File: Miscellaneous-Functions.html

package info (click to toggle)
octave 3.8.2-2~bpo70%2B1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy-backports
  • size: 84,360 kB
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (126 lines) | stat: -rw-r--r-- 5,506 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Octave: Miscellaneous Functions</title>

<meta name="description" content="GNU Octave: Miscellaneous Functions">
<meta name="keywords" content="GNU Octave: Miscellaneous Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Polynomial-Manipulations.html#Polynomial-Manipulations" rel="up" title="Polynomial Manipulations">
<link href="Interpolation.html#Interpolation" rel="next" title="Interpolation">
<link href="Polynomial-Interpolation.html#Polynomial-Interpolation" rel="prev" title="Polynomial Interpolation">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Miscellaneous-Functions"></a>
<div class="header">
<p>
Previous: <a href="Polynomial-Interpolation.html#Polynomial-Interpolation" accesskey="p" rel="prev">Polynomial Interpolation</a>, Up: <a href="Polynomial-Manipulations.html#Polynomial-Manipulations" accesskey="u" rel="up">Polynomial Manipulations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Miscellaneous-Functions-1"></a>
<h3 class="section">28.6 Miscellaneous Functions</h3>

<a name="XREFpoly"></a><dl>
<dt><a name="index-poly"></a>Function File: <em></em> <strong>poly</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-poly-1"></a>Function File: <em></em> <strong>poly</strong> <em>(<var>x</var>)</em></dt>
<dd><p>If <var>A</var> is a square <em>N</em>-by-<em>N</em> matrix, <code>poly (<var>A</var>)</code>
is the row vector of the coefficients of <code>det (z * eye (N) - A)</code>,
the characteristic polynomial of <var>A</var>.  For example,
the following code finds the eigenvalues of <var>A</var> which are the roots of
<code>poly (<var>A</var>)</code>.
</p>
<div class="example">
<pre class="example">roots (poly (eye (3)))
    &rArr; 1.00001 + 0.00001i
       1.00001 - 0.00001i
       0.99999 + 0.00000i
</pre></div>

<p>In fact, all three eigenvalues are exactly 1 which emphasizes that for
numerical performance the <code>eig</code> function should be used to compute
eigenvalues.
</p>
<p>If <var>x</var> is a vector, <code>poly (<var>x</var>)</code> is a vector of the
coefficients of the polynomial whose roots are the elements of <var>x</var>. 
That is, if <var>c</var> is a polynomial, then the elements of <code><var>d</var> =
roots (poly (<var>c</var>))</code> are contained in <var>c</var>.  The vectors <var>c</var> and
<var>d</var> are not identical, however, due to sorting and numerical errors.
</p>
<p><strong>See also:</strong> <a href="Finding-Roots.html#XREFroots">roots</a>, <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>.
</p></dd></dl>


<a name="XREFpolyout"></a><dl>
<dt><a name="index-polyout"></a>Function File: <em></em> <strong>polyout</strong> <em>(<var>c</var>)</em></dt>
<dt><a name="index-polyout-1"></a>Function File: <em></em> <strong>polyout</strong> <em>(<var>c</var>, <var>x</var>)</em></dt>
<dt><a name="index-polyout-2"></a>Function File: <em><var>str</var> =</em> <strong>polyout</strong> <em>(&hellip;)</em></dt>
<dd><p>Write formatted polynomial
</p>
<div class="example">
<pre class="example">c(x) = c(1) * x^n + &hellip; + c(n) x + c(n+1)
</pre></div>

<p>and return it as a string or write it to the screen (if <var>nargout</var> is
zero).  <var>x</var> defaults to the string <code>&quot;s&quot;</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFpolyreduce">polyreduce</a>.
</p></dd></dl>


<a name="XREFpolyreduce"></a><dl>
<dt><a name="index-polyreduce"></a>Function File: <em></em> <strong>polyreduce</strong> <em>(<var>c</var>)</em></dt>
<dd><p>Reduce a polynomial coefficient vector to a minimum number of terms by
stripping off any leading zeros.
</p>
<p><strong>See also:</strong> <a href="#XREFpolyout">polyout</a>.
</p></dd></dl>










</body>
</html>