File: external.texi

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (2676 lines) | stat: -rw-r--r-- 82,557 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
@c DO NOT EDIT!  Generated automatically by munge-texi.pl.

@c Copyright (C) 2007-2013 John W. Eaton and David Bateman
@c Copyright (C) 2007 Paul Thomas and Christoph Spiel
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c 
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
@c for more details.
@c 
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <http://www.gnu.org/licenses/>.

@node External Code Interface
@appendix External Code Interface
@cindex dynamic-linking
@cindex Dynamically Linked Functions
@cindex Octave API

"The sum of human wisdom is not contained in any one language"
  ---Ezra Pound

Octave is a fantastic language for solving many problems in science and
engineering.  However, it is not the only computer language and there
are times when you may want to use code written in other languages.
Good reasons for doing so include: 1) not re-inventing the wheel; existing
function libraries which have been thoroughly tested and debugged or
large scale simulation codebases are a good example, 2) accessing unique
capabilities of a different language; for example the well-known regular
expression functions of Perl (but don't do that because @code{regexp}
already exists in Octave).

Performance should generally @strong{not} be a reason for using compiled
extensions.  Although compiled extensions can run faster, particularly
if they replace a loop in Octave code, this is almost never the best path
to take.  First, there are many techniques to speed up Octave performance while
remaining within the language.  Second, Octave is a high-level language that
makes it easy to perform common mathematical tasks.  Giving that up means
shifting the focus from solving the real problem to solving a computer
programming problem.  It means returning to low-level constructs such as
pointers, memory management, mathematical overflow/underflow, etc.  Because
of the low level nature, and the fact that the compiled code is executed outside
of Octave, there is the very real possibility of crashing the interpreter and
losing work.

Before going further, you should first determine if you really need to bother
writing code outside of Octave.

@itemize @bullet
@item
Can I get the same functionality using the Octave scripting language alone?

Even when a function already exists outside the language, it may be
better to simply reproduce the behavior in an m-file rather than attempt to
interface to the outside code.

@item
Is the code thoroughly optimized for Octave?

If performance is an issue you should always start with the in-language
techniques for getting better performance.  Chief among these is vectorization
(@pxref{Vectorization and Faster Code Execution}) which not only makes the
code concise and more understandable but improves performance (10X-100X).
If loops must be used, make sure that the allocation of space for variables
takes place outside the loops using an assignment to a matrix of the right
size, or zeros.

@item
Does the code make as much use as possible of existing built-in library
routines?

These routines are highly optimized and many do not carry the overhead
of being interpreted.

@item
Does writing a dynamically linked function represent a useful investment
of your time, relative to staying in Octave?

It will take time to learn Octave's interface for external code and
there will inevitably be issues with tools such as compilers.
@end itemize

With that said, Octave offers a versatile interface for including chunks
of compiled code as dynamically linked extensions.  These dynamically linked
functions can be called from the interpreter in the same manner as any
ordinary function.  The interface is bi-directional and external code can
call Octave functions (like @code{plot}) which otherwise might be very
difficult to develop.

The interface is centered around supporting the languages C++, C, and Fortran.
Octave itself is written in C++ and can call external C++/C code through its
native oct-file interface.  The C language is also supported through the
mex-file interface for compatibility with @sc{matlab}.  Fortran code is easiest
to reach through the oct-file interface.

Because many other languages provide C or C++ APIs it is relatively simple
to build bridges between Octave and other languages.  This is also a way to
bridge to hardware resources which often have device drivers written in C.

@menu
* Oct-Files::
* Mex-Files::
* Standalone Programs::
@end menu

@node Oct-Files
@section Oct-Files
@cindex oct-files
@cindex mkoctfile
@cindex oct

@menu
* Getting Started with Oct-Files::
* Matrices and Arrays in Oct-Files::
* Character Strings in Oct-Files::
* Cell Arrays in Oct-Files::
* Structures in Oct-Files::
* Sparse Matrices in Oct-Files::
* Accessing Global Variables in Oct-Files::
* Calling Octave Functions from Oct-Files::
* Calling External Code from Oct-Files::
* Allocating Local Memory in Oct-Files::
* Input Parameter Checking in Oct-Files::
* Exception and Error Handling in Oct-Files::
* Documentation and Test of Oct-Files::
@c * Application Programming Interface for Oct-Files::  
@end menu

@node Getting Started with Oct-Files
@subsection Getting Started with Oct-Files

Oct-files are pieces of C++ code that have been compiled with the Octave
API into a dynamically loadable object.  They take their name from the file
which contains the object which has the extension @file{.oct}.

Finding a C++ compiler, using the correct switches, adding the right include
paths for header files, etc. is a difficult task.  Octave automates this by
providing the @code{mkoctfile} command with which to build oct-files.  The
command is available from within Octave or at the shell command line.

@c mkoctfile scripts/miscellaneous/mkoctfile.m
@anchor{XREFmkoctfile}
@deftypefn  {Command} {} mkoctfile [-options] file @dots{}
@deftypefnx {Function File} {[@var{output}, @var{status}] =} mkoctfile (@dots{})

The @code{mkoctfile} function compiles source code written in C,
C++, or Fortran.  Depending on the options used with @code{mkoctfile}, the
compiled code can be called within Octave or can be used as a stand-alone
application.

@code{mkoctfile} can be called from the shell prompt or from the Octave
prompt.  Calling it from the Octave prompt simply delegates the
call to the shell prompt.  The output is stored in the @var{output}
variable and the exit status in the @var{status} variable.

@code{mkoctfile} accepts the following options, all of which are optional
except for the file name of the code you wish to compile:

@table @samp
@item -I DIR
Add the include directory DIR to compile commands.

@item -D DEF
Add the definition DEF to the compiler call.

@item -l LIB
Add the library LIB to the link command.

@item -L DIR
Add the library directory DIR to the link command.

@item  -M
@itemx --depend
Generate dependency files (.d) for C and C++ source files.

@item -R DIR
Add the run-time path to the link command.

@item @nospell{-Wl,@dots{}}
Pass flags though the linker like @nospell{"-Wl,-rpath=@dots{}"}.
The quotes are needed since commas are interpreted as command
separators.

@item -W@dots{}
Pass flags though the compiler like @nospell{"-Wa,OPTION"}.

@item -c
Compile but do not link.

@item -g
Enable debugging options for compilers.

@item  -o FILE
@itemx --output FILE
Output file name.  Default extension is .oct
(or .mex if @samp{--mex} is specified) unless linking
a stand-alone executable.

@item  -p VAR
@itemx --print VAR
Print the configuration variable VAR@.  Recognized variables are:

@example
   ALL_CFLAGS                  INCFLAGS
   ALL_CXXFLAGS                INCLUDEDIR
   ALL_FFLAGS                  LAPACK_LIBS
   ALL_LDFLAGS                 LD_CXX
   AR                          LDFLAGS
   BLAS_LIBS                   LD_STATIC_FLAG
   CC                          LFLAGS
   CFLAGS                      LIBDIR
   CPICFLAG                    LIBOCTAVE
   CPPFLAGS                    LIBOCTINTERP
   CXX                         LIBS
   CXXFLAGS                    OCTAVE_HOME
   CXXPICFLAG                  OCTAVE_LIBS
   DEPEND_EXTRA_SED_PATTERN    OCTAVE_LINK_DEPS
   DEPEND_FLAGS                OCTAVE_LINK_OPTS
   DL_LD                       OCTAVE_PREFIX
   DL_LDFLAGS                  OCTINCLUDEDIR
   F77                         OCTLIBDIR
   F77_INTEGER8_FLAG           OCT_LINK_DEPS
   FFLAGS                      OCT_LINK_OPTS
   FFTW3F_LDFLAGS              RANLIB
   FFTW3F_LIBS                 RDYNAMIC_FLAG
   FFTW3_LDFLAGS               READLINE_LIBS
   FFTW3_LIBS                  SED
   FFTW_LIBS                   SPECIAL_MATH_LIB
   FLIBS                       XTRA_CFLAGS
   FPICFLAG                    XTRA_CXXFLAGS
@end example

@item --link-stand-alone
Link a stand-alone executable file.

@item --mex
Assume we are creating a MEX file.  Set the default output extension
to ".mex".

@item  -s
@itemx --strip
Strip the output file.

@item  -v
@itemx --verbose
Echo commands as they are executed.

@item file
The file to compile or link.  Recognized file types are

@example
@group
   .c    C source
   .cc   C++ source
   .C    C++ source
   .cpp  C++ source
   .f    Fortran source (fixed form)
   .F    Fortran source (fixed form)
   .f90  Fortran source (free form)
   .F90  Fortran source (free form)
   .o    object file
   .a    library file
@end group
@end example

@end table
@end deftypefn


Consider the following short example which introduces the basics of
writing a C++ function that can be linked to Octave.

