1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 1996-2013 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
@c for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <http://www.gnu.org/licenses/>.
@node Data Types
@chapter Data Types
@cindex data types
All versions of Octave include a number of built-in data types,
including real and complex scalars and matrices, character strings,
a data structure type, and an array that can contain all data types.
It is also possible to define new specialized data types by writing a
small amount of C++ code. On some systems, new data types can be loaded
dynamically while Octave is running, so it is not necessary to recompile
all of Octave just to add a new type. @xref{External Code Interface}, for
more information about Octave's dynamic linking capabilities.
@ref{User-defined Data Types} describes what you must do to define a
new data type for Octave.
@c typeinfo libinterp/octave-value/ov-typeinfo.cc
@anchor{XREFtypeinfo}
@deftypefn {Built-in Function} {} typeinfo ()
@deftypefnx {Built-in Function} {} typeinfo (@var{expr})
Return the type of the expression @var{expr}, as a string. If
@var{expr} is omitted, return a cell array of strings containing all the
currently installed data types.
@seealso{@ref{XREFclass,,class}, @ref{XREFisa,,isa}}
@end deftypefn
@menu
* Built-in Data Types::
* User-defined Data Types::
* Object Sizes::
@end menu
@node Built-in Data Types
@section Built-in Data Types
@cindex data types, built-in
@cindex built-in data types
The standard built-in data types are real and complex scalars and
matrices, ranges, character strings, a data structure type, and cell
arrays. Additional built-in data types may be added in future versions.
If you need a specialized data type that is not currently provided as a
built-in type, you are encouraged to write your own user-defined data
type and contribute it for distribution in a future release of Octave.
The data type of a variable can be determined and changed through the
use of the following functions.
@c class libinterp/octave-value/ov-class.cc
@anchor{XREFclass}
@deftypefn {Function File} {@var{classname} =} class (@var{obj})
@deftypefnx {Function File} {} class (@var{s}, @var{id})
@deftypefnx {Function File} {} class (@var{s}, @var{id}, @var{p}, @dots{})
Return the class of the object @var{obj} or create a class with
fields from structure @var{s} and name (string) @var{id}. Additional
arguments name a list of parent classes from which the new class is
derived.
@seealso{@ref{XREFtypeinfo,,typeinfo}, @ref{XREFisa,,isa}}
@end deftypefn
@c isa scripts/general/isa.m
@anchor{XREFisa}
@deftypefn {Function File} {} isa (@var{obj}, @var{classname})
Return true if @var{obj} is an object from the class @var{classname}.
@var{classname} may also be one of the following class categories:
@table @asis
@item @qcode{"float"}
Floating point value comprising classes @qcode{"double"} and
@qcode{"single"}.
@item @qcode{"integer"}
Integer value comprising classes (u)int8, (u)int16, (u)int32, (u)int64.
@item @qcode{"numeric"}
Numeric value comprising either a floating point or integer value.
@end table
@seealso{@ref{XREFclass,,class}, @ref{XREFtypeinfo,,typeinfo}}
@end deftypefn
@c cast scripts/miscellaneous/cast.m
@anchor{XREFcast}
@deftypefn {Function File} {} cast (@var{val}, @var{type})
Convert @var{val} to data type @var{type}.
@seealso{@ref{XREFint8,,int8}, @ref{XREFuint8,,uint8}, @ref{XREFint16,,int16}, @ref{XREFuint16,,uint16}, @ref{XREFint32,,int32}, @ref{XREFuint32,,uint32}, @ref{XREFint64,,int64}, @ref{XREFuint64,,uint64}, @ref{XREFdouble,,double}}
@end deftypefn
@c typecast libinterp/corefcn/typecast.cc
@anchor{XREFtypecast}
@deftypefn {Built-in Function} {} typecast (@var{x}, @var{class})
Return a new array @var{y} resulting from interpreting the data of
@var{x} in memory as data of the numeric class @var{class}. Both the class
of @var{x} and @var{class} must be one of the built-in numeric classes:
@example
@group
"logical"
"char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
"double"
"single"
"double complex"
"single complex"
@end group
@end example
@noindent
the last two are reserved for @var{class}; they indicate that a
complex-valued result is requested. Complex arrays are stored in memory as
consecutive pairs of real numbers. The sizes of integer types are given by
their bit counts. Both logical and char are typically one byte wide;
however, this is not guaranteed by C++. If your system is IEEE conformant,
single and double should be 4 bytes and 8 bytes wide, respectively.
