1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 1996-2013 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
@c for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <http://www.gnu.org/licenses/>.
@node Data Containers
@chapter Data Containers
@cindex containers
Octave includes support for two different mechanisms to contain
arbitrary data types in the same variable. Structures, which are C-like,
and are indexed with named fields, and cell arrays, where each element
of the array can have a different data type and or shape. Multiple
input arguments and return values of functions are organized as
another data container, the comma separated list.
@menu
* Structures::
* Cell Arrays::
* Comma Separated Lists::
@end menu
@node Structures
@section Structures
@cindex structures
@cindex data structures
Octave includes support for organizing data in structures. The current
implementation uses an associative array with indices limited to
strings, but the syntax is more like C-style structures.
@menu
* Basic Usage and Examples::
* Structure Arrays::
* Creating Structures::
* Manipulating Structures::
* Processing Data in Structures::
@end menu
@node Basic Usage and Examples
@subsection Basic Usage and Examples
Here are some examples of using data structures in Octave.
Elements of structures can be of any value type. For example, the three
expressions
@example
@group
x.a = 1;
x.b = [1, 2; 3, 4];
x.c = "string";
@end group
@end example
@opindex .
@noindent
create a structure with three elements. The @samp{.} character separates
the structure name from the field name and indicates to Octave that this
variable is a structure. To print the value of the
structure you can type its name, just as for any other variable:
@example
@group
x
@result{} x =
@{
a = 1
b =
1 2
3 4
c = string
@}
@end group
@end example
@noindent
Note that Octave may print the elements in any order.
Structures may be copied just like any other variable:
@example
@group
y = x
@result{} y =
@{
a = 1
b =
1 2
3 4
c = string
@}
@end group
@end example
Since structures are themselves values, structure elements may reference
other structures. The following statements change the value of the
element @code{b} of the structure @code{x} to be a data structure
containing the single element @code{d}, which has a value of 3.
@example
@group
x.b.d = 3;
x.b
@result{} ans =
@{
d = 3
@}
x
@result{} x =
@{
a = 1
b =
@{
d = 3
@}
c = string
@}
@end group
@end example
Note that when Octave prints the value of a structure that contains
other structures, only a few levels are displayed. For example:
@example
@group
a.b.c.d.e = 1;
a
@result{} a =
@{
b =
@{
c =
@{
1x1 struct array containing the fields:
d: 1x1 struct
@}
@}
@}
@end group
@end example
@noindent
This prevents long and confusing output from large deeply nested
structures. The number of levels to print for nested structures may be
set with the function @code{struct_levels_to_print}, and the function
@code{print_struct_array_contents} may be used to enable printing of the
contents of structure arrays.
@c struct_levels_to_print libinterp/octave-value/ov-struct.cc
@anchor{XREFstruct_levels_to_print}
@deftypefn {Built-in Function} {@var{val} =} struct_levels_to_print ()
@deftypefnx {Built-in Function} {@var{old_val} =} struct_levels_to_print (@var{new_val})
@deftypefnx {Built-in Function} {} struct_levels_to_print (@var{new_val}, "local")
Query or set the internal variable that specifies the number of
structure levels to display.
When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
@seealso{@ref{XREFprint_struct_array_contents,,print_struct_array_contents}}
@end deftypefn
@c print_struct_array_contents libinterp/octave-value/ov-struct.cc
@anchor{XREFprint_struct_array_contents}
@deftypefn {Built-in Function} {@var{val} =} print_struct_array_contents ()
@deftypefnx {Built-in Function} {@var{old_val} =} print_struct_array_contents (@var{new_val})
@deftypefnx {Built-in Function} {} print_struct_array_contents (@var{new_val}, "local")
Query or set the internal variable that specifies whether to print struct
array contents.
If true, values of struct array elements are printed.
This variable does not affect scalar structures whose elements are always
printed. In both cases, however, printing will be limited to
the number of levels specified by @var{struct_levels_to_print}.
When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
@seealso{@ref{XREFstruct_levels_to_print,,struct_levels_to_print}}
@end deftypefn
Functions can return structures. For example, the following function
separates the real and complex parts of a matrix and stores them in two
elements of the same structure variable.
@example
@group
function y = f (x)
y.re = real (x);
y.im = imag (x);
endfunction
@end group
@end example
When called with a complex-valued argument, @code{f} returns the data
structure containing the real and imaginary parts of the original
function argument.
@example
@group
f (rand (2) + rand (2) * I)
@result{} ans =
@{
im =
0.26475 0.14828
0.18436 0.83669
re =
0.040239 0.242160
0.238081 0.402523
@}
@end group
@end example
Function return lists can include structure elements, and they may be
indexed like any other variable. For example:
@example
[ x.u, x.s(2:3,2:3), x.v ] = svd ([1, 2; 3, 4]);
x
@result{} x =
@{
u =
-0.40455 -0.91451
-0.91451 0.40455
s =
0.00000 0.00000 0.00000
0.00000 5.46499 0.00000
0.00000 0.00000 0.36597
v =
-0.57605 0.81742
-0.81742 -0.57605
@}
@end example
It is also possible to cycle through all the elements of a structure in
a loop, using a special form of the @code{for} statement
(@pxref{Looping Over Structure Elements}).
