1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Octave: Basic Usage</title>
<meta name="description" content="GNU Octave: Basic Usage">
<meta name="keywords" content="GNU Octave: Basic Usage">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Diagonal-and-Permutation-Matrices.html#Diagonal-and-Permutation-Matrices" rel="up" title="Diagonal and Permutation Matrices">
<link href="Creating-Diagonal-Matrices.html#Creating-Diagonal-Matrices" rel="next" title="Creating Diagonal Matrices">
<link href="Diagonal-and-Permutation-Matrices.html#Diagonal-and-Permutation-Matrices" rel="prev" title="Diagonal and Permutation Matrices">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Basic-Usage"></a>
<div class="header">
<p>
Next: <a href="Matrix-Algebra.html#Matrix-Algebra" accesskey="n" rel="next">Matrix Algebra</a>, Up: <a href="Diagonal-and-Permutation-Matrices.html#Diagonal-and-Permutation-Matrices" accesskey="u" rel="up">Diagonal and Permutation Matrices</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Creating-and-Manipulating-Diagonal_002fPermutation-Matrices"></a>
<h3 class="section">21.1 Creating and Manipulating Diagonal/Permutation Matrices</h3>
<p>A diagonal matrix is defined as a matrix that has zero entries outside the main
diagonal; that is,
<code>D(i,j) == 0</code> if <code>i != j</code>.
Most often, square diagonal matrices are considered; however, the definition can
equally be applied to non-square matrices, in which case we usually speak of a
rectangular diagonal matrix.
</p>
<p>A permutation matrix is defined as a square matrix that has a single element
equal to unity in each row and each column; all other elements are zero. That
is, there exists a permutation (vector)
<code>p</code> such that <code>P(i,j) == 1</code> if <code>j == p(i)</code> and
<code>P(i,j) == 0</code> otherwise.
</p>
<p>Octave provides special treatment of real and complex rectangular diagonal
matrices, as well as permutation matrices. They are stored as special objects,
using efficient storage and algorithms, facilitating writing both readable and
efficient matrix algebra expressions in the Octave language.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="Creating-Diagonal-Matrices.html#Creating-Diagonal-Matrices" accesskey="1">Creating Diagonal Matrices</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Creating-Permutation-Matrices.html#Creating-Permutation-Matrices" accesskey="2">Creating Permutation Matrices</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Explicit-and-Implicit-Conversions.html#Explicit-and-Implicit-Conversions" accesskey="3">Explicit and Implicit Conversions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
</body>
</html>
|