File: container.texi

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (1639 lines) | stat: -rw-r--r-- 45,891 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
@c DO NOT EDIT!  Generated automatically by munge-texi.pl.

@c Copyright (C) 1996-2013 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c 
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
@c for more details.
@c 
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <http://www.gnu.org/licenses/>.

@node Data Containers
@chapter Data Containers
@cindex containers

Octave includes support for two different mechanisms to contain
arbitrary data types in the same variable.  Structures, which are C-like,
and are indexed with named fields, and cell arrays, where each element
of the array can have a different data type and or shape.  Multiple
input arguments and return values of functions are organized as
another data container, the comma separated list.

@menu
* Structures::
* Cell Arrays::
* Comma Separated Lists::
@end menu

@node Structures
@section Structures
@cindex structures
@cindex data structures

Octave includes support for organizing data in structures.  The current
implementation uses an associative array with indices limited to
strings, but the syntax is more like C-style structures.

@menu
* Basic Usage and Examples::
* Structure Arrays::
* Creating Structures::
* Manipulating Structures::
* Processing Data in Structures::
@end menu

@node Basic Usage and Examples
@subsection Basic Usage and Examples

Here are some examples of using data structures in Octave.

Elements of structures can be of any value type.  For example, the three
expressions

@example
@group
x.a = 1;
x.b = [1, 2; 3, 4];
x.c = "string";
@end group
@end example

@opindex .
@noindent
create a structure with three elements.  The @samp{.} character separates
the structure name from the field name and indicates to Octave that this
variable is a structure.  To print the value of the
structure you can type its name, just as for any other variable:

@example
@group
x
     @result{} x =
        @{
          a = 1
          b =

            1  2
            3  4

          c = string
        @}
@end group
@end example

@noindent
Note that Octave may print the elements in any order.

Structures may be copied just like any other variable:

@example
@group
y = x
     @result{} y =
        @{
          a = 1
          b =

            1  2
            3  4

          c = string
        @}
@end group
@end example

Since structures are themselves values, structure elements may reference
other structures.  The following statements change the value of the
element @code{b} of the structure @code{x} to be a data structure
containing the single element @code{d}, which has a value of 3.

@example
@group
x.b.d = 3;
x.b
     @result{} ans =
        @{
          d = 3
        @}

x
     @result{} x =
        @{
          a = 1
          b =
          @{
            d = 3
          @}

          c = string
        @}
@end group
@end example

Note that when Octave prints the value of a structure that contains
other structures, only a few levels are displayed.  For example:

@example
@group
a.b.c.d.e = 1;
a
     @result{} a =
        @{
          b =
          @{
            c =
            @{
              1x1 struct array containing the fields:

              d: 1x1 struct
            @}
          @}
        @}
@end group
@end example

@noindent
This prevents long and confusing output from large deeply nested
structures.  The number of levels to print for nested structures may be
set with the function @code{struct_levels_to_print}, and the function
@code{print_struct_array_contents} may be used to enable printing of the
contents of structure arrays.

@c struct_levels_to_print libinterp/octave-value/ov-struct.cc
@anchor{XREFstruct_levels_to_print}
@deftypefn  {Built-in Function} {@var{val} =} struct_levels_to_print ()
@deftypefnx {Built-in Function} {@var{old_val} =} struct_levels_to_print (@var{new_val})
@deftypefnx {Built-in Function} {} struct_levels_to_print (@var{new_val}, "local")
Query or set the internal variable that specifies the number of
structure levels to display.

When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.  
The original variable value is restored when exiting the function.
@seealso{@ref{XREFprint_struct_array_contents,,print_struct_array_contents}}
@end deftypefn


@c print_struct_array_contents libinterp/octave-value/ov-struct.cc
@anchor{XREFprint_struct_array_contents}
@deftypefn  {Built-in Function} {@var{val} =} print_struct_array_contents ()
@deftypefnx {Built-in Function} {@var{old_val} =} print_struct_array_contents (@var{new_val})
@deftypefnx {Built-in Function} {} print_struct_array_contents (@var{new_val}, "local")
Query or set the internal variable that specifies whether to print struct
array contents.

If true, values of struct array elements are printed.
This variable does not affect scalar structures whose elements are always
printed.  In both cases, however, printing will be limited to
the number of levels specified by @var{struct_levels_to_print}.

When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.  
The original variable value is restored when exiting the function.
@seealso{@ref{XREFstruct_levels_to_print,,struct_levels_to_print}}
@end deftypefn


Functions can return structures.  For example, the following function
separates the real and complex parts of a matrix and stores them in two
elements of the same structure variable.

@example
@group
function y = f (x)
  y.re = real (x);
  y.im = imag (x);
endfunction
@end group
@end example

When called with a complex-valued argument, @code{f} returns the data
structure containing the real and imaginary parts of the original
function argument.

@example
@group
f (rand (2) + rand (2) * I)
     @result{} ans =
        @{
          im =

            0.26475  0.14828
            0.18436  0.83669

          re =

            0.040239  0.242160
            0.238081  0.402523

        @}
@end group
@end example

Function return lists can include structure elements, and they may be
indexed like any other variable.  For example:

@example
[ x.u, x.s(2:3,2:3), x.v ] = svd ([1, 2; 3, 4]);
x
     @result{} x =
        @{
          u =

            -0.40455  -0.91451
            -0.91451   0.40455

          s =

             0.00000   0.00000   0.00000
             0.00000   5.46499   0.00000
             0.00000   0.00000   0.36597

          v =

            -0.57605   0.81742
            -0.81742  -0.57605

        @}
@end example

It is also possible to cycle through all the elements of a structure in
a loop, using a special form of the @code{for} statement
(@pxref{Looping Over Structure Elements}).