@node Structure Arrays
@subsection Structure Arrays
A structure array is a particular instance of a structure, where each of
the fields of the structure is represented by a cell array. Each of
these cell arrays has the same dimensions. Conceptually, a structure
array can also be seen as an array of structures with identical
fields. An example of the creation of a structure array is
@example
@group
x(1).a = "string1";
x(2).a = "string2";
x(1).b = 1;
x(2).b = 2;
@end group
@end example
@noindent
which creates a 2-by-1 structure array with two fields. Another way
to create a structure array is with the @code{struct} function
(@pxref{Creating Structures}). As previously, to print the value of
the structure array, you can type its name:
@example
@group
x
@result{} x =
@{
1x2 struct array containing the fields:
a
b
@}
@end group
@end example
Individual elements of the structure array can be returned by indexing
the variable like @code{@var{x}(1)}, which returns a structure with
two fields:
@example
@group
x(1)
@result{} ans =
@{
a = string1
b = 1
@}
@end group
@end example
Furthermore, the structure array can return a comma separated list of
field values (@pxref{Comma Separated Lists}), if indexed by one of its
own field names. For example:
@example
@group
x.a
@result{}
ans = string1
ans = string2
@end group
@end example
Here is another example, using this comma separated list on the
left-hand side of an assignment:
@example
@group
[x.a] = deal ("new string1", "new string2");
x(1).a
@result{} ans = new string1
x(2).a
@result{} ans = new string2
@end group
@end example
Just as for numerical arrays, it is possible to use vectors as indices
(@pxref{Index Expressions}):
@example
@group
x(3:4) = x(1:2);
[x([1,3]).a] = deal ("other string1", "other string2");
x.a
@result{}
ans = other string1
ans = new string2
ans = other string2
ans = new string2
@end group
@end example
The function @code{size} will return the size of the structure. For
the example above
@example
@group
size (x)
@result{} ans =
1 4
@end group
@end example
Elements can be deleted from a structure array in a similar manner to a
numerical array, by assigning the elements to an empty matrix. For
example
@example
@group
in = struct ("call1", @{x, Inf, "last"@},
"call2", @{x, Inf, "first"@})
@result{} in =
@{
1x3 struct array containing the fields:
call1
call2
@}
in(1) = [];
in.call1
@result{}
ans = Inf
ans = last
@end group
@end example
@node Creating Structures
@subsection Creating Structures
@cindex dynamic naming
Besides the index operator @qcode{"."}, Octave can use dynamic naming
@qcode{"(var)"} or the @code{struct} function to create structures. Dynamic
naming uses the string value of a variable as the field name. For example:
@example
@group
a = "field2";
x.a = 1;
x.(a) = 2;
x
@result{} x =
@{
a = 1
field2 = 2
@}
@end group
@end example
@noindent
Dynamic indexing also allows you to use arbitrary strings, not merely
valid Octave identifiers (note that this does not work on @sc{matlab}):
@example
@group
a = "long field with spaces (and funny char$)";
x.a = 1;
x.(a) = 2;
x
@result{} x =
@{
a = 1
long field with spaces (and funny char$) = 2
@}
@end group
@end example
@noindent
The warning id @code{Octave:matlab-incompatible} can be enabled to warn
about this usage. @xref{XREFwarning_ids,,warning_ids}.
More realistically, all of the functions that operate on strings can be used
to build the correct field name before it is entered into the data structure.
@example
@group
names = ["Bill"; "Mary"; "John"];
ages = [37; 26; 31];
for i = 1:rows (names)
database.(names(i,:)) = ages(i);
endfor
database
@result{} database =
@{
Bill = 37
Mary = 26
John = 31
@}
@end group
@end example
The third way to create structures is the @code{struct} command. @code{struct}
takes pairs of arguments, where the first argument in the pair is the fieldname
to include in the structure and the second is a scalar or cell array,
representing the values to include in the structure or structure array. For
example:
@example
@group
struct ("field1", 1, "field2", 2)
@result{} ans =
@{
field1 = 1
field2 = 2
@}
@end group
@end example
If the values passed to @code{struct} are a mix of scalar and cell
arrays, then the scalar arguments are expanded to create a
structure array with a consistent dimension. For example:
@example
@group
s = struct ("field1", @{1, "one"@}, "field2", @{2, "two"@},
"field3", 3);
s.field1
@result{}
ans = 1
ans = one
s.field2
@result{}
ans = 2
ans = two
s.field3
@result{}
ans = 3
ans = 3
@end group
@end example
If you want to create a struct which contains a cell array as an
individual field, you must wrap it in another cell array as shown in
the following example:
@example
@group
struct ("field1", @{@{1, "one"@}@}, "field2", 2)
@result{} ans =
@{
field1 =
@{
[1,1] = 1
[1,2] = one
@}
field2 = 2
@}
@end group
@end example
@c struct libinterp/octave-value/ov-struct.cc
@anchor{XREFstruct}
@deftypefn {Built-in Function} {@var{s} =} struct ()
@deftypefnx {Built-in Function} {@var{s} =} struct (@var{field1}, @var{value1}, @var{field2}, @var{value2}, @dots{})
@deftypefnx {Built-in Function} {@var{s} =} struct (@var{obj})
Create a scalar or array structure and initialize its values. The
@var{field1}, @var{field2}, @dots{} variables are strings specifying the
names of the fields and the @var{value1}, @var{value2}, @dots{}
variables can be of any type.
If the values are cell arrays, create a structure array and initialize
its values. The dimensions of each cell array of values must match.
Singleton cells and non-cell values are repeated so that they fill
the entire array. If the cells are empty, create an empty structure
array with the specified field names.
If the argument is an object, return the underlying struct.
