppder</a>, <a href="doc_002dppint.html#doc_002dppint">ppint</a>, <a href="doc_002dppjumps.html#doc_002dppjumps">ppjumps</a>. 
</p></blockquote></div>

<!-- unmkpp scripts/polynomial/unmkpp.m -->
   <p><a name="doc_002dunmkpp"></a>

<div class="defun">
&mdash; Function File: [<var>x</var>, <var>p</var>, <var>n</var>, <var>k</var>, <var>d</var>] = <b>unmkpp</b> (<var>pp</var>)<var><a name="index-unmkpp-2734"></a></var><br>
<blockquote>
        <p>Extract the components of a piecewise polynomial structure <var>pp</var>. 
The components are:

          <dl>
<dt><var>x</var><dd>Sample points.

          <br><dt><var>p</var><dd>Polynomial coefficients for points in sample interval.  <var>p</var><code>
(</code><var>i</var><code>, :)</code> contains the coefficients for the polynomial over
interval <var>i</var> ordered from highest to lowest.  If <var>d</var><code> &gt;
1</code>, <var>p</var><code> (</code><var>r</var><code>, </code><var>i</var><code>, :)</code> contains the coefficients for
the r-th polynomial defined on interval <var>i</var>.

          <br><dt><var>n</var><dd>Number of polynomial pieces.

          <br><dt><var>k</var><dd>Order of the polynomial plus 1.

          <br><dt><var>d</var><dd>Number of polynomials defined for each interval. 
</dl>

     <!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
     <!-- A simple blank line produces the correct behavior. -->
     <!-- @sp 1 -->
     <p class="noindent"><strong>See also:</strong> <a href="doc_002dmkpp.html#doc_002dmkpp">mkpp</a>, <a href="doc_002dppval.html#doc_002dppval">ppval</a>, <a href="doc_002dspline.html#doc_002dspline">spline</a>, <a href="doc_002dpchip.html#doc_002dpchip">pchip</a>. 
</p></blockquote></div>

<!-- ppval scripts/polynomial/ppval.m -->
   <p><a name="doc_002dppval"></a>

<div class="defun">
&mdash; Function File: <var>yi</var> = <b>ppval</b> (<var>pp, xi</var>)<var><a name="index-ppval-2735"></a></var><br>
<blockquote><p>Evaluate the piecewise polynomial structure <var>pp</var> at the points <var>xi</var>. 
If <var>pp</var> describes a scalar polynomial function, the result is an
array of the same shape as <var>xi</var>. 
Otherwise, the size of the result is <code>[pp.dim, length(</code><var>xi</var><code>)]</code> if
<var>xi</var> is a vector, or <code>[pp.dim, size(</code><var>xi</var><code>)]</code> if it is a
multi-dimensional array. 
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->

     <p class="noindent"><strong>See also:</strong> <a href="doc_002dmkpp.html#doc_002dmkpp">mkpp</a>, <a href="doc_002dunmkpp.html#doc_002dunmkpp">unmkpp</a>, <a href="doc_002dspline.html#doc_002dspline">spline</a>, <a href="doc_002dpchip.html#doc_002dpchip">pchip</a>. 
</p></blockquote></div>

<!-- ppder scripts/polynomial/ppder.m -->
   <p><a name="doc_002dppder"></a>

<div class="defun">
&mdash; Function File: ppd = <b>ppder</b> (<var>pp</var>)<var><a name="index-ppder-2736"></a></var><br>
&mdash; Function File: ppd = <b>ppder</b> (<var>pp, m</var>)<var><a name="index-ppder-2737"></a></var><br>
<blockquote><p>Compute the piecewise <var>m</var>-th derivative of a piecewise polynomial
struct <var>pp</var>.  If <var>m</var> is omitted the first derivative is calculated. 
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->

     <p class="noindent"><strong>See also:</strong> <a href="doc_002dmkpp.html#doc_002dmkpp">mkpp</a>, <a href="doc_002dppval.html#doc_002dppval">ppval</a>, <a href="doc_002dppint.html#doc_002dppint">ppint</a>. 
</p></blockquote></div>

<!-- ppint scripts/polynomial/ppint.m -->
   <p><a name="doc_002dppint"></a>

<div class="defun">
&mdash; Function File: <var>ppi</var> = <b>ppint</b> (<var>pp</var>)<var><a name="index-ppint-2738"></a></var><br>
&mdash; Function File: <var>ppi</var> = <b>ppint</b> (<var>pp, c</var>)<var><a name="index-ppint-2739"></a></var><br>
<blockquote><p>Compute the integral of the piecewise polynomial struct <var>pp</var>. 
<var>c</var>, if given, is the constant of integration. 
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->

     <p class="noindent"><strong>See also:</strong> <a href="doc_002dmkpp.html#doc_002dmkpp">mkpp</a>, <a href="doc_002dppval.html#doc_002dppval">ppval</a>, <a href="doc_002dppder.html#doc_002dppder">ppder</a>. 
</p></blockquote></div>

<!-- ppjumps scripts/polynomial/ppjumps.m -->
   <p><a name="doc_002dppjumps"></a>

<div class="defun">
&mdash; Function File: <var>jumps</var> = <b>ppjumps</b> (<var>pp</var>)<var><a name="index-ppjumps-2740"></a></var><br>
<blockquote><p>Evaluate the boundary jumps of a piecewise polynomial. 
If there are n intervals, and the dimensionality of <var>pp</var> is
d, the resulting array has dimensions <code>[d, n-1]</code>. 
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->

     <p class="noindent"><strong>See also:</strong> <a href="doc_002dmkpp.html#doc_002dmkpp">mkpp</a>. 
</p></blockquote></div>

   </body></html>