@example
@group
@verbatim
#include <octave/oct.h>

DEFUN_DLD (helloworld, args, nargout,
           "Hello World Help String")
{
  int nargin = args.length ();

  octave_stdout << "Hello World has "
                << nargin << " input arguments and "
                << nargout << " output arguments.\n";

  return octave_value_list ();
}
@end verbatim

@end group
@end example

The first critical line is @code{#include <octave/oct.h>} which 
makes available most of the definitions necessary for a C++ oct-file.
Note that @file{octave/oct.h} is a C++ header and cannot be directly
@code{#include}'ed in a C source file, nor any other language.

Included by @file{oct.h} is a definition for the macro
@w{@code{DEFUN_DLD}} which creates a dynamically loaded function.  This
macro takes four arguments:

@enumerate 1
@item The function name as it will be seen in Octave,

@item The list of arguments to the function of type @code{octave_value_list},

@item The number of output arguments, which can and often is omitted if
not used, and

@item The string to use for the help text of the function.
@end enumerate

The return type of functions defined with @w{@code{DEFUN_DLD}} is always
@code{octave_value_list}.

There are a couple of important considerations in the choice of function
name.  First, it must be a valid Octave function name and so must be a
sequence of letters, digits, and underscores not starting with a
digit.  Second, as Octave uses the function name to define the filename
it attempts to find the function in, the function name in the
@w{@code{DEFUN_DLD}} macro must match the filename of the oct-file.  Therefore,
the above function should be in a file @file{helloworld.cc}, and would be
compiled to an oct-file using the command

@example
mkoctfile helloworld.cc
@end example

This will create a file called @file{helloworld.oct} that is the compiled
version of the function.  It should be noted that it is perfectly
acceptable to have more than one @w{@code{DEFUN_DLD}} function in a source
file.  However, there must either be a symbolic link to the oct-file for
each of the functions defined in the source code with the @w{@code{DEFUN_DLD}}
macro or the @code{autoload} (@ref{Function Files}) function should be used.

The rest of the function shows how to find the number of input arguments,
how to print through the Octave pager, and return from the function.  After
compiling this function as above, an example of its use is

@example
@group
helloworld (1, 2, 3)
@print{} Hello World has 3 input arguments and 0 output arguments.
@end group
@end example

Subsequent sections show how to use specific classes from Octave's core
internals.  Base classes like dMatrix (a matrix of double values) are
found in the directory @file{liboctave/array}.  The definitive reference for
how to use a particular class is the header file itself.  However, it is
often enough just to study the examples in the manual in order to be able
to use the class.

@node Matrices and Arrays in Oct-Files
@subsection Matrices and Arrays in Oct-Files

Octave supports a number of different array and matrix classes, the
majority of which are based on the Array class.  The exception is the
sparse matrix types discussed separately below.  There are three basic
matrix types

@table @code
@item Matrix
A double precision matrix class defined in @file{dMatrix.h},

@item ComplexMatrix
A complex matrix class defined in @file{CMatrix.h}, and

@item BoolMatrix
A boolean matrix class defined in @file{boolMatrix.h}.
@end table

These are the basic two-dimensional matrix types of Octave.  In
addition there are a number of multi-dimensional array types including

@table @code
@item NDArray
A double precision array class defined in @file{dNDArray.h}

@item ComplexNDarray
A complex array class defined in @file{CNDArray.h}

@item boolNDArray
A boolean array class defined in @file{boolNDArray.h}

@item  int8NDArray
@itemx int16NDArray
@itemx int32NDArray
@itemx int64NDArray
8, 16, 32, and 64-bit signed array classes defined in
@file{int8NDArray.h}, @file{int16NDArray.h}, etc.

@item  uint8NDArray
@itemx uint16NDArray
@itemx uint32NDArray
@itemx uint64NDArray
8, 16, 32, and 64-bit unsigned array classes defined in
@file{uint8NDArray.h}, @file{uint16NDArray.h}, etc.
@end table

There are several basic ways of constructing matrices or
multi-dimensional arrays.  Using the class @code{Matrix} as an example
one can

@itemize @bullet
@item
Create an empty matrix or array with the empty constructor.  For example:

@example
Matrix a;
@end example

This can be used for all matrix and array types.

@item
Define the dimensions of the matrix or array with a dim_vector which has
the same characteristics as the vector returned from @code{size}.  For example:

@example
@group
dim_vector dv (2);
dv(0) = 2; dv(1) = 3;  // 2 rows, 3 columns
Matrix a (dv);
@end group
@end example

This can be used on all matrix and array types.

@item
Define the number of rows and columns in the matrix.  For example:

@example
Matrix a (2, 2)
@end example

However, this constructor can only be used with matrix types.
@end itemize

These types all share a number of basic methods and operators.  Many bear
a resemblance to functions that exist in the interpreter.  A selection of
useful methods include

@deftypefn  {Method} {T&} operator () (octave_idx_type)
@deftypefnx {Method} {T&} elem (octave_idx_type)
The @code{()} operator or @code{elem} method allow the values of the
matrix or array to be read or set.  These can take a single argument,
which is of type @code{octave_idx_type}, that is the index into the matrix or
array.  Additionally, the matrix type allows two argument versions of the
@code{()} operator and elem method, giving the row and column index of the
value to obtain or set.
@end deftypefn

Note that these functions do significant error checking and so in some
circumstances the user might prefer to access the data of the array or
matrix directly through the @nospell{fortran_vec} method discussed below.

@deftypefn {Method} {} octave_idx_type numel (void) const
The total number of elements in the matrix or array.
@end deftypefn

@deftypefn {Method} {size_t} byte_size (void) const
The number of bytes used to store the matrix or array.
@end deftypefn

@deftypefn {Method} {dim_vector} dims (void) const
The dimensions of the matrix or array in value of type dim_vector.
@end deftypefn

@deftypefn {Method} {int} ndims (void) const
The number of dimensions of the matrix or array.  Matrices are 2-D,
but arrays can be N-dimensional.
@end deftypefn

@deftypefn {Method} {void} resize (const dim_vector&)
A method taking either an argument of type @code{dim_vector}, or in the
case of a matrix two arguments of type @code{octave_idx_type} defining
the number of rows and columns in the matrix.
@end deftypefn

@deftypefn {Method} {T*} fortran_vec (void)
This method returns a pointer to the underlying data of the matrix or
array so that it can be manipulated directly, either within Octave or by
an external library.
@end deftypefn

Operators such an @code{+}, @code{-}, or @code{*} can be used on the
majority of the matrix and array types.  In addition there are a number of
methods that are of interest only for matrices such as @code{transpose},
@code{hermitian}, @code{solve}, etc.

The typical way to extract a matrix or array from the input arguments of
@w{@code{DEFUN_DLD}} function is as follows

@example
@verbatim
#include <octave/oct.h>

DEFUN_DLD (addtwomatrices, args, , "Add A to B")
{
  int nargin = args.length ();

  if (nargin != 2)
    print_usage ();
  else
    {
      NDArray A = args(0).array_value ();
      NDArray B = args(1).array_value ();
      if (! error_state)
        return octave_value (A + B);
    }

  return octave_value_list ();
}
@end verbatim

@end example

To avoid segmentation faults causing Octave to abort this function
explicitly checks that there are sufficient arguments available before
accessing these arguments.  It then obtains two multi-dimensional arrays
of type @code{NDArray} and adds these together.  Note that the array_value
method is called without using the @code{is_matrix_type} type, and instead the
error_state is checked before returning @code{A + B}.  The reason to
prefer this is that the arguments might be a type that is not an
@code{NDArray}, but it would make sense to convert it to one.  The
@code{array_value} method allows this conversion to be performed
transparently if possible, and sets @code{error_state} if it is not.

@code{A + B}, operating on two @code{NDArray}'s returns an
@code{NDArray}, which is cast to an @code{octave_value} on the return
from the function.  An example of the use of this demonstration function is

@example
@group
addtwomatrices (ones (2, 2), eye (2, 2))
      @result{}  2  1
          1  2
@end group
@end example

A list of the basic @code{Matrix} and @code{Array} types, the methods to
extract these from an @code{octave_value}, and the associated header file is
listed below.