Observe that the syntax is optimized for struct @strong{arrays}. Consider
the following examples:
@example
@group
struct ("foo", 1)
@result{} scalar structure containing the fields:
foo = 1
struct ("foo", @{@})
@result{} 0x0 struct array containing the fields:
foo
struct ("foo", @{ @{@} @})
@result{} scalar structure containing the fields:
foo = @{@}(0x0)
struct ("foo", @{1, 2, 3@})
@result{} 1x3 struct array containing the fields:
foo
@end group
@end example
@noindent
The first case is an ordinary scalar struct---one field, one value. The
second produces an empty struct array with one field and no values, since
s being passed an empty cell array of struct array values. When the value is
a cell array containing a single entry, this becomes a scalar struct with
that single entry as the value of the field. That single entry happens
to be an empty cell array.
Finally, if the value is a non-scalar cell array, then @code{struct}
produces a struct @strong{array}.
@seealso{@ref{XREFcell2struct,,cell2struct}, @ref{XREFfieldnames,,fieldnames}, @ref{XREForderfields,,orderfields}, @ref{XREFgetfield,,getfield}, @ref{XREFsetfield,,setfield}, @ref{XREFrmfield,,rmfield}, @ref{XREFstructfun,,structfun}}
@end deftypefn
The function @code{isstruct} can be used to test if an object is a
structure or a structure array.
@c isstruct libinterp/octave-value/ov-struct.cc
@anchor{XREFisstruct}
@deftypefn {Built-in Function} {} isstruct (@var{x})
Return true if @var{x} is a structure or a structure array.
@seealso{@ref{XREFismatrix,,ismatrix}, @ref{XREFiscell,,iscell}, @ref{XREFisa,,isa}}
@end deftypefn
@node Manipulating Structures
@subsection Manipulating Structures
Other functions that can manipulate the fields of a structure are given below.
@c nfields libinterp/octave-value/ov-struct.cc
@anchor{XREFnfields}
@deftypefn {Built-in Function} {} nfields (@var{s})
Return the number of fields of the structure @var{s}.
@seealso{@ref{XREFfieldnames,,fieldnames}}
@end deftypefn
@c fieldnames scripts/general/fieldnames.m
@anchor{XREFfieldnames}
@deftypefn {Function File} {@var{names} =} fieldnames (@var{struct})
@deftypefnx {Function File} {@var{names} =} fieldnames (@var{obj})
@deftypefnx {Function File} {@var{names} =} fieldnames (@var{javaobj})
@deftypefnx {Function File} {@var{names} =} fieldnames ("@var{jclassname}")
Return a cell array of strings with the names of the fields in the
specified input.
When the input is a structure @var{struct}, the names are the elements
of the structure.
When the input is an Octave object @var{obj}, the names are the public
properties of the object.
When the input is a Java object @var{javaobj} or Java classname
@var{jclassname} the name are the public data elements of the object or
class.
@seealso{@ref{XREFnfields,,nfields}, @ref{XREFisfield,,isfield}, @ref{XREForderfields,,orderfields}, @ref{XREFstruct,,struct}, @ref{XREFmethods,,methods}}
@end deftypefn
@c isfield libinterp/octave-value/ov-struct.cc
@anchor{XREFisfield}
@deftypefn {Built-in Function} {} isfield (@var{x}, "@var{name}")
@deftypefnx {Built-in Function} {} isfield (@var{x}, @var{name})
Return true if the @var{x} is a structure and it includes an element named
@var{name}. If @var{name} is a cell array of strings then a logical array of
equal dimension is returned.
@seealso{@ref{XREFfieldnames,,fieldnames}}
@end deftypefn
@c setfield scripts/miscellaneous/setfield.m
@anchor{XREFsetfield}
@deftypefn {Function File} {@var{s} =} setfield (@var{s}, @var{field}, @var{val})
@deftypefnx {Function File} {@var{s} =} setfield (@var{s}, @var{idx1}, @var{field1}, @var{idx2}, @var{field2}, @dots{}, @var{val})
Set a field member @var{field} in a structure @var{s} equal to @var{val}.
For example:
@example
@group
@var{s} = struct ();
@var{s} = setfield (@var{s}, "foo bar", 42);
@end group
@end example
@noindent
This is equivalent to
@example
@var{s}.("foo bar") = 42;
@end example
@noindent
Note that ordinary structure syntax @code{@var{s}.foo bar = 42} cannot be
used here, as the field name is not a valid Octave identifier. Using
arbitrary strings for field name is incompatible with @sc{matlab}, so
this usage will warn if the @code{Octave:matlab-incompatible} warning
is set. @xref{XREFwarning_ids}.
With the second calling form, set a field on a structure array,
possibly nested, with successive nested indices @var{idx1},
@var{idx2}, @dots{} and fields @var{field1}, @var{field2}, @dots{}
The indices must be cells containing the desired index at this
nesting depth.
Thus consider instead,
@example
@group
@var{s} = struct ("baz", 42);
setfield (@var{s}, @{1@}, "foo", @{1@}, "bar", 5)
@result{} ans =
scalar structure containing the fields:
baz = 42
foo =
scalar structure containing the fields:
bar = 54
@end group
@end example
Here we first have an ordinary structure array with one field
@code{baz} set to 42. Then we set another field in a nested scalar structure
indexing with two single cells containing the unique desired indices.
