1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Octave: Miscellaneous Functions</title>
<meta name="description" content="GNU Octave: Miscellaneous Functions">
<meta name="keywords" content="GNU Octave: Miscellaneous Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Polynomial-Manipulations.html#Polynomial-Manipulations" rel="up" title="Polynomial Manipulations">
<link href="Interpolation.html#Interpolation" rel="next" title="Interpolation">
<link href="Polynomial-Interpolation.html#Polynomial-Interpolation" rel="prev" title="Polynomial Interpolation">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Miscellaneous-Functions"></a>
<div class="header">
<p>
Previous: <a href="Polynomial-Interpolation.html#Polynomial-Interpolation" accesskey="p" rel="prev">Polynomial Interpolation</a>, Up: <a href="Polynomial-Manipulations.html#Polynomial-Manipulations" accesskey="u" rel="up">Polynomial Manipulations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Miscellaneous-Functions-1"></a>
<h3 class="section">28.6 Miscellaneous Functions</h3>
<a name="XREFpoly"></a><dl>
<dt><a name="index-poly"></a>Function File: <em></em> <strong>poly</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-poly-1"></a>Function File: <em></em> <strong>poly</strong> <em>(<var>x</var>)</em></dt>
<dd><p>If <var>A</var> is a square <em>N</em>-by-<em>N</em> matrix, <code>poly (<var>A</var>)</code>
is the row vector of the coefficients of <code>det (z * eye (N) - A)</code>,
the characteristic polynomial of <var>A</var>. For example,
the following code finds the eigenvalues of <var>A</var> which are the roots of
<code>poly (<var>A</var>)</code>.
</p>
<div class="example">
<pre class="example">roots (poly (eye (3)))
⇒ 1.00001 + 0.00001i
1.00001 - 0.00001i
0.99999 + 0.00000i
</pre></div>
<p>In fact, all three eigenvalues are exactly 1 which emphasizes that for
numerical performance the <code>eig</code> function should be used to compute
eigenvalues.
</p>
<p>If <var>x</var> is a vector, <code>poly (<var>x</var>)</code> is a vector of the
coefficients of the polynomial whose roots are the elements of <var>x</var>.
That is, if <var>c</var> is a polynomial, then the elements of <code><var>d</var> =
roots (poly (<var>c</var>))</code> are contained in <var>c</var>. The vectors <var>c</var> and
<var>d</var> are not identical, however, due to sorting and numerical errors.
</p>
<p><strong>See also:</strong> <a href="Finding-Roots.html#XREFroots">roots</a>, <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>.
</p></dd></dl>
<a name="XREFpolyout"></a><dl>
<dt><a name="index-polyout"></a>Function File: <em></em> <strong>polyout</strong> <em>(<var>c</var>)</em></dt>
<dt><a name="index-polyout-1"></a>Function File: <em></em> <strong>polyout</strong> <em>(<var>c</var>, <var>x</var>)</em></dt>
<dt><a name="index-polyout-2"></a>Function File: <em><var>str</var> =</em> <strong>polyout</strong> <em>(…)</em></dt>
<dd><p>Write formatted polynomial
</p>
<div class="example">
<pre class="example">c(x) = c(1) * x^n + … + c(n) x + c(n+1)
</pre></div>
<p>and return it as a string or write it to the screen (if <var>nargout</var> is
zero). <var>x</var> defaults to the string <code>"s"</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFpolyreduce">polyreduce</a>.
</p></dd></dl>
<a name="XREFpolyreduce"></a><dl>
<dt><a name="index-polyreduce"></a>Function File: <em></em> <strong>polyreduce</strong> <em>(<var>c</var>)</em></dt>
<dd><p>Reduce a polynomial coefficient vector to a minimum number of terms by
stripping off any leading zeros.
</p>
<p><strong>See also:</strong> <a href="#XREFpolyout">polyout</a>.
</p></dd></dl>
</body>
</html>
|