@qcode{"logical"} is not allowed for @var{class}. If the input is a row
vector, the return value is a row vector, otherwise it is a column vector.
If the bit length of @var{x} is not divisible by that of @var{class}, an
error occurs.
An example of the use of typecast on a little-endian machine is
@example
@group
@var{x} = uint16 ([1, 65535]);
typecast (@var{x}, "uint8")
@result{} [ 1, 0, 255, 255]
@end group
@end example
@seealso{@ref{XREFcast,,cast}, @ref{XREFbitunpack,,bitunpack}, @ref{XREFbitpack,,bitpack}, @ref{XREFswapbytes,,swapbytes}}
@end deftypefn
@c swapbytes scripts/miscellaneous/swapbytes.m
@anchor{XREFswapbytes}
@deftypefn {Function File} {} swapbytes (@var{x})
Swap the byte order on values, converting from little endian to big
endian and vice versa. For example:
@example
@group
swapbytes (uint16 (1:4))
@result{} [ 256 512 768 1024]
@end group
@end example
@seealso{@ref{XREFtypecast,,typecast}, @ref{XREFcast,,cast}}
@end deftypefn
@c bitpack libinterp/corefcn/typecast.cc
@anchor{XREFbitpack}
@deftypefn {Built-in Function} {@var{y} =} bitpack (@var{x}, @var{class})
Return a new array @var{y} resulting from interpreting an array
@var{x} as raw bit patterns for data of the numeric class @var{class}.
@var{class} must be one of the built-in numeric classes:
@example
@group
"char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
"double"
"single"
@end group
@end example
The number of elements of @var{x} should be divisible by the bit length of
@var{class}. If it is not, excess bits are discarded. Bits come in
increasing order of significance, i.e., @code{x(1)} is bit 0, @code{x(2)} is
bit 1, etc. The result is a row vector if @var{x} is a row vector, otherwise
it is a column vector.
@seealso{@ref{XREFbitunpack,,bitunpack}, @ref{XREFtypecast,,typecast}}
@end deftypefn
@c bitunpack libinterp/corefcn/typecast.cc
@anchor{XREFbitunpack}
@deftypefn {Built-in Function} {@var{y} =} bitunpack (@var{x})
Return an array @var{y} corresponding to the raw bit patterns of
@var{x}. @var{x} must belong to one of the built-in numeric classes:
@example
@group
"char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
"double"
"single"
@end group
@end example
The result is a row vector if @var{x} is a row vector; otherwise, it is a
column vector.
@seealso{@ref{XREFbitpack,,bitpack}, @ref{XREFtypecast,,typecast}}
@end deftypefn
@menu
* Numeric Objects::
* Missing Data::
* String Objects::
* Data Structure Objects::
* Cell Array Objects::
@end menu
@node Numeric Objects
@subsection Numeric Objects
@cindex numeric constant
@cindex numeric value
Octave's built-in numeric objects include real, complex, and integer
scalars and matrices. All built-in floating point numeric data is
currently stored as double precision numbers. On systems that use the
IEEE floating point format, values in the range of approximately
@tex
$2.2251\times10^{-308}$ to $1.7977\times10^{308}$
@end tex
@ifnottex
2.2251e-308 to 1.7977e+308
@end ifnottex
can be stored, and the relative precision is approximately
@tex
$2.2204\times10^{-16}$.
@end tex
@ifnottex
2.2204e-16.
@end ifnottex
The exact values are given by the variables @code{realmin},
@code{realmax}, and @code{eps}, respectively.
Matrix objects can be of any size, and can be dynamically reshaped and
resized. It is easy to extract individual rows, columns, or submatrices
using a variety of powerful indexing features. @xref{Index Expressions}.
@xref{Numeric Data Types}, for more information.
@node Missing Data
@subsection Missing Data
@cindex missing data
It is possible to represent missing data explicitly in Octave using
@code{NA} (short for ``Not Available''). Missing data can only be
represented when data is represented as floating point numbers. In this
case missing data is represented as a special case of the representation
of @code{NaN}.
@c NA libinterp/corefcn/data.cc
@anchor{XREFNA}
@deftypefn {Built-in Function} {} NA
@deftypefnx {Built-in Function} {} NA (@var{n})
@deftypefnx {Built-in Function} {} NA (@var{n}, @var{m})
@deftypefnx {Built-in Function} {} NA (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {Built-in Function} {} NA (@dots{}, @var{class})
Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the special constant used to designate missing values.