@node Structure Arrays
@subsection Structure Arrays

A structure array is a particular instance of a structure, where each of
the fields of the structure is represented by a cell array.  Each of
these cell arrays has the same dimensions.  Conceptually, a structure
array can also be seen as an array of structures with identical
fields.  An example of the creation of a structure array is

@example
@group
x(1).a = "string1";
x(2).a = "string2";
x(1).b = 1;
x(2).b = 2;
@end group
@end example

@noindent
which creates a 2-by-1 structure array with two fields.  Another way
to create a structure array is with the @code{struct} function
(@pxref{Creating Structures}).  As previously, to print the value of
the structure array, you can type its name: 

@example
@group
x
     @result{} x =
        @{
          1x2 struct array containing the fields:

            a
            b
        @}  
@end group
@end example

Individual elements of the structure array can be returned by indexing
the variable like @code{@var{x}(1)}, which returns a structure with 
two fields:

@example
@group
x(1)
     @result{} ans =
        @{
          a = string1
          b =  1
        @}
@end group
@end example

Furthermore, the structure array can return a comma separated list of
field values (@pxref{Comma Separated Lists}), if indexed by one of its
own field names.  For example:

@example
@group
x.a
     @result{}
        ans = string1
        ans = string2
@end group
@end example

Here is another example, using this comma separated list on the
left-hand side of an assignment:

@example
@group
[x.a] = deal ("new string1", "new string2");
 x(1).a
     @result{} ans = new string1
 x(2).a
     @result{} ans = new string2
@end group
@end example

Just as for numerical arrays, it is possible to use vectors as indices
(@pxref{Index Expressions}):

@example
@group
x(3:4) = x(1:2);
[x([1,3]).a] = deal ("other string1", "other string2");
x.a
     @result{}
        ans = other string1
        ans = new string2
        ans = other string2
        ans = new string2
@end group
@end example

The function @code{size} will return the size of the structure.  For
the example above

@example
@group
size (x)
     @result{} ans =

          1   4
@end group
@end example

Elements can be deleted from a structure array in a similar manner to a
numerical array, by assigning the elements to an empty matrix.  For
example

@example
@group
in = struct ("call1", @{x, Inf, "last"@}, 
             "call2", @{x, Inf, "first"@})
     @result{} in =
        @{
          1x3 struct array containing the fields:

            call1
            call2
        @}

in(1) = [];
in.call1
     @result{}
       ans = Inf
       ans = last
@end group
@end example

@node Creating Structures
@subsection Creating Structures
@cindex dynamic naming

Besides the index operator @qcode{"."}, Octave can use dynamic naming
@qcode{"(var)"} or the @code{struct} function to create structures.  Dynamic
naming uses the string value of a variable as the field name.  For example:

@example
@group
a = "field2";
x.a = 1;
x.(a) = 2;
x
     @result{} x =
        @{
          a =  1
          field2 =  2
        @}
@end group
@end example

@noindent
Dynamic indexing also allows you to use arbitrary strings, not merely
valid Octave identifiers (note that this does not work on @sc{matlab}):

@example
@group
a = "long field with spaces (and funny char$)";
x.a = 1;
x.(a) = 2;
x
     @result{} x =
        @{
          a =  1
          long field with spaces (and funny char$) =  2
        @}
@end group
@end example

@noindent
The warning id @code{Octave:matlab-incompatible} can be enabled to warn
about this usage.  @xref{XREFwarning_ids,,warning_ids}.

More realistically, all of the functions that operate on strings can be used
to build the correct field name before it is entered into the data structure.

@example
@group
names = ["Bill"; "Mary"; "John"];
ages  = [37; 26; 31];
for i = 1:rows (names)
  database.(names(i,:)) = ages(i);
endfor
database
     @result{} database =
        @{
          Bill =  37
          Mary =  26
          John =  31
        @}
@end group
@end example

The third way to create structures is the @code{struct} command.  @code{struct}
takes pairs of arguments, where the first argument in the pair is the fieldname
to include in the structure and the second is a scalar or cell array,
representing the values to include in the structure or structure array.  For
example:

@example
@group
struct ("field1", 1, "field2", 2)
@result{} ans =
      @{
        field1 =  1
        field2 =  2
      @}
@end group
@end example

If the values passed to @code{struct} are a mix of scalar and cell
arrays, then the scalar arguments are expanded to create a 
structure array with a consistent dimension.  For example:

@example
@group
s = struct ("field1", @{1, "one"@}, "field2", @{2, "two"@},
        "field3", 3);
s.field1
     @result{} 
        ans =  1
        ans = one

s.field2
     @result{}
        ans =  2
        ans = two

s.field3
     @result{}
        ans =  3
        ans =  3
@end group
@end example

If you want to create a struct which contains a cell array as an
individual field, you must wrap it in another cell array as shown in
the following example:

@example
@group
struct ("field1", @{@{1, "one"@}@}, "field2", 2)
     @result{} ans =
        @{
          field1 =

        @{
          [1,1] =  1
          [1,2] = one
        @}

          field2 =  2
        @}
@end group
@end example

@c struct libinterp/octave-value/ov-struct.cc
@anchor{XREFstruct}
@deftypefn  {Built-in Function} {@var{s} =} struct ()
@deftypefnx {Built-in Function} {@var{s} =} struct (@var{field1}, @var{value1}, @var{field2}, @var{value2}, @dots{})
@deftypefnx {Built-in Function} {@var{s} =} struct (@var{obj})

Create a scalar or array structure and initialize its values.  The
@var{field1}, @var{field2}, @dots{} variables are strings specifying the
names of the fields and the @var{value1}, @var{value2}, @dots{}
variables can be of any type.

If the values are cell arrays, create a structure array and initialize
its values.  The dimensions of each cell array of values must match.
Singleton cells and non-cell values are repeated so that they fill
the entire array.  If the cells are empty, create an empty structure
array with the specified field names.