Finally an example with nested structure arrays,
@example
@group
@var{sa}.foo = 1;
@var{sa} = setfield (@var{sa}, @{2@}, "bar", @{3@}, "baz", 6);
@var{sa}(2).bar(3)
@result{} ans =
scalar structure containing the fields:
baz = 6
@end group
@end example
Here @var{sa} is a structure array whose field @code{fd} at elements
1 and 2 field is in turn
another structure array whose third element is a structure
Note that the same result as in the above example could be achieved by:
@example
@group
@var{SA}.foo = 1;
@var{SA}(2).bar(3).baz = 6
@end group
@end example
@seealso{@ref{XREFgetfield,,getfield}, @ref{XREFrmfield,,rmfield}, @ref{XREFisfield,,isfield}, @ref{XREFfieldnames,,fieldnames}, @ref{XREFisstruct,,isstruct}, @ref{XREFstruct,,struct}}
@end deftypefn
@c getfield scripts/miscellaneous/getfield.m
@anchor{XREFgetfield}
@deftypefn {Function File} {[@var{val}] =} getfield (@var{s}, @var{field})
@deftypefnx {Function File} {[@var{val}] =} getfield (@var{s}, @var{idx1}, @var{field1}, @var{idx2}, @var{field2}, @dots{})
Extract a field from a structure (or a nested structure). The syntax
is the same as @code{setfield}, except it omits the final @var{val}
argument, returning this value instead of setting it.
@seealso{@ref{XREFsetfield,,setfield}, @ref{XREFrmfield,,rmfield}, @ref{XREFisfield,,isfield}, @ref{XREFfieldnames,,fieldnames}, @ref{XREFisstruct,,isstruct}, @ref{XREFstruct,,struct}}
@end deftypefn
@c rmfield libinterp/octave-value/ov-struct.cc
@anchor{XREFrmfield}
@deftypefn {Built-in Function} {@var{s} =} rmfield (@var{s}, "@var{f}")
@deftypefnx {Built-in Function} {@var{s} =} rmfield (@var{s}, @var{f})
Return a @emph{copy} of the structure (array) @var{s} with the field @var{f}
removed. If @var{f} is a cell array of strings or a character array, remove
each of the named fields.
@seealso{@ref{XREForderfields,,orderfields}, @ref{XREFfieldnames,,fieldnames}}
@end deftypefn
@c orderfields scripts/miscellaneous/orderfields.m
@anchor{XREForderfields}
@deftypefn {Function File} {[@var{t}, @var{p}] =} orderfields (@var{s1})
@deftypefnx {Function File} {[@var{t}, @var{p}] =} orderfields (@var{s1}, @var{s2})
Return a copy of @var{s1} with fields arranged alphabetically or as
specified by @var{s2}.
Given one struct, arrange field names in @var{s1} alphabetically.
If the second argument is a struct, arrange field names in @var{s1} as they
appear in @var{s2}. The second argument may also specify the order in a
permutation vector or a cell array of strings containing the fieldnames of
@var{s1} in the desired order.
The optional second output argument @var{p} is assigned the permutation
vector which converts the original name order into the new name order.
Examples:
@example
@group
s = struct ("d", 4, "b", 2, "a", 1, "c", 3);
t1 = orderfields (s)
@result{} t1 =
@{
a = 1
b = 2
c = 3
d = 4
@}
@end group
@group
t = struct ("d", @{@}, "c", @{@}, "b", @{@}, "a", @{@});
t2 = orderfields (s, t)
@result{} t2 =
@{
d = 4
c = 3
b = 2
a = 1
@}
@end group
@group
t3 = orderfields (s, [3, 2, 4, 1])
@result{} t3 =
@{
a = 1
b = 2
c = 3
d = 4
@}
@end group
@group
[t4, p] = orderfields (s, @{"d", "c", "b", "a"@})
@result{} t4 =
@{
d = 4
c = 3
b = 2
a = 1
@}
p =
1
4
2
3
@end group
@end example
@seealso{@ref{XREFgetfield,,getfield}, @ref{XREFrmfield,,rmfield}, @ref{XREFisfield,,isfield}, @ref{XREFisstruct,,isstruct}, @ref{XREFfieldnames,,fieldnames}, @ref{XREFstruct,,struct}}
@end deftypefn
@c substruct scripts/miscellaneous/substruct.m
@anchor{XREFsubstruct}
@deftypefn {Function File} {} substruct (@var{type}, @var{subs}, @dots{})
Create a subscript structure for use with @code{subsref} or
@code{subsasgn}. For example:
@example
@group
idx = substruct ("()", @{3, ":"@})
@result{}
idx =
@{
type = ()
subs =
@{
[1,1] = 3
[1,2] = :
@}
@}
x = [1, 2, 3; 4, 5, 6; 7, 8, 9];
subsref (x, idx)
@result{} 7 8 9
@end group
@end example
@seealso{@ref{XREFsubsref,,subsref}, @ref{XREFsubsasgn,,subsasgn}}
@end deftypefn
@node Processing Data in Structures
@subsection Processing Data in Structures
The simplest way to process data in a structure is within a @code{for}
loop (@pxref{Looping Over Structure Elements}). A similar effect can be
achieved with the @code{structfun} function, where a user defined
function is applied to each field of the structure.
@xref{XREFstructfun,,structfun}.
Alternatively, to process the data in a structure, the structure might
be converted to another type of container before being treated.
@c struct2cell libinterp/octave-value/ov-cell.cc
@anchor{XREFstruct2cell}
@deftypefn {Built-in Function} {@var{c} =} struct2cell (@var{s})
Create a new cell array from the objects stored in the struct object.