Note that NA always compares not equal to NA (NA != NA).
To find NA values, use the @code{isna} function.
When called with no arguments, return a scalar with the value @samp{NA}.
When called with a single argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two
arguments are taken as the number of rows and columns and any further
arguments specify additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either @qcode{"double"} or @qcode{"single"}.
@seealso{@ref{XREFisna,,isna}}
@end deftypefn
@c isna libinterp/corefcn/mappers.cc
@anchor{XREFisna}
@deftypefn {Mapping Function} {} isna (@var{x})
Return a logical array which is true where the elements of @var{x} are
NA (missing) values and false where they are not.
For example:
@example
@group
isna ([13, Inf, NA, NaN])
@result{} [ 0, 0, 1, 0 ]
@end group
@end example
@seealso{@ref{XREFisnan,,isnan}, @ref{XREFisinf,,isinf}, @ref{XREFisfinite,,isfinite}}
@end deftypefn
@node String Objects
@subsection String Objects
@cindex strings
@cindex character strings
@opindex "
@opindex '
A character string in Octave consists of a sequence of characters
enclosed in either double-quote or single-quote marks. Internally,
Octave currently stores strings as matrices of characters. All the
indexing operations that work for matrix objects also work for strings.
@xref{Strings}, for more information.
@node Data Structure Objects
@subsection Data Structure Objects
@cindex structures
@cindex data structures
Octave's data structure type can help you to organize related objects of
different types. The current implementation uses an associative array
with indices limited to strings, but the syntax is more like C-style
structures.
@xref{Structures}, for more information.
@node Cell Array Objects
@subsection Cell Array Objects
@cindex cell arrays
A Cell Array in Octave is general array that can hold any number of
different data types.
@xref{Cell Arrays}, for more information.
@node User-defined Data Types
@section User-defined Data Types
@cindex user-defined data types
@cindex data types, user-defined
Someday I hope to expand this to include a complete description of
Octave's mechanism for managing user-defined data types. Until this
feature is documented here, you will have to make do by reading the code
in the @file{ov.h}, @file{ops.h}, and related files from Octave's
@file{src} directory.
@node Object Sizes
@section Object Sizes
The following functions allow you to determine the size of a variable or
expression. These functions are defined for all objects. They return
@minus{}1 when the operation doesn't make sense. For example, Octave's
data structure type doesn't have rows or columns, so the @code{rows} and
@code{columns} functions return @minus{}1 for structure arguments.
@c ndims libinterp/corefcn/data.cc
@anchor{XREFndims}
@deftypefn {Built-in Function} {} ndims (@var{a})
Return the number of dimensions of @var{a}.
For any array, the result will always be larger than or equal to 2.
Trailing singleton dimensions are not counted.
@example
@group
ndims (ones (4, 1, 2, 1))
@result{} 3
@end group
@end example
@seealso{@ref{XREFsize,,size}}
@end deftypefn
@c columns libinterp/corefcn/data.cc
@anchor{XREFcolumns}
@deftypefn {Built-in Function} {} columns (@var{a})
Return the number of columns of @var{a}.
@seealso{@ref{XREFrows,,rows}, @ref{XREFsize,,size}, @ref{XREFlength,,length}, @ref{XREFnumel,,numel}, @ref{XREFisscalar,,isscalar}, @ref{XREFisvector,,isvector}, @ref{XREFismatrix,,ismatrix}}
@end deftypefn
@c rows libinterp/corefcn/data.cc
@anchor{XREFrows}
@deftypefn {Built-in Function} {} rows (@var{a})
Return the number of rows of @var{a}.
@seealso{@ref{XREFcolumns,,columns}, @ref{XREFsize,,size}, @ref{XREFlength,,length}, @ref{XREFnumel,,numel}, @ref{XREFisscalar,,isscalar}, @ref{XREFisvector,,isvector}, @ref{XREFismatrix,,ismatrix}}
@end deftypefn
@c numel libinterp/corefcn/data.cc
@anchor{XREFnumel}
@deftypefn {Built-in Function} {} numel (@var{a})
@deftypefnx {Built-in Function} {} numel (@var{a}, @var{idx1}, @var{idx2}, @dots{})
Return the number of elements in the object @var{a}.