If the argument is an object, return the underlying struct.

Observe that the syntax is optimized for struct @strong{arrays}.  Consider
the following examples:

@example
@group
struct ("foo", 1)
  @result{} scalar structure containing the fields:
    foo =  1

struct ("foo", @{@})
  @result{} 0x0 struct array containing the fields:
    foo

struct ("foo", @{ @{@} @})
  @result{} scalar structure containing the fields:
    foo = @{@}(0x0)

struct ("foo", @{1, 2, 3@})
  @result{} 1x3 struct array containing the fields:
    foo

@end group
@end example

@noindent
The first case is an ordinary scalar struct---one field, one value.  The
second produces an empty struct array with one field and no values, since
s being passed an empty cell array of struct array values.  When the value is
a cell array containing a single entry, this becomes a scalar struct with
that single entry as the value of the field.  That single entry happens
to be an empty cell array.

Finally, if the value is a non-scalar cell array, then @code{struct}
produces a struct @strong{array}.
@seealso{@ref{XREFcell2struct,,cell2struct}, @ref{XREFfieldnames,,fieldnames}, @ref{XREForderfields,,orderfields}, @ref{XREFgetfield,,getfield}, @ref{XREFsetfield,,setfield}, @ref{XREFrmfield,,rmfield}, @ref{XREFstructfun,,structfun}}
@end deftypefn


The function @code{isstruct} can be used to test if an object is a
structure or a structure array.

@c isstruct libinterp/octave-value/ov-struct.cc
@anchor{XREFisstruct}
@deftypefn {Built-in Function} {} isstruct (@var{x})
Return true if @var{x} is a structure or a structure array.
@seealso{@ref{XREFismatrix,,ismatrix}, @ref{XREFiscell,,iscell}, @ref{XREFisa,,isa}}
@end deftypefn


@node Manipulating Structures
@subsection Manipulating Structures

Other functions that can manipulate the fields of a structure are given below.

@c nfields libinterp/octave-value/ov-struct.cc
@anchor{XREFnfields}
@deftypefn {Built-in Function} {} nfields (@var{s})
Return the number of fields of the structure @var{s}.
@seealso{@ref{XREFfieldnames,,fieldnames}}
@end deftypefn


@c fieldnames scripts/general/fieldnames.m
@anchor{XREFfieldnames}
@deftypefn  {Function File} {@var{names} =} fieldnames (@var{struct})
@deftypefnx {Function File} {@var{names} =} fieldnames (@var{obj})
@deftypefnx {Function File} {@var{names} =} fieldnames (@var{javaobj})
@deftypefnx {Function File} {@var{names} =} fieldnames ("@var{jclassname}")
Return a cell array of strings with the names of the fields in the
specified input.

When the input is a structure @var{struct}, the names are the elements
of the structure.

When the input is an Octave object @var{obj}, the names are the public
properties of the object.

When the input is a Java object @var{javaobj} or Java classname
@var{jclassname} the name are the public data elements of the object or
class.
@seealso{@ref{XREFnfields,,nfields}, @ref{XREFisfield,,isfield}, @ref{XREForderfields,,orderfields}, @ref{XREFstruct,,struct}, @ref{XREFmethods,,methods}}
@end deftypefn


@c isfield libinterp/octave-value/ov-struct.cc
@anchor{XREFisfield}
@deftypefn  {Built-in Function} {} isfield (@var{x}, "@var{name}")
@deftypefnx {Built-in Function} {} isfield (@var{x}, @var{name})
Return true if the @var{x} is a structure and it includes an element named
@var{name}.  If @var{name} is a cell array of strings then a logical array of
equal dimension is returned.
@seealso{@ref{XREFfieldnames,,fieldnames}}
@end deftypefn


@c setfield scripts/miscellaneous/setfield.m
@anchor{XREFsetfield}
@deftypefn  {Function File} {@var{s} =} setfield (@var{s}, @var{field}, @var{val})
@deftypefnx {Function File} {@var{s} =} setfield (@var{s}, @var{idx1}, @var{field1}, @var{idx2}, @var{field2}, @dots{}, @var{val})

Set a field member @var{field} in a structure @var{s} equal to @var{val}. 
For example:

@example
@group
@var{s} = struct ();
@var{s} = setfield (@var{s}, "foo bar", 42);
@end group
@end example

@noindent
This is equivalent to

@example
@var{s}.("foo bar") = 42;
@end example

@noindent
Note that ordinary structure syntax @code{@var{s}.foo bar = 42} cannot be
used here, as the field name is not a valid Octave identifier.  Using
arbitrary strings for field name is incompatible with @sc{matlab}, so
this usage will warn if the @code{Octave:matlab-incompatible} warning
is set.  @xref{XREFwarning_ids}.

With the second calling form, set a field on a structure array,
possibly nested, with successive nested indices @var{idx1},
@var{idx2}, @dots{} and fields @var{field1}, @var{field2}, @dots{}
The indices must be cells containing the desired index at this
nesting depth.

Thus consider instead,

@example
@group
@var{s} = struct ("baz", 42);
setfield (@var{s}, @{1@}, "foo", @{1@}, "bar", 5)
    @result{} ans =
    scalar structure containing the fields:
      baz =  42
      foo =
        scalar structure containing the fields:
          bar =  54
@end group
@end example

Here we first have an ordinary structure array with one field
@code{baz} set to 42.  Then we set another field in a nested scalar structure
indexing with two single cells containing the unique desired indices.