@multitable @columnfractions .3 .4 .3
@headitem Type @tab Function @tab Source Code
@item @code{RowVector} @tab @code{row_vector_value} @tab @file{dRowVector.h}
@item @code{ComplexRowVector} @tab @code{complex_row_vector_value} @tab @file{CRowVector.h}
@item @code{ColumnVector} @tab @code{column_vector_value} @tab @file{dColVector.h}
@item @code{ComplexColumnVector} @tab @code{complex_column_vector_value} @tab @file{CColVector.h}
@item @code{Matrix} @tab @code{matrix_value} @tab @file{dMatrix.h}
@item @code{ComplexMatrix} @tab @code{complex_matrix_value} @tab @file{CMatrix.h}
@item @code{boolMatrix} @tab @code{bool_matrix_value} @tab @file{boolMatrix.h}
@item @code{charMatrix} @tab @code{char_matrix_value} @tab @file{chMatrix.h}
@item @code{NDArray} @tab @code{array_value} @tab @file{dNDArray.h}
@item @code{ComplexNDArray} @tab @code{complex_array_value} @tab @file{CNDArray.h}
@item @code{boolNDArray} @tab @code{bool_array_value} @tab @file{boolNDArray.h}
@item @code{charNDArray} @tab @code{char_array_value} @tab @file{charNDArray.h}
@item @code{int8NDArray} @tab @code{int8_array_value} @tab @file{int8NDArray.h}
@item @code{int16NDArray} @tab @code{int16_array_value} @tab @file{int16NDArray.h}
@item @code{int32NDArray} @tab @code{int32_array_value} @tab @file{int32NDArray.h}
@item @code{int64NDArray} @tab @code{int64_array_value} @tab @file{int64NDArray.h}
@item @code{uint8NDArray} @tab @code{uint8_array_value} @tab @file{uint8NDArray.h}
@item @code{uint16NDArray} @tab @code{uint16_array_value} @tab @file{uint16NDArray.h}
@item @code{uint32NDArray} @tab @code{uint32_array_value} @tab @file{uint32NDArray.h}
@item @code{uint64NDArray} @tab @code{uint64_array_value} @tab @file{uint64NDArray.h}
@end multitable

@node Character Strings in Oct-Files
@subsection Character Strings in Oct-Files

A character string in Octave is just a special @code{Array} class.
Consider the example:

@example
@verbatim
#include <octave/oct.h>

DEFUN_DLD (stringdemo, args, , "String Demo")
{
  octave_value_list retval;
  int nargin = args.length ();

  if (nargin != 1)
    print_usage ();
  else
    {
      charMatrix ch = args(0).char_matrix_value ();

      if (! error_state)
        {
          retval(1) = octave_value (ch, '\'');  // Single Quote String

          octave_idx_type nr = ch.rows ();
          for (octave_idx_type i = 0; i < nr / 2; i++)
            {
              std::string tmp = ch.row_as_string (i);
              ch.insert (ch.row_as_string (nr-i-1).c_str (), i, 0);
              ch.insert (tmp.c_str (), nr-i-1, 0);
            }
          retval(0) = octave_value (ch, '"');  // Double Quote String
        }
    }
  return retval;
}
@end verbatim

@end example

An example of the use of this function is

@example
@group
s0 = ["First String"; "Second String"];
[s1,s2] = stringdemo (s0)
@result{} s1 = Second String
        First String

@result{} s2 = First String
        Second String

typeinfo (s2)
@result{} sq_string
typeinfo (s1)
@result{} string
@end group
@end example

One additional complication of strings in Octave is the difference
between single quoted and double quoted strings.  To find out if an
@code{octave_value} contains a single or double quoted string use
one of the predicate tests shown below.

@example
@group
if (args(0).is_sq_string ())
  octave_stdout << "First argument is a single quoted string\n";
else if (args(0).is_dq_string ())
  octave_stdout << "First argument is a double quoted string\n";
@end group
@end example

Note, however, that both types of strings are represented by the
@code{charNDArray} type, and so when assigning to an
@code{octave_value}, the type of string should be specified.  For example:

@example
@group
octave_value_list retval;
charNDArray ch;
@dots{}
// Create single quoted string
retval(1) = octave_value (ch);        // default constructor is sq_string
           OR
retval(1) = octave_value (ch, '\'');  // explicitly create sq_string

// Create a double quoted string
retval(0) = octave_value (ch, '"');
@end group
@end example

@node Cell Arrays in Oct-Files
@subsection Cell Arrays in Oct-Files

Octave's cell type is also available from within oct-files.  A cell
array is just an array of @code{octave_value}s, and thus each element of the
cell array can be treated just like any other @code{octave_value}.  A simple
example is

@example
@verbatim
#include <octave/oct.h>
#include <octave/Cell.h>

DEFUN_DLD (celldemo, args, , "Cell Demo")
{
  octave_value_list retval;
  int nargin = args.length ();

  if (nargin != 1)
    print_usage ();
  else
    {
      Cell c = args(0).cell_value ();
      if (! error_state)
        for (octave_idx_type i = 0; i < c.numel (); i++)
          {
            retval(i) = c(i);          // using operator syntax
            //retval(i) = c.elem (i);  // using method syntax
          }
    }

  return retval;
}
@end verbatim

@end example

Note that cell arrays are used less often in standard oct-files and so
the @file{Cell.h} header file must be explicitly included.  The rest of the
example extracts the @code{octave_value}s one by one from the cell array and
returns them as individual return arguments.  For example:

@example
@group
[b1, b2, b3] = celldemo (@{1, [1, 2], "test"@})
@result{}
b1 =  1
b2 =

   1   2

b3 = test
@end group
@end example

@node Structures in Oct-Files
@subsection Structures in Oct-Files

A structure in Octave is a map between a number of fields represented and
their values.  The Standard Template Library @code{map} class is used,
with the pair consisting of a @code{std::string} and an Octave
@code{Cell} variable.

A simple example demonstrating the use of structures within oct-files is

@example
@verbatim
#include <octave/oct.h>
#include <octave/ov-struct.h>

DEFUN_DLD (structdemo, args, , "Struct Demo")
{
  octave_value retval;
  int nargin = args.length ();

  if (args.length () == 2)
    {
      octave_scalar_map arg0 = args(0).scalar_map_value ();
      //octave_map arg0 = args(0).map_value ();

      if (! error_state)
        {
          std::string arg1 = args(1).string_value ();

          if (! error_state)
            {
              octave_value tmp = arg0.contents (arg1);
              //octave_value tmp = arg0.contents (arg1)(0);

              if (tmp.is_defined ())
                {
                  octave_scalar_map st;

                  st.assign ("selected", tmp);

                  retval = octave_value (st);
                }
              else
                error ("structdemo: struct does not have a field named '%s'\n",
                       arg1.c_str ());
            }
          else
            error ("structdemo: ARG2 must be a character string");
        }
      else
        error ("structdemo: ARG1 must be a struct");
    }
  else
    print_usage ();

  return retval;
}
@end verbatim

@end example

An example of its use is

@example
@group
x.a = 1; x.b = "test"; x.c = [1, 2];
structdemo (x, "b")
@result{} selected = test
@end group
@end example

The example above specifically uses the @code{octave_scalar_map} class which
is for representing a single struct.  For structure arrays the
@code{octave_map} class is used instead.  The commented code shows how the
demo could be modified to handle a structure array.  In that case the
@code{contents} method returns a @code{Cell} which may have more than one
element.  Therefore, to obtain the underlying @code{octave_value} in
this single-struct example we write

@example
octave_value tmp = arg0.contents (arg1)(0);
@end example

@noindent
where the trailing (0) is the () operator on the @code{Cell} object.  If
this were a true structure array with multiple elements we could iterate
over the elements using the () operator.

Structures are a relatively complex data container and there are more
functions available in @file{oct-map.h} which make coding with them easier
than relying on just @code{contents}.

@node Sparse Matrices in Oct-Files
@subsection Sparse Matrices in Oct-Files

There are three classes of sparse objects that are of interest to the user.

@table @code
@item SparseMatrix
A double precision sparse matrix class

@item SparseComplexMatrix
A complex sparse matrix class

@item SparseBoolMatrix
A boolean sparse matrix class
@end table

All of these classes inherit from the @code{Sparse<T>} template class,
and so all have similar capabilities and usage.  The @code{Sparse<T>}
class was based on Octave's @code{Array<T>} class, and so users familiar
with Octave's @code{Array} classes will be comfortable with the use of
the sparse classes.

The sparse classes will not be entirely described in this section, due
to their similarity with the existing @code{Array} classes.  However,
there are a few differences due the different nature of sparse objects,
and these will be described.  First, although it is fundamentally
possible to have N-dimensional sparse objects, the Octave sparse classes do
not allow them at this time; All instances of the sparse classes
must be 2-dimensional.  This means that @code{SparseMatrix} is actually
more similar to Octave's @code{Matrix} class than its @code{NDArray} class.

