1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Octave: Correlation and Regression Analysis</title>
<meta name="description" content="GNU Octave: Correlation and Regression Analysis">
<meta name="keywords" content="GNU Octave: Correlation and Regression Analysis">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Statistics.html#Statistics" rel="up" title="Statistics">
<link href="Distributions.html#Distributions" rel="next" title="Distributions">
<link href="Statistical-Plots.html#Statistical-Plots" rel="prev" title="Statistical Plots">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Correlation-and-Regression-Analysis"></a>
<div class="header">
<p>
Next: <a href="Distributions.html#Distributions" accesskey="n" rel="next">Distributions</a>, Previous: <a href="Statistical-Plots.html#Statistical-Plots" accesskey="p" rel="prev">Statistical Plots</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Correlation-and-Regression-Analysis-1"></a>
<h3 class="section">26.4 Correlation and Regression Analysis</h3>
<a name="XREFcov"></a><dl>
<dt><a name="index-cov"></a>Function File: <em></em> <strong>cov</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-cov-1"></a>Function File: <em></em> <strong>cov</strong> <em>(<var>x</var>, <var>opt</var>)</em></dt>
<dt><a name="index-cov-2"></a>Function File: <em></em> <strong>cov</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-cov-3"></a>Function File: <em></em> <strong>cov</strong> <em>(<var>x</var>, <var>y</var>, <var>opt</var>)</em></dt>
<dd><p>Compute the covariance matrix.
</p>
<p>If each row of <var>x</var> and <var>y</var> is an observation, and each column is
a variable, then the (<var>i</var>, <var>j</var><span class="nolinebreak">)-th</span><!-- /@w --> entry of
<code>cov (<var>x</var>, <var>y</var>)</code> is the covariance between the <var>i</var>-th
variable in <var>x</var> and the <var>j</var>-th variable in <var>y</var>.
</p>
<div class="example">
<pre class="example">cov (x) = 1/N-1 * SUM_i (x(i) - mean(x)) * (y(i) - mean(y))
</pre></div>
<p>If called with one argument, compute <code>cov (<var>x</var>, <var>x</var>)</code>, the
covariance between the columns of <var>x</var>.
</p>
<p>The argument <var>opt</var> determines the type of normalization to use.
Valid values are
</p>
<dl compact="compact">
<dt>0:</dt>
<dd><p>normalize with <em>N-1</em>, provides the best unbiased estimator of the
covariance [default]
</p>
</dd>
<dt>1:</dt>
<dd><p>normalize with <em>N</em>, this provides the second moment around the mean
</p></dd>
</dl>
<p><small>MATLAB</small> compatibility: Octave always computes the covariance matrix.
For two inputs, however, <small>MATLAB</small> will calculate
<code>cov (<var>x</var>(:), <var>y</var>(:))</code> whenever the number of elements in
<var>x</var> and <var>y</var> are equal. This will result in a scalar rather than
a matrix output. Code relying on this odd definition will need to be
changed when running in Octave.
</p>
<p><strong>See also:</strong> <a href="#XREFcorr">corr</a>.
</p></dd></dl>
<a name="XREFcorr"></a><dl>
<dt><a name="index-corr"></a>Function File: <em></em> <strong>corr</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-corr-1"></a>Function File: <em></em> <strong>corr</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><p>Compute matrix of correlation coefficients.
</p>
<p>If each row of <var>x</var> and <var>y</var> is an observation and each column is
a variable, then the (<var>i</var>, <var>j</var><span class="nolinebreak">)-th</span><!-- /@w --> entry of
<code>corr (<var>x</var>, <var>y</var>)</code> is the correlation between the
<var>i</var>-th variable in <var>x</var> and the <var>j</var>-th variable in <var>y</var>.
</p>
<div class="example">
<pre class="example">corr (x,y) = cov (x,y) / (std (x) * std (y))
</pre></div>
<p>If called with one argument, compute <code>corr (<var>x</var>, <var>x</var>)</code>,
the correlation between the columns of <var>x</var>.
</p>
<p><strong>See also:</strong> <a href="#XREFcov">cov</a>.
</p></dd></dl>
<a name="XREFspearman"></a><dl>
<dt><a name="index-spearman"></a>Function File: <em></em> <strong>spearman</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-spearman-1"></a>Function File: <em></em> <strong>spearman</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><a name="index-Spearman_0027s-Rho"></a>
<p>Compute Spearman’s rank correlation coefficient <var>rho</var>.
</p>
<p>For two data vectors <var>x</var> and <var>y</var>, Spearman’s <var>rho</var> is the
correlation coefficient of the ranks of <var>x</var> and <var>y</var>.