Finally an example with nested structure arrays,

@example
@group
@var{sa}.foo = 1;
@var{sa} = setfield (@var{sa}, @{2@}, "bar", @{3@}, "baz", 6);
@var{sa}(2).bar(3)
     @result{} ans =
     scalar structure containing the fields:
       baz =  6
@end group
@end example

Here @var{sa} is a structure array whose field @code{fd} at elements
1 and 2 field is in turn
another structure array whose third element is a structure

Note that the same result as in the above example could be achieved by:

@example
@group
@var{SA}.foo = 1;
@var{SA}(2).bar(3).baz = 6
@end group
@end example
@seealso{@ref{XREFgetfield,,getfield}, @ref{XREFrmfield,,rmfield}, @ref{XREFisfield,,isfield}, @ref{XREFfieldnames,,fieldnames}, @ref{XREFisstruct,,isstruct}, @ref{XREFstruct,,struct}}
@end deftypefn


@c getfield scripts/miscellaneous/getfield.m
@anchor{XREFgetfield}
@deftypefn  {Function File} {[@var{val}] =} getfield (@var{s}, @var{field})
@deftypefnx {Function File} {[@var{val}] =} getfield (@var{s}, @var{idx1}, @var{field1}, @var{idx2}, @var{field2}, @dots{})
Extract a field from a structure (or a nested structure).  The syntax
is the same as @code{setfield}, except it omits the final @var{val}
argument, returning this value instead of setting it.

@seealso{@ref{XREFsetfield,,setfield}, @ref{XREFrmfield,,rmfield}, @ref{XREFisfield,,isfield}, @ref{XREFfieldnames,,fieldnames}, @ref{XREFisstruct,,isstruct}, @ref{XREFstruct,,struct}}
@end deftypefn


@c rmfield libinterp/octave-value/ov-struct.cc
@anchor{XREFrmfield}
@deftypefn  {Built-in Function} {@var{s} =} rmfield (@var{s}, "@var{f}")
@deftypefnx {Built-in Function} {@var{s} =} rmfield (@var{s}, @var{f})
Return a @emph{copy} of the structure (array) @var{s} with the field @var{f}
removed.  If @var{f} is a cell array of strings or a character array, remove
each of the named fields.
@seealso{@ref{XREForderfields,,orderfields}, @ref{XREFfieldnames,,fieldnames}}
@end deftypefn


@c orderfields scripts/miscellaneous/orderfields.m
@anchor{XREForderfields}
@deftypefn  {Function File} {[@var{t}, @var{p}] =} orderfields (@var{s1})
@deftypefnx {Function File} {[@var{t}, @var{p}] =} orderfields (@var{s1}, @var{s2})
Return a copy of @var{s1} with fields arranged alphabetically or as
specified by @var{s2}.

Given one struct, arrange field names in @var{s1} alphabetically.

If the second argument is a struct, arrange field names in @var{s1} as they
appear in @var{s2}.  The second argument may also specify the order in a
permutation vector or a cell array of strings containing the fieldnames of
@var{s1} in the desired order.

The optional second output argument @var{p} is assigned the permutation
vector which converts the original name order into the new name order.

Examples:

@example
@group
s = struct ("d", 4, "b", 2, "a", 1, "c", 3);
t1 = orderfields (s)
     @result{} t1 =
        @{
          a =  1
          b =  2
          c =  3
          d =  4
        @}
@end group
@group
t = struct ("d", @{@}, "c", @{@}, "b", @{@}, "a", @{@});
t2 = orderfields (s, t)
     @result{} t2 =
        @{
          d =  4
          c =  3
          b =  2
          a =  1
        @}
@end group
@group
t3 = orderfields (s, [3, 2, 4, 1])
     @result{} t3 =
        @{
          a =  1
          b =  2
          c =  3
          d =  4
        @}
@end group
@group
[t4, p] = orderfields (s, @{"d", "c", "b", "a"@})
     @result{} t4 =
        @{
          d =  4
          c =  3
          b =  2
          a =  1
        @}
        p =
           1
           4
           2
           3
@end group
@end example

@seealso{@ref{XREFgetfield,,getfield}, @ref{XREFrmfield,,rmfield}, @ref{XREFisfield,,isfield}, @ref{XREFisstruct,,isstruct}, @ref{XREFfieldnames,,fieldnames}, @ref{XREFstruct,,struct}}
@end deftypefn


@c substruct scripts/miscellaneous/substruct.m
@anchor{XREFsubstruct}
@deftypefn {Function File} {} substruct (@var{type}, @var{subs}, @dots{})
Create a subscript structure for use with @code{subsref} or
@code{subsasgn}.  For example:

@example
@group
idx = substruct ("()", @{3, ":"@})
     @result{}
       idx =
       @{
         type = ()
         subs =
         @{
           [1,1] =  3
           [1,2] = :
         @}
       @}
x = [1, 2, 3; 4, 5, 6; 7, 8, 9];
subsref (x, idx)
   @result{} 7  8  9
@end group
@end example
@seealso{@ref{XREFsubsref,,subsref}, @ref{XREFsubsasgn,,subsasgn}}
@end deftypefn


@node Processing Data in Structures
@subsection Processing Data in Structures

The simplest way to process data in a structure is within a @code{for}
loop (@pxref{Looping Over Structure Elements}).  A similar effect can be
achieved with the @code{structfun} function, where a user defined
function is applied to each field of the structure.
@xref{XREFstructfun,,structfun}.

Alternatively, to process the data in a structure, the structure might
be converted to another type of container before being treated.