@menu
* Array and Sparse Class Differences::
* Creating Sparse Matrices in Oct-Files::
* Using Sparse Matrices in Oct-Files::
@end menu

@node Array and Sparse Class Differences
@subsubsection Array and Sparse Class Differences

The number of elements in a sparse matrix is considered to be the number
of non-zero elements rather than the product of the dimensions.  Therefore

@example
@group
SparseMatrix sm;
@dots{}
int nel = sm.nelem ();
@end group
@end example

@noindent
returns the number of non-zero elements.  If the user really requires the
number of elements in the matrix, including the non-zero elements, they
should use @code{numel} rather than @code{nelem}.  Note that for very
large matrices, where the product of the two dimensions is larger than
the representation of an unsigned int, then @code{numel} can overflow.
An example is @code{speye (1e6)} which will create a matrix with a million
rows and columns, but only a million non-zero elements.  Therefore the
number of rows by the number of columns in this case is more than two
hundred times the maximum value that can be represented by an unsigned int.
The use of @code{numel} should therefore be avoided useless it is known
it won't overflow.

Extreme care must be take with the elem method and the @qcode{"()"} operator,
which perform basically the same function.  The reason is that if a
sparse object is non-const, then Octave will assume that a
request for a zero element in a sparse matrix is in fact a request
to create this element so it can be filled.  Therefore a piece of
code like

@example
@group
SparseMatrix sm;
@dots{}
for (int j = 0; j < nc; j++)
  for (int i = 0; i < nr; i++)
    std::cerr << " (" << i << "," << j << "): " << sm(i,j) << std::endl;
@end group
@end example

@noindent
is a great way of turning the sparse matrix into a dense one, and a
very slow way at that since it reallocates the sparse object at each
zero element in the matrix.

An easy way of preventing the above from happening is to create a temporary
constant version of the sparse matrix.  Note that only the container for
the sparse matrix will be copied, while the actual representation of the
data will be shared between the two versions of the sparse matrix.  So this
is not a costly operation.  For example, the above would become

@example
@group
SparseMatrix sm;
@dots{}
const SparseMatrix tmp (sm);
for (int j = 0; j < nc; j++)
  for (int i = 0; i < nr; i++)
    std::cerr << " (" << i << "," << j << "): " << tmp(i,j) << std::endl;
@end group
@end example

Finally, as the sparse types aren't represented by a contiguous
block of memory, the @nospell{@code{fortran_vec}} method of the @code{Array<T>}
is not available.  It is, however, replaced by three separate methods
@code{ridx}, @code{cidx} and @code{data}, that access the raw compressed
column format that Octave sparse matrices are stored in.  These methods can be
used in a manner similar to @code{elem} to allow the matrix to be accessed or
filled.  However, in that case it is up to the user to respect the sparse
matrix compressed column format.

@node Creating Sparse Matrices in Oct-Files
@subsubsection Creating Sparse Matrices in Oct-Files

There are several useful alternatives for creating a sparse matrix.
The first is to create three vectors representing the row index, column index,
and data values, and from these create the matrix.
The second alternative is to create a sparse matrix with the appropriate
amount of space and then fill in the values.  Both techniques have their
advantages and disadvantages.

Below is an example of creating a small sparse matrix using the first
technique

@example
@group
int nz, nr, nc;
nz = 4, nr = 3, nc = 4;

ColumnVector ridx (nz);
ColumnVector cidx (nz);
ColumnVector data (nz);

ridx(0) = 1; cidx(0) = 1; data(0) = 1;
ridx(1) = 2; cidx(1) = 2; data(1) = 2;
ridx(2) = 2; cidx(2) = 4; data(2) = 3;
ridx(3) = 3; cidx(3) = 4; data(3) = 4;
SparseMatrix sm (data, ridx, cidx, nr, nc);
@end group
@end example

@noindent
which creates the matrix given in section
@ref{Storage of Sparse Matrices}.  Note that the compressed matrix
format is not used at the time of the creation of the matrix itself,
but is used internally.

As discussed in the chapter on Sparse Matrices, the values of the sparse
matrix are stored in increasing column-major ordering.  Although the data
passed by the user need not respect this requirement, pre-sorting the
data will significantly speed up creation of the sparse matrix.

The disadvantage of this technique for creating a sparse matrix is
that there is a brief time when two copies of the data exist.  For
extremely memory constrained problems this may not be the best
technique for creating a sparse matrix.

The alternative is to first create a sparse matrix with the desired
number of non-zero elements and then later fill those elements in.
Sample code:

@example
@group
int nz, nr, nc;
nz = 4, nr = 3, nc = 4;
SparseMatrix sm (nr, nc, nz);
sm(0,0) = 1; sm(0,1) = 2; sm(1,3) = 3; sm(2,3) = 4;
@end group
@end example

This creates the same matrix as previously.  Again, although not
strictly necessary, it is significantly faster if the sparse matrix is
created and the elements are added in column-major ordering.  The reason
for this is that when elements are inserted at the end of the current list
of known elements then no element in the matrix needs to be moved to allow
the new element to be inserted; Only the column indexes need to be updated.

There are a few further points to note about this method of creating
a sparse matrix.  First, it is possible to create a sparse matrix
with fewer elements than are actually inserted in the matrix.  Therefore,

@example
@group
int nr, nc;
nr = 3, nc = 4;
SparseMatrix sm (nr, nc, 0);
sm(0,0) = 1; sm(0,1) = 2; sm(1,3) = 3; sm(2,3) = 4;
@end group
@end example

@noindent 
is perfectly valid.  However, it is a very bad idea because as each new
element is added to the sparse matrix the matrix needs to request more
space and reallocate memory.  This is an expensive operation, that will
significantly slow this means of creating a sparse matrix.  Furthermore,
it is possible to create a sparse matrix with too much storage, so having
@var{nz} greater than 4 is also valid.  The disadvantage is that the matrix
occupies more memory than strictly needed.

It is not always possible to know the number of non-zero elements prior
to filling a matrix.  For this reason the additional unused storage of 
a sparse matrix can be removed after its creation with the
@code{maybe_compress} function.  In addition, @code{maybe_compress} can
deallocate the unused storage, but it can also remove zero elements
from the matrix.  The removal of zero elements from the matrix is
controlled by setting the argument of the @code{maybe_compress} function
to be @code{true}.  However, the cost of removing the zeros is high because it
implies re-sorting the elements.  If possible, it is better
if the user does not add the unnecessary zeros in the first place.
An example of the use of @code{maybe_compress} is

@example
@group
int nz, nr, nc;
nz = 6, nr = 3, nc = 4;

SparseMatrix sm1 (nr, nc, nz);
sm1(0,0) = 1; sm1(0,1) = 2; sm1(1,3) = 3; sm1(2,3) = 4;
sm1.maybe_compress ();  // No zero elements were added

SparseMatrix sm2 (nr, nc, nz);
sm2(0,0) = 1; sm2(0,1) = 2; sm(0,2) = 0; sm(1,2) = 0;
sm1(1,3) = 3; sm1(2,3) = 4;
sm2.maybe_compress (true);  // Zero elements were added
@end group
@end example

The use of the @code{maybe_compress} function should be avoided if
possible as it will slow the creation of the matrix.

A third means of creating a sparse matrix is to work directly with
the data in compressed row format.  An example of this technique might
be

@example
octave_value arg;
@dots{}
int nz, nr, nc;
nz = 6, nr = 3, nc = 4;   // Assume we know the max # nz
SparseMatrix sm (nr, nc, nz);
Matrix m = arg.matrix_value ();

int ii = 0;
sm.cidx (0) = 0;
for (int j = 1; j < nc; j++)
  @{
    for (int i = 0; i < nr; i++)
      @{
        double tmp = foo (m(i,j));
        if (tmp != 0.)
          @{
            sm.data(ii) = tmp;
            sm.ridx(ii) = i;
            ii++;
          @}
      @}
    sm.cidx(j+1) = ii;
 @}
sm.maybe_compress ();  // If don't know a priori the final # of nz.
@end example

@noindent
which is probably the most efficient means of creating a sparse matrix.

Finally, it might sometimes arise that the amount of storage initially
created is insufficient to completely store the sparse matrix.  Therefore,
the method @code{change_capacity} exists to reallocate the sparse memory.
The above example would then be modified as

@example
octave_value arg;
@dots{}
int nz, nr, nc;
nz = 6, nr = 3, nc = 4;   // Assume we know the max # nz
SparseMatrix sm (nr, nc, nz);
Matrix m = arg.matrix_value ();

int ii = 0;
sm.cidx (0) = 0;
for (int j = 1; j < nc; j++)
  @{
    for (int i = 0; i < nr; i++)
      @{
        double tmp = foo (m(i,j));
        if (tmp != 0.)
          @{
            if (ii == nz)
              @{
                nz += 2;   // Add 2 more elements
                sm.change_capacity (nz);
              @}
            sm.data(ii) = tmp;
            sm.ridx(ii) = i;
            ii++;
          @}
      @}
    sm.cidx(j+1) = ii;
 @}
sm.maybe_mutate ();  // If don't know a priori the final # of nz.
@end example

Note that both increasing and decreasing the number of non-zero elements in
a sparse matrix is expensive as it involves memory reallocation.  Also as
parts of the matrix, though not its entirety, exist as old and new copies
at the same time, additional memory is needed.  Therefore, if possible this
should be avoided.