If @var{f} is the number of fields in the structure, the resulting
cell array will have a dimension vector corresponding to
@code{[@var{f} size(@var{s})]}. For example:
@example
@group
s = struct ("name", @{"Peter", "Hannah", "Robert"@},
"age", @{23, 16, 3@});
c = struct2cell (s)
@result{} c = @{2x1x3 Cell Array@}
c(1,1,:)(:)
@result{}
@{
[1,1] = Peter
[2,1] = Hannah
[3,1] = Robert
@}
c(2,1,:)(:)
@result{}
@{
[1,1] = 23
[2,1] = 16
[3,1] = 3
@}
@end group
@end example
@seealso{@ref{XREFcell2struct,,cell2struct}, @ref{XREFfieldnames,,fieldnames}}
@end deftypefn
@node Cell Arrays
@section Cell Arrays
@cindex cell arrays
It can be both necessary and convenient to store several variables of
different size or type in one variable. A cell array is a container
class able to do just that. In general cell arrays work just like
@math{N}-dimensional arrays with the exception of the use of @samp{@{}
and @samp{@}} as allocation and indexing operators.
@menu
* Basic Usage of Cell Arrays::
* Creating Cell Arrays::
* Indexing Cell Arrays::
* Cell Arrays of Strings::
* Processing Data in Cell Arrays::
@end menu
@node Basic Usage of Cell Arrays
@subsection Basic Usage of Cell Arrays
@opindex @{
@opindex @}
As an example, the following code creates a cell array containing a
string and a 2-by-2 random matrix
@example
c = @{"a string", rand(2, 2)@};
@end example
@noindent
To access the elements of a cell array, it can be indexed with the @{
and @} operators. Thus, the variable created in the previous example
can be indexed like this:
@example
@group
c@{1@}
@result{} ans = a string
@end group
@end example
@noindent
As with numerical arrays several elements of a cell array can be
extracted by indexing with a vector of indexes
@example
@group
c@{1:2@}
@result{} ans = a string
@result{} ans =
0.593993 0.627732
0.377037 0.033643
@end group
@end example
The indexing operators can also be used to insert or overwrite elements
of a cell array. The following code inserts the scalar 3 on the
third place of the previously created cell array
@example
@group
c@{3@} = 3
@result{} c =
@{
[1,1] = a string
[1,2] =
0.593993 0.627732
0.377037 0.033643
[1,3] = 3
@}
@end group
@end example
Details on indexing cell arrays are explained in @ref{Indexing Cell Arrays}.
In general nested cell arrays are displayed hierarchically as in the
previous example. In some circumstances it makes sense to reference
them by their index, and this can be performed by the @code{celldisp}
function.
@c celldisp scripts/general/celldisp.m
@anchor{XREFcelldisp}
@deftypefn {Function File} {} celldisp (@var{c})
@deftypefnx {Function File} {} celldisp (@var{c}, @var{name})
Recursively display the contents of a cell array. By default the values
are displayed with the name of the variable @var{c}. However, this name
can be replaced with the variable @var{name}. For example:
@example
@group
c = @{1, 2, @{31, 32@}@};
celldisp (c, "b")
@result{}
b@{1@} =
1
b@{2@} =
2
b@{3@}@{1@} =
31
b@{3@}@{2@} =
32
@end group
@end example
@seealso{@ref{XREFdisp,,disp}}
@end deftypefn
To test if an object is a cell array, use the @code{iscell}
function. For example:
@example
@group
iscell (c)
@result{} ans = 1
iscell (3)
@result{} ans = 0
@end group
@end example
@c iscell libinterp/octave-value/ov-cell.cc
@anchor{XREFiscell}
@deftypefn {Built-in Function} {} iscell (@var{x})
Return true if @var{x} is a cell array object.
@seealso{@ref{XREFismatrix,,ismatrix}, @ref{XREFisstruct,,isstruct}, @ref{XREFiscellstr,,iscellstr}, @ref{XREFisa,,isa}}
@end deftypefn
@node Creating Cell Arrays
@subsection Creating Cell Arrays
The introductory example (@pxref{Basic Usage of Cell Arrays}) showed
how to create a cell array containing currently available variables.
In many situations, however, it is useful to create a cell array and
then fill it with data.
The @code{cell} function returns a cell array of a given size, containing
empty matrices. This function is similar to the @code{zeros}
function for creating new numerical arrays. The following example creates
a 2-by-2 cell array containing empty matrices
@example
@group
c = cell (2,2)
@result{} c =
@{
[1,1] = [](0x0)
[2,1] = [](0x0)
[1,2] = [](0x0)
[2,2] = [](0x0)
@}
@end group
@end example
Just like numerical arrays, cell arrays can be multi-dimensional. The
@code{cell} function accepts any number of positive integers to describe
the size of the returned cell array. It is also possible to set the size
of the cell array through a vector of positive integers. In the
following example two cell arrays of equal size are created, and the size
of the first one is displayed
@example
@group
c1 = cell (3, 4, 5);
c2 = cell ( [3, 4, 5] );
size (c1)
@result{} ans =
3 4 5
@end group
@end example
@noindent
As can be seen, the @ref{XREFsize,,size} function also works
for cell arrays. As do other functions describing the size of an
object, such as @ref{XREFlength,,length}, @ref{XREFnumel,, numel},
@ref{XREFrows,,rows}, and @ref{XREFcolumns,,columns}.
@c cell libinterp/octave-value/ov-cell.cc
@anchor{XREFcell}
@deftypefn {Built-in Function} {} cell (@var{n})
@deftypefnx {Built-in Function} {} cell (@var{m}, @var{n})
@deftypefnx {Built-in Function} {} cell (@var{m}, @var{n}, @var{k}, @dots{})
@deftypefnx {Built-in Function} {} cell ([@var{m} @var{n} @dots{}])
Create a new cell array object.
If invoked with a single scalar integer argument, return a square
@nospell{NxN} cell array. If invoked with two or more scalar
integer arguments, or a vector of integer values, return an array with
the given dimensions.