@c struct2cell libinterp/octave-value/ov-cell.cc
@anchor{XREFstruct2cell}
@deftypefn {Built-in Function} {@var{c} =} struct2cell (@var{s})
Create a new cell array from the objects stored in the struct object.
If @var{f} is the number of fields in the structure, the resulting
cell array will have a dimension vector corresponding to
@code{[@var{f} size(@var{s})]}.  For example:

@example
@group
s = struct ("name", @{"Peter", "Hannah", "Robert"@},
           "age", @{23, 16, 3@});
c = struct2cell (s)
   @result{} c = @{2x1x3 Cell Array@}
c(1,1,:)(:)
   @result{}
      @{
        [1,1] = Peter
        [2,1] = Hannah
        [3,1] = Robert
      @}
c(2,1,:)(:)
   @result{}
      @{
        [1,1] = 23
        [2,1] = 16
        [3,1] = 3
      @}
@end group
@end example

@seealso{@ref{XREFcell2struct,,cell2struct}, @ref{XREFfieldnames,,fieldnames}}
@end deftypefn


@node Cell Arrays
@section Cell Arrays
@cindex cell arrays

It can be both necessary and convenient to store several variables of
different size or type in one variable.  A cell array is a container
class able to do just that.  In general cell arrays work just like
@math{N}-dimensional arrays with the exception of the use of @samp{@{}
and @samp{@}} as allocation and indexing operators.

@menu
* Basic Usage of Cell Arrays::
* Creating Cell Arrays::
* Indexing Cell Arrays::
* Cell Arrays of Strings::
* Processing Data in Cell Arrays::
@end menu

@node Basic Usage of Cell Arrays
@subsection Basic Usage of Cell Arrays
@opindex @{
@opindex @}
As an example, the following code creates a cell array containing a
string and a 2-by-2 random matrix

@example
c = @{"a string", rand(2, 2)@};
@end example

@noindent
To access the elements of a cell array, it can be indexed with the @{
and @} operators.  Thus, the variable created in the previous example
can be indexed like this:

@example
@group
c@{1@}
     @result{} ans = a string
@end group
@end example

@noindent
As with numerical arrays several elements of a cell array can be
extracted by indexing with a vector of indexes

@example
@group
c@{1:2@}
     @result{} ans = a string
     @result{} ans =

               0.593993   0.627732
               0.377037   0.033643
@end group
@end example

The indexing operators can also be used to insert or overwrite elements
of a cell array.  The following code inserts the scalar 3 on the
third place of the previously created cell array

@example
@group
c@{3@} = 3
     @result{} c =

         @{
           [1,1] = a string
           [1,2] =

              0.593993   0.627732
              0.377037   0.033643

           [1,3] =  3
         @}
@end group
@end example

Details on indexing cell arrays are explained in @ref{Indexing Cell Arrays}.

In general nested cell arrays are displayed hierarchically as in the
previous example.  In some circumstances it makes sense to reference
them by their index, and this can be performed by the @code{celldisp}
function.

@c celldisp scripts/general/celldisp.m
@anchor{XREFcelldisp}
@deftypefn  {Function File} {} celldisp (@var{c})
@deftypefnx {Function File} {} celldisp (@var{c}, @var{name})
Recursively display the contents of a cell array.  By default the values
are displayed with the name of the variable @var{c}.  However, this name
can be replaced with the variable @var{name}.  For example:

@example
@group
c = @{1, 2, @{31, 32@}@};
celldisp (c, "b")
   @result{}
      b@{1@} =
       1
      b@{2@} =
       2
      b@{3@}@{1@} =
       31
      b@{3@}@{2@} =
       32
@end group
@end example

@seealso{@ref{XREFdisp,,disp}}
@end deftypefn


To test if an object is a cell array, use the @code{iscell}
function.  For example:

@example
@group
iscell (c)
     @result{} ans = 1

iscell (3)
     @result{} ans = 0

@end group
@end example

@c iscell libinterp/octave-value/ov-cell.cc
@anchor{XREFiscell}
@deftypefn {Built-in Function} {} iscell (@var{x})
Return true if @var{x} is a cell array object.
@seealso{@ref{XREFismatrix,,ismatrix}, @ref{XREFisstruct,,isstruct}, @ref{XREFiscellstr,,iscellstr}, @ref{XREFisa,,isa}}
@end deftypefn


@node Creating Cell Arrays
@subsection Creating Cell Arrays

The introductory example (@pxref{Basic Usage of Cell Arrays}) showed
how to create a cell array containing currently available variables.
In many situations, however, it is useful to create a cell array and
then fill it with data. 

The @code{cell} function returns a cell array of a given size, containing
empty matrices.  This function is similar to the @code{zeros}
function for creating new numerical arrays.  The following example creates
a 2-by-2 cell array containing empty matrices

@example
@group
c = cell (2,2)
     @result{} c =

         @{
           [1,1] = [](0x0)
           [2,1] = [](0x0)
           [1,2] = [](0x0)
           [2,2] = [](0x0)
         @}
@end group
@end example

Just like numerical arrays, cell arrays can be multi-dimensional.  The
@code{cell} function accepts any number of positive integers to describe
the size of the returned cell array.  It is also possible to set the size
of the cell array through a vector of positive integers.  In the
following example two cell arrays of equal size are created, and the size
of the first one is displayed

@example
@group
c1 = cell (3, 4, 5);
c2 = cell ( [3, 4, 5] );
size (c1)
     @result{} ans =
         3   4   5
@end group
@end example

@noindent
As can be seen, the @ref{XREFsize,,size} function also works
for cell arrays.  As do other functions describing the size of an
object, such as @ref{XREFlength,,length}, @ref{XREFnumel,, numel},
@ref{XREFrows,,rows}, and @ref{XREFcolumns,,columns}.

@c cell libinterp/octave-value/ov-cell.cc
@anchor{XREFcell}
@deftypefn  {Built-in Function} {} cell (@var{n})
@deftypefnx {Built-in Function} {} cell (@var{m}, @var{n})
@deftypefnx {Built-in Function} {} cell (@var{m}, @var{n}, @var{k}, @dots{})
@deftypefnx {Built-in Function} {} cell ([@var{m} @var{n} @dots{}])
Create a new cell array object.