@node Using Sparse Matrices in Oct-Files
@subsubsection Using Sparse Matrices in Oct-Files

Most of the same operators and functions on sparse matrices that are
available from the Octave command line are also available within oct-files.
The basic means of extracting a sparse matrix from an @code{octave_value}
and returning it as an @code{octave_value}, can be seen in the
following example.

@example
@group
octave_value_list retval;

SparseMatrix sm = args(0).sparse_matrix_value ();
SparseComplexMatrix scm = 
    args(1).sparse_complex_matrix_value ();
SparseBoolMatrix sbm = args(2).sparse_bool_matrix_value ();
@dots{}
retval(2) = sbm;
retval(1) = scm;
retval(0) = sm;
@end group
@end example

The conversion to an @code{octave_value} is handled by the sparse
@code{octave_value} constructors, and so no special care is needed.

@node Accessing Global Variables in Oct-Files
@subsection Accessing Global Variables in Oct-Files

Global variables allow variables in the global scope to be
accessed.  Global variables can be accessed within oct-files by using
the support functions @code{get_global_value} and @code{set_global_value}.
@code{get_global_value} takes two arguments, the first is a string representing
the variable name to obtain.  The second argument is a boolean argument
specifying what to do if no global variable of the desired name is found.
An example of the use of these two functions is

@example
@verbatim
#include <octave/oct.h>

DEFUN_DLD (globaldemo, args, , "Global Demo")
{
  octave_value retval;
  int nargin = args.length ();

  if (nargin != 1)
    print_usage ();
  else
    {
      std::string s = args(0).string_value ();
      if (! error_state)
        {
          octave_value tmp = get_global_value (s, true);
          if (tmp.is_defined ())
            retval = tmp;
          else
            retval = "Global variable not found";

          set_global_value ("a", 42.0);
        }
    }
  return retval;
}
@end verbatim

@end example

An example of its use is

@example
@group
global a b
b = 10;
globaldemo ("b")
@result{} 10
globaldemo ("c")
@result{} "Global variable not found"
num2str (a)
@result{} 42
@end group
@end example

@node Calling Octave Functions from Oct-Files
@subsection Calling Octave Functions from Oct-Files

There is often a need to be able to call another Octave function from
within an oct-file, and there are many examples of such within Octave
itself.  For example, the @code{quad} function is an oct-file that
calculates the definite integral by quadrature over a user supplied
function.

There are also many ways in which a function might be passed.  It might
be passed as one of

@enumerate 1
@item Function Handle

@item Anonymous Function Handle

@item Inline Function

@item String
@end enumerate

The example below demonstrates an example that accepts all four means of
passing a function to an oct-file.

@example
@verbatim
#include <octave/oct.h>
#include <octave/parse.h>

DEFUN_DLD (funcdemo, args, nargout, "Function Demo")
{
  octave_value_list retval;
  int nargin = args.length ();

  if (nargin < 2)
    print_usage ();
  else
    {
      octave_value_list newargs;
      for (octave_idx_type i = nargin - 1; i > 0; i--)
        newargs(i-1) = args(i);
      if (args(0).is_function_handle () || args(0).is_inline_function ())
        {
          octave_function *fcn = args(0).function_value ();
          if (! error_state)
            retval = feval (fcn, newargs, nargout);
        }
      else if (args(0).is_string ())
        {
          std::string fcn = args(0).string_value ();
          if (! error_state)
            retval = feval (fcn, newargs, nargout);
        }
      else
        error ("funcdemo: INPUT must be string, inline, or function handle");
    }
  return retval;
}
@end verbatim

@end example

The first argument to this demonstration is the user-supplied function
and the remaining arguments are all passed to the user function.

@example
@group
funcdemo (@@sin,1)
@result{} 0.84147
funcdemo (@@(x) sin (x), 1)
@result{} 0.84147
funcdemo (inline ("sin (x)"), 1)
@result{} 0.84147
funcdemo ("sin",1)
@result{} 0.84147
funcdemo (@@atan2, 1, 1)
@result{} 0.78540
@end group
@end example

When the user function is passed as a string the treatment of the
function is different.  In some cases it is necessary to have the
user supplied function as an @code{octave_function} object.  In that
case the string argument can be used to create a temporary function
as demonstrated below.

@example
@group
std::octave fcn_name = unique_symbol_name ("__fcn__");
std::string fcode = "function y = ";
fcode.append (fcn_name);
fcode.append ("(x) y = ");
fcn = extract_function (args(0), "funcdemo", fcn_name,
                        fcode, "; endfunction");
@dots{}
if (fcn_name.length ())
  clear_function (fcn_name);
@end group
@end example

There are two important things to know in this case.  First, the number of
input arguments to the user function is fixed, and in the above example is
a single argument.  Second, to avoid leaving the temporary function in the
Octave symbol table it should be cleared after use.  Also, by convention
internal function names begin and end with the character sequence @samp{__}.

@node Calling External Code from Oct-Files
@subsection Calling External Code from Oct-Files

Linking external C code to Octave is relatively simple, as the C
functions can easily be called directly from C++.  One possible issue is
that the declarations of the external C functions may need to be explicitly
defined as C functions to the compiler.  If the declarations of the
external C functions are in the header @file{foo.h}, then the tactic to
ensure that the C++ compiler treats these declarations as C code is

@example
@group
#ifdef __cplusplus
extern "C"
@{
#endif
#include "foo.h"
#ifdef __cplusplus
@}  /* end extern "C" */
#endif
@end group
@end example

Calling Fortran code, however, can pose more difficulties.  This is due to
differences in the manner in which compilers treat the linking of Fortran code
with C or C++ code.  Octave supplies a number of macros that allow consistent
behavior across a number of compilers.

The underlying Fortran code should use the @code{XSTOPX} function to
replace the Fortran @code{STOP} function.  @code{XSTOPX} uses the Octave
exception handler to treat failing cases in the Fortran code
explicitly.  Note that Octave supplies its own replacement @sc{blas}
@code{XERBLA} function, which uses @code{XSTOPX}.

If the code calls @code{XSTOPX}, then the @w{@code{F77_XFCN}}
macro should be used to call the underlying Fortran function.  The Fortran
exception state can then be checked with the global variable
@code{f77_exception_encountered}.  If @code{XSTOPX} will not be called,
then the @w{@code{F77_FCN}} macro should be used instead to call the Fortran
code.

There is no great harm in using @w{@code{F77_XFCN}} in all cases, except that
for Fortran code that is short running and executes a large number of times,
there is potentially an overhead in doing so.  However, if @w{@code{F77_FCN}}
is used with code that calls @code{XSTOP}, Octave can generate a
segmentation fault.

An example of the inclusion of a Fortran function in an oct-file is
given in the following example, where the C++ wrapper is

@example
@verbatim
#include <octave/oct.h>
#include <octave/f77-fcn.h>

extern "C"
{
  F77_RET_T
  F77_FUNC (fortransub, FORTSUB)
    (const int&, double*, F77_CHAR_ARG_DECL F77_CHAR_ARG_LEN_DECL);
}

DEFUN_DLD (fortrandemo, args, , "Fortran Demo")
{
  octave_value_list retval;
  int nargin = args.length ();

  if (nargin != 1)
    print_usage ();
  else
    {
      NDArray a = args(0).array_value ();
      if (! error_state)
        {
          double *av = a.fortran_vec ();
          octave_idx_type na = a.numel ();
          OCTAVE_LOCAL_BUFFER (char, ctmp, 128);

          F77_XFCN (fortransub, FORTSUB,
                    (na, av, ctmp F77_CHAR_ARG_LEN (128)));

          retval(1) = std::string (ctmp);
          retval(0) = a;
        }
    }
  return retval;
}
@end verbatim

@end example

@noindent
and the Fortran function is

@example
@verbatim
      subroutine fortransub (n, a, s)
      implicit none
      character*(*) s
      real*8 a(*)
      integer*4 i, n, ioerr
      do i = 1, n
        if (a(i) .eq. 0d0) then
          call xstopx ('fortransub: divide by zero')
        else
          a(i) = 1d0 / a(i)
        endif
      enddo
      write (unit = s, fmt = '(a,i3,a,a)', iostat = ioerr)
     $       'There are ', n,
     $       ' values in the input vector', char(0)
      if (ioerr .ne. 0) then
        call xstopx ('fortransub: error writing string')
      endif
      return
      end

@end verbatim

@end example

This example demonstrates most of the features needed to link to an
external Fortran function, including passing arrays and strings, as well
as exception handling.  Both the Fortran and C++ files need to be compiled
in order for the example to work.