Optionally, if indices @var{idx1}, @var{idx2}, @dots{} are supplied,
return the number of elements that would result from the indexing
@example
@var{a}(@var{idx1}, @var{idx2}, @dots{})
@end example
Note that the indices do not have to be numerical. For example,
@example
@group
@var{a} = 1;
@var{b} = ones (2, 3);
numel (@var{a}, @var{b})
@end group
@end example
@noindent
will return 6, as this is the number of ways to index with @var{b}.
This method is also called when an object appears as lvalue with cs-list
indexing, i.e., @code{object@{@dots{}@}} or @code{object(@dots{}).field}.
@seealso{@ref{XREFsize,,size}}
@end deftypefn
@c length libinterp/corefcn/data.cc
@anchor{XREFlength}
@deftypefn {Built-in Function} {} length (@var{a})
Return the length of the object @var{a}.
The length is 0 for empty objects, 1 for scalars, and the number of elements
for vectors. For matrix objects, the length is the number of rows or
columns, whichever is greater (this odd definition is used for compatibility
with @sc{matlab}).
@seealso{@ref{XREFnumel,,numel}, @ref{XREFsize,,size}}
@end deftypefn
@c size libinterp/corefcn/data.cc
@anchor{XREFsize}
@deftypefn {Built-in Function} {} size (@var{a})
@deftypefnx {Built-in Function} {} size (@var{a}, @var{dim})
Return the number of rows and columns of @var{a}.
With one input argument and one output argument, the result is returned
in a row vector. If there are multiple output arguments, the number of
rows is assigned to the first, and the number of columns to the second,
etc. For example:
@example
@group
size ([1, 2; 3, 4; 5, 6])
@result{} [ 3, 2 ]
[nr, nc] = size ([1, 2; 3, 4; 5, 6])
@result{} nr = 3
@result{} nc = 2
@end group
@end example
If given a second argument, @code{size} will return the size of the
corresponding dimension. For example,
@example
@group
size ([1, 2; 3, 4; 5, 6], 2)
@result{} 2
@end group
@end example
@noindent
returns the number of columns in the given matrix.
@seealso{@ref{XREFnumel,,numel}, @ref{XREFndims,,ndims}, @ref{XREFlength,,length}, @ref{XREFrows,,rows}, @ref{XREFcolumns,,columns}}
@end deftypefn
@c isempty libinterp/corefcn/data.cc
@anchor{XREFisempty}
@deftypefn {Built-in Function} {} isempty (@var{a})
Return true if @var{a} is an empty matrix (any one of its dimensions is
zero). Otherwise, return false.
@seealso{@ref{XREFisnull,,isnull}, @ref{XREFisa,,isa}}
@end deftypefn
@c isnull libinterp/octave-value/ov-null-mat.cc
@anchor{XREFisnull}
@deftypefn {Built-in Function} {} isnull (@var{x})
Return true if @var{x} is a special null matrix, string, or single quoted
string. Indexed assignment with such a value on the right-hand side should
delete array elements. This function should be used when overloading
indexed assignment for user-defined classes instead of @code{isempty}, to
distinguish the cases:
@table @asis
@item @code{A(I) = []}
This should delete elements if @code{I} is nonempty.
@item @code{X = []; A(I) = X}
This should give an error if @code{I} is nonempty.
@end table
@seealso{@ref{XREFisempty,,isempty}, @ref{XREFisindex,,isindex}}
@end deftypefn
@c sizeof libinterp/octave-value/ov.cc
@anchor{XREFsizeof}
@deftypefn {Built-in Function} {} sizeof (@var{val})
Return the size of @var{val} in bytes.
@seealso{@ref{XREFwhos,,whos}}
@end deftypefn
@c size_equal libinterp/corefcn/data.cc
@anchor{XREFsize_equal}
@deftypefn {Built-in Function} {} size_equal (@var{a}, @var{b}, @dots{})
Return true if the dimensions of all arguments agree.
Trailing singleton dimensions are ignored.
Called with a single or no argument, size_equal returns true.
@seealso{@ref{XREFsize,,size}, @ref{XREFnumel,,numel}, @ref{XREFndims,,ndims}}
@end deftypefn
@c squeeze libinterp/corefcn/data.cc
@anchor{XREFsqueeze}
@deftypefn {Built-in Function} {} squeeze (@var{x})
Remove singleton dimensions from @var{x} and return the result.
Note that for compatibility with @sc{matlab}, all objects have
a minimum of two dimensions and row vectors are left unchanged.
@seealso{@ref{XREFreshape,,reshape}}
@end deftypefn
|