If invoked with a single scalar integer argument, return a square
@nospell{NxN} cell array.  If invoked with two or more scalar
integer arguments, or a vector of integer values, return an array with
the given dimensions.
@seealso{@ref{XREFcellstr,,cellstr}, @ref{XREFmat2cell,,mat2cell}, @ref{XREFnum2cell,,num2cell}, @ref{XREFstruct2cell,,struct2cell}}
@end deftypefn


As an alternative to creating empty cell arrays, and then filling them, it
is possible to convert numerical arrays into cell arrays using the
@code{num2cell}, @code{mat2cell} and @code{cellslices} functions.

@c num2cell libinterp/corefcn/cellfun.cc
@anchor{XREFnum2cell}
@deftypefn  {Built-in Function} {@var{C} =} num2cell (@var{A})
@deftypefnx {Built-in Function} {@var{C} =} num2cell (@var{A}, @var{dim})
Convert the numeric matrix @var{A} to a cell array.  If @var{dim} is
defined, the value @var{C} is of dimension 1 in this dimension and the
elements of @var{A} are placed into @var{C} in slices.  For example:

@example
@group
num2cell ([1,2;3,4])
   @result{}
      @{
        [1,1] =  1
        [2,1] =  3
        [1,2] =  2
        [2,2] =  4
      @}
num2cell ([1,2;3,4],1)
   @result{}
      @{
        [1,1] =
           1
           3
        [1,2] =
           2
           4
      @}
@end group
@end example

@seealso{@ref{XREFmat2cell,,mat2cell}}
@end deftypefn


@c mat2cell libinterp/corefcn/cellfun.cc
@anchor{XREFmat2cell}
@deftypefn  {Built-in Function} {@var{C} =} mat2cell (@var{A}, @var{m}, @var{n})
@deftypefnx {Built-in Function} {@var{C} =} mat2cell (@var{A}, @var{d1}, @var{d2}, @dots{})
@deftypefnx {Built-in Function} {@var{C} =} mat2cell (@var{A}, @var{r})
Convert the matrix @var{A} to a cell array.  If @var{A} is 2-D, then
it is required that @code{sum (@var{m}) == size (@var{A}, 1)} and
@code{sum (@var{n}) == size (@var{A}, 2)}.  Similarly, if @var{A} is
multi-dimensional and the number of dimensional arguments is equal
to the dimensions of @var{A}, then it is required that @code{sum (@var{di})
== size (@var{A}, i)}.

Given a single dimensional argument @var{r}, the other dimensional
arguments are assumed to equal @code{size (@var{A},@var{i})}.

An example of the use of mat2cell is

@example
mat2cell (reshape (1:16,4,4), [3,1], [3,1])
@result{}
@{
   [1,1] =

      1   5   9
      2   6  10
      3   7  11

   [2,1] =

      4   8  12

   [1,2] =

     13
     14
     15

   [2,2] = 16
@}
@end example
@seealso{@ref{XREFnum2cell,,num2cell}, @ref{XREFcell2mat,,cell2mat}}
@end deftypefn


@c cellslices libinterp/corefcn/cellfun.cc
@anchor{XREFcellslices}
@deftypefn {Built-in Function} {@var{sl} =} cellslices (@var{x}, @var{lb}, @var{ub}, @var{dim})
Given an array @var{x}, this function produces a cell array of slices from
the array determined by the index vectors @var{lb}, @var{ub}, for lower and
upper bounds, respectively.  In other words, it is equivalent to the
following code:

@example
@group
n = length (lb);
sl = cell (1, n);
for i = 1:length (lb)
  sl@{i@} = x(:,@dots{},lb(i):ub(i),@dots{},:);
endfor
@end group
@end example

The position of the index is determined by @var{dim}.  If not specified,
slicing is done along the first non-singleton dimension.
@seealso{@ref{XREFcell2mat,,cell2mat}, @ref{XREFcellindexmat,,cellindexmat}, @ref{XREFcellfun,,cellfun}}
@end deftypefn


@node Indexing Cell Arrays
@subsection Indexing Cell Arrays

As shown in @pxref{Basic Usage of Cell Arrays} elements can be
extracted from cell arrays using the @samp{@{} and @samp{@}}
operators.  If you want to extract or access subarrays which are still 
cell arrays, you need to use the @samp{(} and @samp{)} operators.  The
following example illustrates the difference:

@example
@group
c = @{"1", "2", "3"; "x", "y", "z"; "4", "5", "6"@};
c@{2,3@}
     @result{} ans = z

c(2,3)
     @result{} ans = 
        @{
          [1,1] = z
        @}
@end group
@end example

@noindent So with @samp{@{@}} you access elements of a cell
array, while with @samp{()} you access a sub array of a cell
array.

Using the @samp{(} and @samp{)} operators, indexing works for cell
arrays like for multi-dimensional arrays.  As an example, all the rows
of the first and third column of a cell array can be set to @code{0}
with the following command:

@example
@group
c(:, [1, 3]) = @{0@}
     @result{}  =
        @{
          [1,1] = 0
          [2,1] = 0
          [3,1] = 0
          [1,2] = 2
          [2,2] =  10
          [3,2] =  20
          [1,3] = 0
          [2,3] = 0
          [3,3] = 0
        @}
@end group
@end example

Note, that the above can also be achieved like this:

@example
c(:, [1, 3]) = 0;
@end example

@noindent Here, the scalar @samp{0} is automatically promoted to 
cell array @samp{@{0@}} and then assigned to the subarray of @code{c}.