@example
@group
mkoctfile fortrandemo.cc fortransub.f
[b, s] = fortrandemo (1:3)
@result{}
  b = 1.00000   0.50000   0.33333
  s = There are   3 values in the input vector
[b, s] = fortrandemo (0:3)
error: fortrandemo: fortransub: divide by zero
@end group
@end example

@node Allocating Local Memory in Oct-Files
@subsection Allocating Local Memory in Oct-Files

Allocating memory within an oct-file might seem easy as the C++
new/delete operators can be used.  However, in that case great care must be
taken to avoid memory leaks.  The preferred manner in which to allocate
memory for use locally is to use the @w{@code{OCTAVE_LOCAL_BUFFER}} macro.
An example of its use is

@example
OCTAVE_LOCAL_BUFFER (double, tmp, len)
@end example

@noindent
that returns a pointer @code{tmp} of type @code{double *} of length
@code{len}.

In this case Octave itself will worry about reference counting and variable
scope and will properly free memory without programmer intervention.

@node Input Parameter Checking in Oct-Files
@subsection Input Parameter Checking in Oct-Files

As oct-files are compiled functions they open up the possibility of
crashing Octave through careless function calls or memory faults.
It is quite important that each and every function have a sufficient level
of parameter checking to ensure that Octave behaves well.

The minimum requirement, as previously discussed, is to check the number
of input arguments before using them to avoid referencing a non-existent
argument.  However, in some cases this might not be sufficient as the
underlying code imposes further constraints.  For example, an external
function call might be undefined if the input arguments are not
integers, or if one of the arguments is zero, or if the input is complex
and a real value was expected.  Therefore, oct-files often need additional
input parameter checking.

There are several functions within Octave that can be useful for the
purposes of parameter checking.  These include the methods of the
octave_value class like @code{is_real_matrix}, @code{is_numeric_type}, etc.
Often, with a knowledge of the Octave m-file language, you can guess at what
the corresponding C++ routine will.  In addition there are some more
specialized input validation functions of which a few are demonstrated below.

@example
@verbatim
#include <octave/oct.h>

DEFUN_DLD (paramdemo, args, nargout, "Parameter Check Demo")
{
  octave_value retval;
  int nargin = args.length ();

  if (nargin != 1)
    print_usage ();
  else if (nargout != 0)
    error ("paramdemo: OUTPUT argument required");
  else
    {
      NDArray m = args(0).array_value ();
      double min_val = -10.0;
      double max_val = 10.0;
      octave_stdout << "Properties of input array:\n";
      if (m.any_element_is_negative ())
        octave_stdout << "  includes negative values\n";
      if (m.any_element_is_inf_or_nan ())
        octave_stdout << "  includes Inf or NaN values\n";
      if (m.any_element_not_one_or_zero ())
        octave_stdout << "  includes other values than 1 and 0\n";
      if (m.all_elements_are_int_or_inf_or_nan ())
        octave_stdout << "  includes only int, Inf or NaN values\n";
      if (m.all_integers (min_val, max_val))
        octave_stdout << "  includes only integers in [-10,10]\n";
    }
  return retval;
}
@end verbatim

@end example

@noindent
An example of its use is:

@example
@group
paramdemo ([1, 2, NaN, Inf])
@result{} Properties of input array:
     includes Inf or NaN values
     includes other values than 1 and 0
     includes only int, Inf or NaN values
@end group
@end example

@node Exception and Error Handling in Oct-Files
@subsection Exception and Error Handling in Oct-Files

Another important feature of Octave is its ability to react to the user
typing @key{Control-C} even during calculations.  This ability is based on the
C++ exception handler, where memory allocated by the C++ new/delete
methods are automatically released when the exception is treated.  When
writing an oct-file, to allow Octave to treat the user typing @key{Control-C},
the @w{@code{OCTAVE_QUIT}} macro is supplied.  For example:

@example
@group
for (octave_idx_type i = 0; i < a.nelem (); i++)
  @{
    OCTAVE_QUIT;
    b.elem (i) = 2. * a.elem (i);
  @}
@end group
@end example

The presence of the @w{@code{OCTAVE_QUIT}} macro in the inner loop allows
Octave to treat the user request with the @key{Control-C}.  Without this macro,
the user must either wait for the function to return before the interrupt is
processed, or press @key{Control-C} three times to force Octave to exit.

The @w{@code{OCTAVE_QUIT}} macro does impose a very small speed penalty, and so
for loops that are known to be small it might not make sense to include
@w{@code{OCTAVE_QUIT}}.

When creating an oct-file that uses an external libraries, the function
might spend a significant portion of its time in the external
library.  It is not generally possible to use the @w{@code{OCTAVE_QUIT}} macro
in this case.  The alternative in this case is

@example
@group
BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
@dots{}  some code that calls a "foreign" function @dots{}
END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
@end group
@end example

The disadvantage of this is that if the foreign code allocates any
memory internally, then this memory might be lost during an interrupt,
without being deallocated.  Therefore, ideally Octave itself should
allocate any memory that is needed by the foreign code, with either the
@nospell{fortran_vec} method or the @w{@code{OCTAVE_LOCAL_BUFFER}} macro.

The Octave unwind_protect mechanism (@ref{The unwind_protect Statement})
can also be used in oct-files.  In conjunction with the exception
handling of Octave, it is important to enforce that certain code is run
to allow variables, etc.@: to be restored even if an exception occurs.  An
example of the use of this mechanism is

@example
@verbatim
#include <octave/oct.h>
#include <octave/unwind-prot.h>

void
my_err_handler (const char *fmt, ...)
{
  // Do nothing!!
}

DEFUN_DLD (unwinddemo, args, nargout, "Unwind Demo")
{
  octave_value retval;
  int nargin = args.length ();

  if (nargin < 2)
    print_usage ();
  else
    {
      NDArray a = args(0).array_value ();
      NDArray b = args(1).array_value ();

      if (! error_state)
        {
          // Declare unwind_protect frame which lasts as long as
          // the variable frame has scope.
          unwind_protect frame;
          frame.protect_var (current_liboctave_warning_handler);

          set_liboctave_warning_handler (my_err_handler);
          retval = octave_value (quotient (a, b));
        }
    }
  return retval;
}
@end verbatim

@end example

As can be seen in the example:

@example
@group
unwinddemo (1, 0)
@result{} Inf
1 / 0
@result{} warning: division by zero
   Inf
@end group
@end example

The warning for division by zero (and in fact all warnings) are disabled in the
@code{unwinddemo} function.

@node Documentation and Test of Oct-Files
@subsection Documentation and Test of Oct-Files

The documentation of an oct-file is the fourth string parameter of the
@w{@code{DEFUN_DLD}} macro.  This string can be formatted in the same manner
as the help strings for user functions (@pxref{Documentation Tips}),
however there are some issue that are particular to the formatting of
help strings within oct-files.

The major issue is that the help string will typically be longer than a
single line of text, and so the formatting of long help strings needs to
be taken into account.  There are several possible solutions, but the most
common is illustrated in the following example,

@example
@group
DEFUN_DLD (do_what_i_want, args, nargout, 
  "-*- texinfo -*-\n\
@@deftypefn @{Function File@} @{@} do_what_i_say (@@var@{n@})\n\
A function that does what the user actually wants rather\n\
than what they requested.\n\
@@end deftypefn")
@{
@dots{}
@}
@end group
@end example

@noindent
where, as can be seen, each line of text is terminated by @code{\n\}
which is an embedded new-line in the string together with a C++ string
continuation character.  Note that the final @code{\} must be the last
character on the line.

Octave also includes the ability to embed test and demonstration
code for a function within the code itself (@pxref{Test and Demo Functions}).
This can be used from within oct-files (or in fact any file) with
certain provisos.  First, the test and demo functions of Octave look
for @code{%!} as the first two characters of a line to identify test
and demonstration code.  This is a requirement for oct-files as well.
In addition, the test and demonstration code must be wrapped in a comment
block to avoid it being interpreted by the compiler.  Finally, the Octave
test and demonstration code must have access to the original source code
of the oct-file and not just the compiled code as the tests are stripped
from the compiled code.  An example in an oct-file might be

@example
@group
/*
%!assert (sin ([1,2]), [sin(1),sin(2)])
%!error (sin ())
%!error (sin (1,1))
*/
@end group
@end example

@c @node Application Programming Interface for Oct-Files
@c @subsection Application Programming Interface for Oct-Files
@c 
@c WRITE ME, using Coda section 1.3 as a starting point.