@seealso{@ref{XREFcellstr,,cellstr}, @ref{XREFmat2cell,,mat2cell}, @ref{XREFnum2cell,,num2cell}, @ref{XREFstruct2cell,,struct2cell}}
@end deftypefn
As an alternative to creating empty cell arrays, and then filling them, it
is possible to convert numerical arrays into cell arrays using the
@code{num2cell}, @code{mat2cell} and @code{cellslices} functions.
@c num2cell libinterp/corefcn/cellfun.cc
@anchor{XREFnum2cell}
@deftypefn {Built-in Function} {@var{C} =} num2cell (@var{A})
@deftypefnx {Built-in Function} {@var{C} =} num2cell (@var{A}, @var{dim})
Convert the numeric matrix @var{A} to a cell array. If @var{dim} is
defined, the value @var{C} is of dimension 1 in this dimension and the
elements of @var{A} are placed into @var{C} in slices. For example:
@example
@group
num2cell ([1,2;3,4])
@result{}
@{
[1,1] = 1
[2,1] = 3
[1,2] = 2
[2,2] = 4
@}
num2cell ([1,2;3,4],1)
@result{}
@{
[1,1] =
1
3
[1,2] =
2
4
@}
@end group
@end example
@seealso{@ref{XREFmat2cell,,mat2cell}}
@end deftypefn
@c mat2cell libinterp/corefcn/cellfun.cc
@anchor{XREFmat2cell}
@deftypefn {Built-in Function} {@var{C} =} mat2cell (@var{A}, @var{m}, @var{n})
@deftypefnx {Built-in Function} {@var{C} =} mat2cell (@var{A}, @var{d1}, @var{d2}, @dots{})
@deftypefnx {Built-in Function} {@var{C} =} mat2cell (@var{A}, @var{r})
Convert the matrix @var{A} to a cell array. If @var{A} is 2-D, then
it is required that @code{sum (@var{m}) == size (@var{A}, 1)} and
@code{sum (@var{n}) == size (@var{A}, 2)}. Similarly, if @var{A} is
multi-dimensional and the number of dimensional arguments is equal
to the dimensions of @var{A}, then it is required that @code{sum (@var{di})
== size (@var{A}, i)}.
Given a single dimensional argument @var{r}, the other dimensional
arguments are assumed to equal @code{size (@var{A},@var{i})}.
An example of the use of mat2cell is
@example
mat2cell (reshape (1:16,4,4), [3,1], [3,1])
@result{}
@{
[1,1] =
1 5 9
2 6 10
3 7 11
[2,1] =
4 8 12
[1,2] =
13
14
15
[2,2] = 16
@}
@end example
@seealso{@ref{XREFnum2cell,,num2cell}, @ref{XREFcell2mat,,cell2mat}}
@end deftypefn
@c cellslices libinterp/corefcn/cellfun.cc
@anchor{XREFcellslices}
@deftypefn {Built-in Function} {@var{sl} =} cellslices (@var{x}, @var{lb}, @var{ub}, @var{dim})
Given an array @var{x}, this function produces a cell array of slices from
the array determined by the index vectors @var{lb}, @var{ub}, for lower and
upper bounds, respectively. In other words, it is equivalent to the
following code:
@example
@group
n = length (lb);
sl = cell (1, n);
for i = 1:length (lb)
sl@{i@} = x(:,@dots{},lb(i):ub(i),@dots{},:);
endfor
@end group
@end example
The position of the index is determined by @var{dim}. If not specified,
slicing is done along the first non-singleton dimension.
@seealso{@ref{XREFcell2mat,,cell2mat}, @ref{XREFcellindexmat,,cellindexmat}, @ref{XREFcellfun,,cellfun}}
@end deftypefn
@node Indexing Cell Arrays
@subsection Indexing Cell Arrays
As shown in @pxref{Basic Usage of Cell Arrays} elements can be
extracted from cell arrays using the @samp{@{} and @samp{@}}
operators. If you want to extract or access subarrays which are still
cell arrays, you need to use the @samp{(} and @samp{)} operators. The
following example illustrates the difference:
@example
@group
c = @{"1", "2", "3"; "x", "y", "z"; "4", "5", "6"@};
c@{2,3@}
@result{} ans = z
c(2,3)
@result{} ans =
@{
[1,1] = z
@}
@end group
@end example
@noindent So with @samp{@{@}} you access elements of a cell
array, while with @samp{()} you access a sub array of a cell
array.
Using the @samp{(} and @samp{)} operators, indexing works for cell
arrays like for multi-dimensional arrays. As an example, all the rows
of the first and third column of a cell array can be set to @code{0}
with the following command:
@example
@group
c(:, [1, 3]) = @{0@}
@result{} =
@{
[1,1] = 0
[2,1] = 0
[3,1] = 0
[1,2] = 2
[2,2] = 10
[3,2] = 20
[1,3] = 0
[2,3] = 0
[3,3] = 0
@}
@end group
@end example
Note, that the above can also be achieved like this:
@example
c(:, [1, 3]) = 0;
@end example
@noindent Here, the scalar @samp{0} is automatically promoted to
cell array @samp{@{0@}} and then assigned to the subarray of @code{c}.