To give another example for indexing cell arrays with @samp{()}, you
can exchange the first and the second row of a cell array as in the
following command: 

@example
@group
c = @{1, 2, 3; 4, 5, 6@};
c([1, 2], :) = c([2, 1], :)
     @result{} = 
        @{
          [1,1] =  4
          [2,1] =  1
          [1,2] =  5
          [2,2] =  2
          [1,3] =  6
          [2,3] =  3
        @}
@end group
@end example

Accessing multiple elements of a cell array with the @samp{@{} and
@samp{@}} operators will result in a comma-separated list of all the
requested elements (@pxref{Comma Separated Lists}).  Using the
@samp{@{} and @samp{@}} operators the first two rows in the above
example can be swapped back like this:

@example
@group
[c@{[1,2], :@}] = deal (c@{[2, 1], :@})
     @result{} = 
        @{
          [1,1] =  1
          [2,1] =  4
          [1,2] =  2
          [2,2] =  5
          [1,3] =  3
          [2,3] =  6
        @}
@end group
@end example

As for struct arrays and numerical arrays, the empty matrix @samp{[]}
can be used to delete elements from a cell array:

@example
@group
x = @{"1", "2"; "3", "4"@};
x(1, :) = []
     @result{} x =
        @{
          [1,1] = 3
          [1,2] = 4
        @}
@end group
@end example

The following example shows how to just remove the contents of cell
array elements but not delete the space for them:

@example
@group
x = @{"1", "2"; "3", "4"@};
x@{1, :@} = []
@result{} x =
      @{
        [1,1] = [](0x0)
        [2,1] = 3
        [1,2] = [](0x0)
        [2,2] = 4
      @}
@end group
@end example

The indexing operations operate on the cell array and not on the objects
within the cell array.  By contrast, @code{cellindexmat} applies matrix indexing
to the objects within each cell array entry and returns the requested values.

@c cellindexmat libinterp/corefcn/cellfun.cc
@anchor{XREFcellindexmat}
@deftypefn {Built-in Function} {@var{y} =} cellindexmat (@var{x}, @var{varargin})
Given a cell array of matrices @var{x}, this function computes

@example
@group
Y = cell (size (X));
for i = 1:numel (X)
  Y@{i@} = X@{i@}(varargin@{:@});
endfor
@end group
@end example
@seealso{@ref{XREFcellslices,,cellslices}, @ref{XREFcellfun,,cellfun}}
@end deftypefn


@node Cell Arrays of Strings
@subsection Cell Arrays of Strings

One common use of cell arrays is to store multiple strings in the same
variable.  It is also possible to store multiple strings in a
character matrix by letting each row be a string.  This, however,
introduces the problem that all strings must be of equal length.
Therefore, it is recommended to use cell arrays to store multiple
strings.  For cases, where the character matrix representation is required
for an operation, there are several functions that convert a cell
array of strings to a character array and back.  @code{char} and
@code{strvcat} convert cell arrays to a character array
(@pxref{Concatenating Strings}), while the function @code{cellstr}
converts a character array to a cell array of strings: 

@example
@group
a = ["hello"; "world"];
c = cellstr (a)
     @result{} c =
         @{
           [1,1] = hello
           [2,1] = world
         @}
@end group
@end example

@c cellstr libinterp/octave-value/ov-cell.cc
@anchor{XREFcellstr}
@deftypefn {Built-in Function} {@var{cstr} =} cellstr (@var{strmat})
Create a new cell array object from the elements of the string
array @var{strmat}.

Each row of @var{strmat} becomes an element of @var{cstr}.  Any trailing
spaces in a row are deleted before conversion.

To convert back from a cellstr to a character array use @code{char}.
@seealso{@ref{XREFcell,,cell}, @ref{XREFchar,,char}}
@end deftypefn


One further advantage of using cell arrays to store multiple strings is
that most functions for string manipulations included with Octave
support this representation.  As an example, it is possible to compare
one string with many others using the @code{strcmp} function.  If one of
the arguments to this function is a string and the other is a cell array
of strings, each element of the cell array will be compared to the string
argument:

@example
@group
c = @{"hello", "world"@};
strcmp ("hello", c)
     @result{} ans =
        1   0
@end group
@end example

@noindent
The following string functions support cell arrays of strings:
@code{char}, @code{strvcat}, @code{strcat} (@pxref{Concatenating
Strings}), @code{strcmp}, @code{strncmp}, @code{strcmpi},
@code{strncmpi} (@pxref{Comparing Strings}), @code{str2double},
@code{deblank}, @code{strtrim}, @code{strtrunc}, @code{strfind},
@code{strmatch}, , @code{regexp}, @code{regexpi} (@pxref{Manipulating 
Strings}) and @code{str2double} (@pxref{String Conversions}).

The function @code{iscellstr} can be used to test if an object is a
cell array of strings.

@c iscellstr libinterp/octave-value/ov-cell.cc
@anchor{XREFiscellstr}
@deftypefn {Built-in Function} {} iscellstr (@var{cell})
Return true if every element of the cell array @var{cell} is a
character string.
@seealso{@ref{XREFischar,,ischar}}
@end deftypefn


@node Processing Data in Cell Arrays
@subsection Processing Data in Cell Arrays

Data that is stored in a cell array can be processed in several ways
depending on the actual data.  The simplest way to process that data
is to iterate through it using one or more @code{for} loops.  The same
idea can be implemented more easily through the use of the @code{cellfun}
function that calls a user-specified function on all elements of a cell
array.  @xref{XREFcellfun,,cellfun}.

An alternative is to convert the data to a different container, such as
a matrix or a data structure.  Depending on the data this is possible
using the @code{cell2mat} and @code{cell2struct} functions.