</p>
<p>If <var>x</var> and <var>y</var> are drawn from independent distributions,
<var>rho</var> has zero mean and variance <code>1 / (n - 1)</code>, and is
asymptotically normally distributed.
</p>
<p><code>spearman (<var>x</var>)</code> is equivalent to <code>spearman (<var>x</var>,
<var>x</var>)</code>.
</p>
<p><strong>See also:</strong> <a href="Basic-Statistical-Functions.html#XREFranks">ranks</a>, <a href="#XREFkendall">kendall</a>.
</p></dd></dl>
<a name="XREFkendall"></a><dl>
<dt><a name="index-kendall"></a>Function File: <em></em> <strong>kendall</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-kendall-1"></a>Function File: <em></em> <strong>kendall</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><a name="index-Kendall_0027s-Tau"></a>
<p>Compute Kendall’s <var>tau</var>.
</p>
<p>For two data vectors <var>x</var>, <var>y</var> of common length <var>n</var>,
Kendall’s <var>tau</var> is the correlation of the signs of all rank
differences of <var>x</var> and <var>y</var>; i.e., if both <var>x</var> and
<var>y</var> have distinct entries, then
</p>
<div class="example">
<pre class="example"> 1
tau = ------- SUM sign (q(i) - q(j)) * sign (r(i) - r(j))
n (n-1) i,j
</pre></div>
<p>in which the
<var>q</var>(<var>i</var>) and <var>r</var>(<var>i</var>)
are the ranks of <var>x</var> and <var>y</var>, respectively.
</p>
<p>If <var>x</var> and <var>y</var> are drawn from independent distributions,
Kendall’s <var>tau</var> is asymptotically normal with mean 0 and variance
<code>(2 * (2<var>n</var>+5)) / (9 * <var>n</var> * (<var>n</var>-1))</code>.
</p>
<p><code>kendall (<var>x</var>)</code> is equivalent to <code>kendall (<var>x</var>,
<var>x</var>)</code>.
</p>
<p><strong>See also:</strong> <a href="Basic-Statistical-Functions.html#XREFranks">ranks</a>, <a href="#XREFspearman">spearman</a>.
</p></dd></dl>
<a name="XREFlogistic_005fregression"></a><dl>
<dt><a name="index-logistic_005fregression"></a>Function File: <em>[<var>theta</var>, <var>beta</var>, <var>dev</var>, <var>dl</var>, <var>d2l</var>, <var>p</var>] =</em> <strong>logistic_regression</strong> <em>(<var>y</var>, <var>x</var>, <var>print</var>, <var>theta</var>, <var>beta</var>)</em></dt>
<dd><p>Perform ordinal logistic regression.
</p>
<p>Suppose <var>y</var> takes values in <var>k</var> ordered categories, and let
<code>gamma_i (<var>x</var>)</code> be the cumulative probability that <var>y</var>
falls in one of the first <var>i</var> categories given the covariate
<var>x</var>. Then
</p>
<div class="example">
<pre class="example">[theta, beta] = logistic_regression (y, x)
</pre></div>
<p>fits the model
</p>
<div class="example">
<pre class="example">logit (gamma_i (x)) = theta_i - beta' * x, i = 1 … k-1
</pre></div>
<p>The number of ordinal categories, <var>k</var>, is taken to be the number
of distinct values of <code>round (<var>y</var>)</code>. If <var>k</var> equals 2,
<var>y</var> is binary and the model is ordinary logistic regression. The
matrix <var>x</var> is assumed to have full column rank.
</p>
<p>Given <var>y</var> only, <code>theta = logistic_regression (y)</code>
fits the model with baseline logit odds only.
</p>
<p>The full form is
</p>
<div class="example">
<pre class="example">[theta, beta, dev, dl, d2l, gamma]
= logistic_regression (y, x, print, theta, beta)
</pre></div>
<p>in which all output arguments and all input arguments except <var>y</var>
are optional.
</p>
<p>Setting <var>print</var> to 1 requests summary information about the fitted
model to be displayed. Setting <var>print</var> to 2 requests information
about convergence at each iteration. Other values request no
information to be displayed. The input arguments <var>theta</var> and
<var>beta</var> give initial estimates for <var>theta</var> and <var>beta</var>.
</p>
<p>The returned value <var>dev</var> holds minus twice the log-likelihood.
</p>
<p>The returned values <var>dl</var> and <var>d2l</var> are the vector of first
and the matrix of second derivatives of the log-likelihood with
respect to <var>theta</var> and <var>beta</var>.
</p>
<p><var>p</var> holds estimates for the conditional distribution of <var>y</var>
given <var>x</var>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Distributions.html#Distributions" accesskey="n" rel="next">Distributions</a>, Previous: <a href="Statistical-Plots.html#Statistical-Plots" accesskey="p" rel="prev">Statistical Plots</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|