To give another example for indexing cell arrays with @samp{()}, you
can exchange the first and the second row of a cell array as in the
following command:
@example
@group
c = @{1, 2, 3; 4, 5, 6@};
c([1, 2], :) = c([2, 1], :)
@result{} =
@{
[1,1] = 4
[2,1] = 1
[1,2] = 5
[2,2] = 2
[1,3] = 6
[2,3] = 3
@}
@end group
@end example
Accessing multiple elements of a cell array with the @samp{@{} and
@samp{@}} operators will result in a comma-separated list of all the
requested elements (@pxref{Comma Separated Lists}). Using the
@samp{@{} and @samp{@}} operators the first two rows in the above
example can be swapped back like this:
@example
@group
[c@{[1,2], :@}] = deal (c@{[2, 1], :@})
@result{} =
@{
[1,1] = 1
[2,1] = 4
[1,2] = 2
[2,2] = 5
[1,3] = 3
[2,3] = 6
@}
@end group
@end example
As for struct arrays and numerical arrays, the empty matrix @samp{[]}
can be used to delete elements from a cell array:
@example
@group
x = @{"1", "2"; "3", "4"@};
x(1, :) = []
@result{} x =
@{
[1,1] = 3
[1,2] = 4
@}
@end group
@end example
The following example shows how to just remove the contents of cell
array elements but not delete the space for them:
@example
@group
x = @{"1", "2"; "3", "4"@};
x@{1, :@} = []
@result{} x =
@{
[1,1] = [](0x0)
[2,1] = 3
[1,2] = [](0x0)
[2,2] = 4
@}
@end group
@end example
The indexing operations operate on the cell array and not on the objects
within the cell array. By contrast, @code{cellindexmat} applies matrix indexing
to the objects within each cell array entry and returns the requested values.
@c cellindexmat libinterp/corefcn/cellfun.cc
@anchor{XREFcellindexmat}
@deftypefn {Built-in Function} {@var{y} =} cellindexmat (@var{x}, @var{varargin})
Given a cell array of matrices @var{x}, this function computes
@example
@group
Y = cell (size (X));
for i = 1:numel (X)
Y@{i@} = X@{i@}(varargin@{:@});
endfor
@end group
@end example
@seealso{@ref{XREFcellslices,,cellslices}, @ref{XREFcellfun,,cellfun}}
@end deftypefn
@node Cell Arrays of Strings
@subsection Cell Arrays of Strings
One common use of cell arrays is to store multiple strings in the same
variable. It is also possible to store multiple strings in a
character matrix by letting each row be a string. This, however,
introduces the problem that all strings must be of equal length.
Therefore, it is recommended to use cell arrays to store multiple
strings. For cases, where the character matrix representation is required
for an operation, there are several functions that convert a cell
array of strings to a character array and back. @code{char} and
@code{strvcat} convert cell arrays to a character array
(@pxref{Concatenating Strings}), while the function @code{cellstr}
converts a character array to a cell array of strings:
@example
@group
a = ["hello"; "world"];
c = cellstr (a)
@result{} c =
@{
[1,1] = hello
[2,1] = world
@}
@end group
@end example
@c cellstr libinterp/octave-value/ov-cell.cc
@anchor{XREFcellstr}
@deftypefn {Built-in Function} {@var{cstr} =} cellstr (@var{strmat})
Create a new cell array object from the elements of the string
array @var{strmat}.
Each row of @var{strmat} becomes an element of @var{cstr}. Any trailing
spaces in a row are deleted before conversion.
To convert back from a cellstr to a character array use @code{char}.
@seealso{@ref{XREFcell,,cell}, @ref{XREFchar,,char}}
@end deftypefn
One further advantage of using cell arrays to store multiple strings is
that most functions for string manipulations included with Octave
support this representation. As an example, it is possible to compare
one string with many others using the @code{strcmp} function. If one of
the arguments to this function is a string and the other is a cell array
of strings, each element of the cell array will be compared to the string
argument:
@example
@group
c = @{"hello", "world"@};
strcmp ("hello", c)
@result{} ans =
1 0
@end group
@end example
@noindent
The following string functions support cell arrays of strings:
@code{char}, @code{strvcat}, @code{strcat} (@pxref{Concatenating
Strings}), @code{strcmp}, @code{strncmp}, @code{strcmpi},
@code{strncmpi} (@pxref{Comparing Strings}), @code{str2double},
@code{deblank}, @code{strtrim}, @code{strtrunc}, @code{strfind},
@code{strmatch}, , @code{regexp}, @code{regexpi} (@pxref{Manipulating
Strings}) and @code{str2double} (@pxref{String Conversions}).
The function @code{iscellstr} can be used to test if an object is a
cell array of strings.
@c iscellstr libinterp/octave-value/ov-cell.cc
@anchor{XREFiscellstr}
@deftypefn {Built-in Function} {} iscellstr (@var{cell})
Return true if every element of the cell array @var{cell} is a
character string.
@seealso{@ref{XREFischar,,ischar}}
@end deftypefn
@node Processing Data in Cell Arrays
@subsection Processing Data in Cell Arrays
Data that is stored in a cell array can be processed in several ways
depending on the actual data. The simplest way to process that data
is to iterate through it using one or more @code{for} loops. The same
idea can be implemented more easily through the use of the @code{cellfun}
function that calls a user-specified function on all elements of a cell
array. @xref{XREFcellfun,,cellfun}.
An alternative is to convert the data to a different container, such as
a matrix or a data structure. Depending on the data this is possible
using the @code{cell2mat} and @code{cell2struct} functions.
@c cell2mat scripts/general/cell2mat.m
@anchor{XREFcell2mat}
@deftypefn {Function File} {@var{m} =} cell2mat (@var{c})
Convert the cell array @var{c} into a matrix by concatenating all
elements of @var{c} into a hyperrectangle. Elements of @var{c} must
be numeric, logical, or char matrices; or cell arrays; or structs; and
@code{cat} must be able to concatenate them together.