@c cell2mat scripts/general/cell2mat.m
@anchor{XREFcell2mat}
@deftypefn {Function File} {@var{m} =} cell2mat (@var{c})
Convert the cell array @var{c} into a matrix by concatenating all
elements of @var{c} into a hyperrectangle.  Elements of @var{c} must
be numeric, logical, or char matrices; or cell arrays; or structs; and
@code{cat} must be able to concatenate them together.
@seealso{@ref{XREFmat2cell,,mat2cell}, @ref{XREFnum2cell,,num2cell}}
@end deftypefn


@c cell2struct libinterp/octave-value/ov-struct.cc
@anchor{XREFcell2struct}
@deftypefn  {Built-in Function} {} cell2struct (@var{cell}, @var{fields})
@deftypefnx {Built-in Function} {} cell2struct (@var{cell}, @var{fields}, @var{dim})
Convert @var{cell} to a structure.  The number of fields in @var{fields}
must match the number of elements in @var{cell} along dimension @var{dim},
that is @code{numel (@var{fields}) == size (@var{cell}, @var{dim})}.
If @var{dim} is omitted, a value of 1 is assumed.

@example
@group
A = cell2struct (@{"Peter", "Hannah", "Robert";
                   185, 170, 168@},
                 @{"Name","Height"@}, 1);
A(1)
   @result{}
      @{
        Name   = Peter
        Height = 185
      @}

@end group
@end example
@seealso{@ref{XREFstruct2cell,,struct2cell}, @ref{XREFcell2mat,,cell2mat}, @ref{XREFstruct,,struct}}
@end deftypefn


@node Comma Separated Lists
@section Comma Separated Lists
@cindex comma separated lists
@cindex cs-lists

Comma separated lists @footnote{Comma-separated lists are also sometimes
informally referred to as @dfn{cs-lists}.} are the basic argument type
to all Octave functions - both for input and return arguments.  In the
example

@example
max (@var{a}, @var{b})
@end example

@noindent
@samp{@var{a}, @var{b}} is a comma separated list.  Comma separated lists
can appear on both the right and left hand side of an assignment.  For
example

@example
@group
x = [1 0 1 0 0 1 1; 0 0 0 0 0 0 7];
[@var{i}, @var{j}] = find (@var{x}, 2, "last");
@end group
@end example

@noindent
Here, @samp{@var{x}, 2, "last"} is a comma separated list constituting
the input arguments of @code{find}.  @code{find} returns a comma
separated list of output arguments which is assigned element by
element to the comma separated list @samp{@var{i}, @var{j}}.

Another example of where comma separated lists are used is in the
creation of a new array with @code{[]} (@pxref{Matrices}) or the
creation of a cell array with @code{@{@}} (@pxref{Basic Usage of Cell
Arrays}).  In the expressions 

@example
@group
a = [1, 2, 3, 4];
c = @{4, 5, 6, 7@};
@end group
@end example

@noindent
both @samp{1, 2, 3, 4} and @samp{4, 5, 6, 7} are comma separated lists.

Comma separated lists cannot be directly manipulated by the
user.  However, both structure arrays and cell arrays can be converted
into comma separated lists, and thus used in place of explicitly
written comma separated lists.  This feature is useful in many ways,
as will be shown in the following subsections.

@menu
* Comma Separated Lists Generated from Cell Arrays::
* Comma Separated Lists Generated from Structure Arrays::
@end menu

@node Comma Separated Lists Generated from Cell Arrays
@subsection Comma Separated Lists Generated from Cell Arrays

As has been mentioned above (@pxref{Indexing Cell Arrays}), elements
of a cell array can be extracted into a comma separated list with the
@code{@{} and @code{@}} operators.  By surrounding this list with
@code{[} and @code{]}, it can be concatenated into an array.  For example:

@example
@group
a = @{1, [2, 3], 4, 5, 6@};
b = [a@{1:4@}]
     @result{} b =
         1   2   3   4   5
@end group
@end example

Similarly, it is possible to create a new cell array containing cell
elements selected with @code{@{@}}.  By surrounding the list with  
@samp{@{} and @samp{@}} a new cell array will be created, as the
following example illustrates:

@example
@group
a = @{1, rand(2, 2), "three"@};
b = @{ a@{ [1, 3] @} @}
     @result{} b =
         @{
           [1,1] =  1
           [1,2] = three
         @}
@end group
@end example

Furthermore, cell elements (accessed by @code{@{@}}) can be passed
directly to a function.  The list of elements from the cell array will
be passed as an argument list to a given function as if it is called
with the elements as individual arguments.  The two calls to
@code{printf} in the following example are identical but the latter is
simpler and can handle cell arrays of an arbitrary size:

@example
@group
c = @{"GNU", "Octave", "is", "Free", "Software"@};
printf ("%s ", c@{1@}, c@{2@}, c@{3@}, c@{4@}, c@{5@});
     @print{} GNU Octave is Free Software 
printf ("%s ", c@{:@});
     @print{} GNU Octave is Free Software 
@end group
@end example

If used on the left-hand side of an assignment, a comma separated list
generated with @code{@{@}} can be assigned to.  An example is 

@example
@group
in@{1@} = [10, 20, 30, 40, 50, 60, 70, 80, 90];
in@{2@} = inf;
in@{3@} = "last";
in@{4@} = "first";
out = cell (4, 1);
[out@{1:3@}] = find (in@{1 : 3@});
[out@{4:6@}] = find (in@{[1, 2, 4]@})
     @result{} out =
        @{
          [1,1] = 1
          [2,1] = 9
          [3,1] = 90
          [4,1] = 1
          [3,1] = 1
          [4,1] = 10
        @}
@end group
@end example


@node Comma Separated Lists Generated from Structure Arrays
@subsection Comma Separated Lists Generated from Structure Arrays
Structure arrays can equally be used to create comma separated
lists.  This is done by addressing one of the fields of a structure
array.  For example:

@example
@group
x = ceil (randn (10, 1)); 
in = struct ("call1", @{x, 3, "last"@}, 
             "call2", @{x, inf, "first"@});
out = struct ("call1", cell (2, 1), "call2", cell (2, 1));
[out.call1] = find (in.call1);
[out.call2] = find (in.call2);
@end group
@end example