@node Mex-Files
@section Mex-Files
@cindex mex-files
@cindex mex

Octave includes an interface to allow legacy mex-files to be compiled
and used with Octave.  This interface can also be used to share code
between Octave and @sc{matlab} users.  However, as mex-files expose
@sc{matlab}'s internal API, and the internal structure of Octave is
different, a mex-file can never have the same performance in Octave as
the equivalent oct-file.  In particular, to support the manner in which
variables are passed to mex functions there are a significant number of
additional copies of memory blocks when calling or returning from a
mex-file function.  For this reason, it is recommended that any new code
be written with the oct-file interface previously discussed.

@menu
* Getting Started with Mex-Files::
* Working with Matrices and Arrays in Mex-Files::
* Character Strings in Mex-Files::
* Cell Arrays with Mex-Files::
* Structures with Mex-Files::
* Sparse Matrices with Mex-Files::
* Calling Other Functions in Mex-Files::
@c * Application Programming Interface for Mex-Files::  
@end menu

@node Getting Started with Mex-Files
@subsection Getting Started with Mex-Files

The basic command to build a mex-file is either @code{mkoctfile --mex}
or @code{mex}.  The first command can be used either from within Octave or from
the command line.  However, to avoid issues with @sc{matlab}'s own @code{mex}
command, the use of the command @code{mex} is limited to within Octave.
Compiled mex-files have the extension @file{.mex}.

@c mex scripts/miscellaneous/mex.m
@anchor{XREFmex}
@deftypefn {Command} {} mex [options] file @dots{}
Compile source code written in C, C++, or Fortran, to a MEX file.
This is equivalent to @code{mkoctfile --mex [options] file}.
@seealso{@ref{XREFmkoctfile,,mkoctfile}}
@end deftypefn


@c mexext scripts/miscellaneous/mexext.m
@anchor{XREFmexext}
@deftypefn {Function File} {} mexext ()
Return the filename extension used for MEX files.
@seealso{@ref{XREFmex,,mex}}
@end deftypefn


Consider the following short example:

@example
@group
@verbatim
#include "mex.h"

void
mexFunction (int nlhs, mxArray *plhs[],
             int nrhs, const mxArray *prhs[])
{
  mexPrintf ("Hello, World!\n");

  mexPrintf ("I have %d inputs and %d outputs\n", nrhs, nlhs);
}
@end verbatim

@end group
@end example

The first line @code{#include "mex.h"} makes available all of the definitions
necessary for a mex-file.  One important difference between Octave and
@sc{matlab} is that the header file @qcode{"matrix.h"} is implicitly included
through the inclusion of @qcode{"mex.h"}.  This is necessary to avoid a conflict
with the Octave file @qcode{"Matrix.h"} for operating systems and compilers that
don't distinguish between filenames in upper and lower case.

The entry point into the mex-file is defined by @code{mexFunction}.  The
function takes four arguments:

@enumerate 1
@item The number of return arguments (# of left-hand side args).

@item An array of pointers to return arguments.

@item The number of input arguments (# of right-hand side args).

@item An array of pointers to input arguments.
@end enumerate

Note that the function name definition is not explicitly included in
@code{mexFunction} and so there can only be a single @code{mexFunction}
entry point per file.  Instead, the name of the function as seen in Octave is
determined by the name of the mex-file itself minus the extension.  Therefore,
if the above function is in the file @file{myhello.c}, it can be compiled with

@example
mkoctfile --mex myhello.c
@end example

@noindent
which creates a file @file{myhello.mex}.  The function can then be run from
Octave as

@example
@group
myhello (1,2,3)
@result{} Hello, World!
@result{} I have 3 inputs and 0 outputs
@end group
@end example

It should be noted that the mex-file contains no help string for the
functions it contains.  To document mex-files, there should exist an
m-file in the same directory as the mex-file itself.  Taking the above as
an example, we would therefore have a file @file{myhello.m} that might
contain the text

@example
%MYHELLO Simple test of the functionality of a mex-file.
@end example

In this case, the function that will be executed within Octave will be
given by the mex-file, while the help string will come from the
m-file.  This can also be useful to allow a sample implementation of the
mex-file within the Octave language itself for testing purposes.

Although there cannot be multiple entry points in a single mex-file,
one can use the @code{mexFunctionName} function to determine what name
the mex-file was called with.  This can be used to alter the behavior of
the mex-file based on the function name.  For example, if

@example
@group
@verbatim
#include "mex.h"

void
mexFunction (int nlhs, mxArray *plhs[],
             int nrhs, const mxArray *prhs[])
{
  const char *nm;

  nm = mexFunctionName ();
  mexPrintf ("You called function: %s\n", nm);
  if (strcmp (nm, "myfunc") == 0)
    mexPrintf ("This is the principal function\n", nm);

  return;
}
@end verbatim

@end group
@end example

@noindent
is in file @file{myfunc.c}, and it is compiled with

@example
@group
mkoctfile --mex myfunc.c
ln -s myfunc.mex myfunc2.mex
@end group
@end example

@noindent
then as can be seen by

@example
@group
myfunc ()
@result{} You called function: myfunc
    This is the principal function
myfunc2 ()
@result{} You called function: myfunc2
@end group
@end example

@noindent
the behavior of the mex-file can be altered depending on the functions
name.

Although the user should only include @file{mex.h} in their code, Octave
declares additional functions, typedefs, etc., available to the user to
write mex-files in the headers @file{mexproto.h} and @file{mxarray.h}.

@node Working with Matrices and Arrays in Mex-Files
@subsection Working with Matrices and Arrays in Mex-Files

The basic mex type of all variables is @code{mxArray}.  Any object,
such as a matrix, cell array, or structure is stored in this basic
type.  As such, @code{mxArray} serves basically the same purpose as the
octave_value class in oct-files in that it acts as a container for the
more specialized types.

The @code{mxArray} structure contains at a minimum, the name of the
variable it represents, its dimensions, its type, and whether the variable is
real or complex.  It can also contain a number of additional fields
depending on the type of the @code{mxArray}.  There are a number of
functions to create @code{mxArray} structures, including
@code{mxCreateDoubleMatrix}, @code{mxCreateCellArray}, @code{mxCreateSparse},
and the generic @code{mxCreateNumericArray}.

The basic function to access the data contained in an array is
@code{mxGetPr}.  As the mex interface assumes that real and imaginary
parts of a complex array are stored separately, there is an equivalent
function @code{mxGetPi} that gets the imaginary part.  Both of these
functions are only for use with double precision matrices.  The generic
functions @code{mxGetData} and @code{mxGetImagData} perform the same operation
on all matrix types.  For example:

@example
@group
mxArray *m;
mwSize *dims;
UINT32_T *pr;

dims = (mwSize *) mxMalloc (2 * sizeof (mwSize));
dims[0] = 2; dims[1] = 2;
m = mxCreateNumericArray (2, dims, mxUINT32_CLASS, mxREAL);
pr = (UINT32_T *) mxGetData (m);
@end group
@end example

There are also the functions @code{mxSetPr}, etc., that perform the
inverse, and set the data of an array to use the block of memory pointed
to by the argument of @code{mxSetPr}.

Note the type @code{mwSize} used above, and also @code{mwIndex}, are defined
as the native precision of the indexing in Octave on the platform on
which the mex-file is built.  This allows both 32- and 64-bit platforms
to support mex-files.  @code{mwSize} is used to define array dimensions
and the maximum number or elements, while @code{mwIndex} is used to define
indexing into arrays.

An example that demonstrates how to work with arbitrary real or complex
double precision arrays is given by the file @file{mypow2.c} shown below.

@example
@verbatim
#include "mex.h"

void
mexFunction (int nlhs, mxArray* plhs[],
             int nrhs, const mxArray* prhs[])
{
  mwSize n;
  mwIndex i;
  double *vri, *vro;

  if (nrhs != 1 || ! mxIsNumeric (prhs[0]))
    mexErrMsgTxt ("ARG1 must be a matrix");

  n = mxGetNumberOfElements (prhs[0]);
  plhs[0] = mxCreateNumericArray (mxGetNumberOfDimensions (prhs[0]),
                                  mxGetDimensions (prhs[0]),
                                  mxGetClassID (prhs[0]),
                                  mxIsComplex (prhs[0]));
  vri = mxGetPr (prhs[0]);
  vro = mxGetPr (plhs[0]);

  if (mxIsComplex (prhs[0]))
    {
      double *vii, *vio;
      vii = mxGetPi (prhs[0]);
      vio = mxGetPi (plhs[0]);

      for (i = 0; i < n; i++)
        {
          vro[i] = vri[i] * vri[i] - vii[i] * vii[i];
          vio[i] = 2 * vri[i] * vii[i];
        }
    }
  else
    {
      for (i = 0; i < n; i++)
        vro[i] = vri[i] * vri[i];
    }
}
@end verbatim

@end example

@noindent
with an example of its use

@example
@group
b = randn (4,1) + 1i * randn (4,1);
all (b.^2 == mypow2 (b))
@result{} 1
@end group
@end example

The example above uses the functions @code{mxGetDimensions},
@code{mxGetNumberOfElements}, and @code{mxGetNumberOfDimensions} to work
with the dimensions of multi-dimensional arrays.  The functions
@code{mxGetM}, and @code{mxGetN} are also available to find the number
of rows and columns in a 2-D matrix.