@seealso{@ref{XREFmat2cell,,mat2cell}, @ref{XREFnum2cell,,num2cell}}
@end deftypefn
@c cell2struct libinterp/octave-value/ov-struct.cc
@anchor{XREFcell2struct}
@deftypefn {Built-in Function} {} cell2struct (@var{cell}, @var{fields})
@deftypefnx {Built-in Function} {} cell2struct (@var{cell}, @var{fields}, @var{dim})
Convert @var{cell} to a structure. The number of fields in @var{fields}
must match the number of elements in @var{cell} along dimension @var{dim},
that is @code{numel (@var{fields}) == size (@var{cell}, @var{dim})}.
If @var{dim} is omitted, a value of 1 is assumed.
@example
@group
A = cell2struct (@{"Peter", "Hannah", "Robert";
185, 170, 168@},
@{"Name","Height"@}, 1);
A(1)
@result{}
@{
Name = Peter
Height = 185
@}
@end group
@end example
@seealso{@ref{XREFstruct2cell,,struct2cell}, @ref{XREFcell2mat,,cell2mat}, @ref{XREFstruct,,struct}}
@end deftypefn
@node Comma Separated Lists
@section Comma Separated Lists
@cindex comma separated lists
@cindex cs-lists
Comma separated lists @footnote{Comma-separated lists are also sometimes
informally referred to as @dfn{cs-lists}.} are the basic argument type
to all Octave functions - both for input and return arguments. In the
example
@example
max (@var{a}, @var{b})
@end example
@noindent
@samp{@var{a}, @var{b}} is a comma separated list. Comma separated lists
can appear on both the right and left hand side of an assignment. For
example
@example
@group
x = [1 0 1 0 0 1 1; 0 0 0 0 0 0 7];
[@var{i}, @var{j}] = find (@var{x}, 2, "last");
@end group
@end example
@noindent
Here, @samp{@var{x}, 2, "last"} is a comma separated list constituting
the input arguments of @code{find}. @code{find} returns a comma
separated list of output arguments which is assigned element by
element to the comma separated list @samp{@var{i}, @var{j}}.
Another example of where comma separated lists are used is in the
creation of a new array with @code{[]} (@pxref{Matrices}) or the
creation of a cell array with @code{@{@}} (@pxref{Basic Usage of Cell
Arrays}). In the expressions
@example
@group
a = [1, 2, 3, 4];
c = @{4, 5, 6, 7@};
@end group
@end example
@noindent
both @samp{1, 2, 3, 4} and @samp{4, 5, 6, 7} are comma separated lists.
Comma separated lists cannot be directly manipulated by the
user. However, both structure arrays and cell arrays can be converted
into comma separated lists, and thus used in place of explicitly
written comma separated lists. This feature is useful in many ways,
as will be shown in the following subsections.
@menu
* Comma Separated Lists Generated from Cell Arrays::
* Comma Separated Lists Generated from Structure Arrays::
@end menu
@node Comma Separated Lists Generated from Cell Arrays
@subsection Comma Separated Lists Generated from Cell Arrays
As has been mentioned above (@pxref{Indexing Cell Arrays}), elements
of a cell array can be extracted into a comma separated list with the
@code{@{} and @code{@}} operators. By surrounding this list with
@code{[} and @code{]}, it can be concatenated into an array. For example:
@example
@group
a = @{1, [2, 3], 4, 5, 6@};
b = [a@{1:4@}]
@result{} b =
1 2 3 4 5
@end group
@end example
Similarly, it is possible to create a new cell array containing cell
elements selected with @code{@{@}}. By surrounding the list with
@samp{@{} and @samp{@}} a new cell array will be created, as the
following example illustrates:
@example
@group
a = @{1, rand(2, 2), "three"@};
b = @{ a@{ [1, 3] @} @}
@result{} b =
@{
[1,1] = 1
[1,2] = three
@}
@end group
@end example
Furthermore, cell elements (accessed by @code{@{@}}) can be passed
directly to a function. The list of elements from the cell array will
be passed as an argument list to a given function as if it is called
with the elements as individual arguments. The two calls to
@code{printf} in the following example are identical but the latter is
simpler and can handle cell arrays of an arbitrary size:
@example
@group
c = @{"GNU", "Octave", "is", "Free", "Software"@};
printf ("%s ", c@{1@}, c@{2@}, c@{3@}, c@{4@}, c@{5@});
@print{} GNU Octave is Free Software
printf ("%s ", c@{:@});
@print{} GNU Octave is Free Software
@end group
@end example
If used on the left-hand side of an assignment, a comma separated list
generated with @code{@{@}} can be assigned to. An example is
@example
@group
in@{1@} = [10, 20, 30, 40, 50, 60, 70, 80, 90];
in@{2@} = inf;
in@{3@} = "last";
in@{4@} = "first";
out = cell (4, 1);
[out@{1:3@}] = find (in@{1 : 3@});
[out@{4:6@}] = find (in@{[1, 2, 4]@})
@result{} out =
@{
[1,1] = 1
[2,1] = 9
[3,1] = 90
[4,1] = 1
[3,1] = 1
[4,1] = 10
@}
@end group
@end example
@node Comma Separated Lists Generated from Structure Arrays
@subsection Comma Separated Lists Generated from Structure Arrays
Structure arrays can equally be used to create comma separated
lists. This is done by addressing one of the fields of a structure
array. For example:
@example
@group
x = ceil (randn (10, 1));
in = struct ("call1", @{x, 3, "last"@},
"call2", @{x, inf, "first"@});
out = struct ("call1", cell (2, 1), "call2", cell (2, 1));
[out.call1] = find (in.call1);
[out.call2] = find (in.call2);
@end group
@end example
|