@node Character Strings in Mex-Files
@subsection Character Strings in Mex-Files

As mex-files do not make the distinction between single and double
quoted strings within Octave, there is perhaps less complexity in the
use of strings and character matrices in mex-files.  An example of their
use that parallels the demo in @file{stringdemo.cc} is given in the
file @file{mystring.c}, as shown below.

@example
@verbatim
#include <string.h>
#include "mex.h"

void
mexFunction (int nlhs, mxArray *plhs[],
             int nrhs, const mxArray *prhs[])
{
  mwSize m, n;
  mwIndex i, j;
  mxChar *pi, *po;

  if (nrhs != 1 || ! mxIsChar (prhs[0])
      || mxGetNumberOfDimensions (prhs[0]) > 2)
    mexErrMsgTxt ("ARG1 must be a char matrix");

  m = mxGetM (prhs[0]);
  n = mxGetN (prhs[0]);
  pi = mxGetChars (prhs[0]);
  plhs[0] = mxCreateNumericMatrix (m, n, mxCHAR_CLASS, mxREAL);
  po = mxGetChars (plhs[0]);

  for (j = 0; j < n; j++)
    for (i = 0; i < m; i++)
      po[j*m + m - 1 - i] = pi[j*m + i];
}
@end verbatim

@end example

@noindent
An example of its expected output is

@example
@group
mystring (["First String"; "Second String"])
@result{} Second String
   First String
@end group
@end example

Other functions in the mex interface for handling character strings are
@code{mxCreateString}, @code{mxArrayToString}, and
@code{mxCreateCharMatrixFromStrings}.  In a mex-file, a character string
is considered to be a vector rather than a matrix.  This is perhaps an
arbitrary distinction as the data in the mxArray for the matrix is
consecutive in any case.

@node Cell Arrays with Mex-Files
@subsection Cell Arrays with Mex-Files

One can perform exactly the same operations on Cell arrays in mex-files
as in oct-files.  An example that reduplicates the function of
the @file{celldemo.cc} oct-file in a mex-file is given by @file{mycell.c}
as shown below.

@example
@verbatim
#include "mex.h"

void
mexFunction (int nlhs, mxArray* plhs[],
             int nrhs, const mxArray* prhs[])
{
  mwSize n;
  mwIndex i;

  if (nrhs != 1 || ! mxIsCell (prhs[0]))
    mexErrMsgTxt ("ARG1 must be a cell");

  n = mxGetNumberOfElements (prhs[0]);
  n = (n > nlhs ? nlhs : n);

  for (i = 0; i < n; i++)
    plhs[i] = mxDuplicateArray (mxGetCell (prhs[0], i));
}
@end verbatim

@end example

@noindent
The output is identical to the oct-file version as well.

@example
@group
[b1, b2, b3] = mycell (@{1, [1, 2], "test"@})
@result{}
b1 =  1
b2 =

   1   2

b3 = test
@end group
@end example

Note in the example the use of the @code{mxDuplicateArray} function.  This
is needed as the @code{mxArray} pointer returned by @code{mxGetCell}
might be deallocated.  The inverse function to @code{mxGetCell}, used for
setting Cell values, is @code{mxSetCell} and is defined as

@example
void mxSetCell (mxArray *ptr, int idx, mxArray *val);
@end example

Finally, to create a cell array or matrix, the appropriate functions are

@example
@group
mxArray *mxCreateCellArray (int ndims, const int *dims);
mxArray *mxCreateCellMatrix (int m, int n);
@end group
@end example

@node Structures with Mex-Files
@subsection Structures with Mex-Files

The basic function to create a structure in a mex-file is
@code{mxCreateStructMatrix} which creates a structure array with a two
dimensional matrix, or @code{mxCreateStructArray}.

@example
@group
mxArray *mxCreateStructArray (int ndims, int *dims, 
                              int num_keys, 
                              const char **keys);
mxArray *mxCreateStructMatrix (int rows, int cols, 
                               int num_keys, 
                               const char **keys);
@end group
@end example

Accessing the fields of the structure can then be performed with
@code{mxGetField} and @code{mxSetField} or alternatively with the
@code{mxGetFieldByNumber} and @code{mxSetFieldByNumber} functions.

@example
@group
mxArray *mxGetField (const mxArray *ptr, mwIndex index,
                     const char *key);
mxArray *mxGetFieldByNumber (const mxArray *ptr, 
                             mwIndex index, int key_num);
void mxSetField (mxArray *ptr, mwIndex index, 
                 const char *key, mxArray *val);
void mxSetFieldByNumber (mxArray *ptr, mwIndex index, 
                         int key_num, mxArray *val);
@end group
@end example

A difference between the oct-file interface to structures and the
mex-file version is that the functions to operate on structures in
mex-files directly include an @code{index} over the elements of the
arrays of elements per @code{field}; Whereas, the oct-file structure
includes a Cell Array per field of the structure.

An example that demonstrates the use of structures in a mex-file can be
found in the file @file{mystruct.c} shown below.

@example
@verbatim
#include "mex.h"

void
mexFunction (int nlhs, mxArray* plhs[],
             int nrhs, const mxArray* prhs[])
{
  int i;
  mwIndex j;
  mxArray *v;
  const char *keys[] = { "this", "that" };

  if (nrhs != 1 || ! mxIsStruct (prhs[0]))
    mexErrMsgTxt ("expects struct");

  for (i = 0; i < mxGetNumberOfFields (prhs[0]); i++)
    for (j = 0; j < mxGetNumberOfElements (prhs[0]); j++)
      {
        mexPrintf ("field %s(%d) = ", mxGetFieldNameByNumber (prhs[0], i), j);
        v = mxGetFieldByNumber (prhs[0], j, i);
        mexCallMATLAB (0, NULL, 1, &v, "disp");
      }

  v = mxCreateStructMatrix (2, 2, 2, keys);

  mxSetFieldByNumber (v, 0, 0, mxCreateString ("this1"));
  mxSetFieldByNumber (v, 0, 1, mxCreateString ("that1"));
  mxSetFieldByNumber (v, 1, 0, mxCreateString ("this2"));
  mxSetFieldByNumber (v, 1, 1, mxCreateString ("that2"));
  mxSetFieldByNumber (v, 2, 0, mxCreateString ("this3"));
  mxSetFieldByNumber (v, 2, 1, mxCreateString ("that3"));
  mxSetFieldByNumber (v, 3, 0, mxCreateString ("this4"));
  mxSetFieldByNumber (v, 3, 1, mxCreateString ("that4"));

  if (nlhs)
    plhs[0] = v;
}
@end verbatim

@end example

An example of the behavior of this function within Octave is then

@example
a(1).f1 = "f11"; a(1).f2 = "f12"; 
a(2).f1 = "f21"; a(2).f2 = "f22";
b = mystruct (a);
@result{}  field f1(0) = f11
    field f1(1) = f21
    field f2(0) = f12
    field f2(1) = f22
b
@result{} 2x2 struct array containing the fields:

     this
     that

b(3)
@result{} scalar structure containing the fields:

     this = this3
     that = that3
@end example

@node Sparse Matrices with Mex-Files
@subsection Sparse Matrices with Mex-Files

The Octave format for sparse matrices is identical to the mex format in
that it is a compressed column sparse format.  Also in both, sparse
matrices are required to be two-dimensional.  The only difference is that
the real and imaginary parts of the matrix are stored separately.

The mex-file interface, in addition to using @code{mxGetM}, @code{mxGetN},
@code{mxSetM}, @code{mxSetN}, @code{mxGetPr}, @code{mxGetPi},
@code{mxSetPr}, and @code{mxSetPi}, also supplies the following functions.

@example
@group
mwIndex *mxGetIr (const mxArray *ptr);
mwIndex *mxGetJc (const mxArray *ptr);
mwSize mxGetNzmax (const mxArray *ptr);

void mxSetIr (mxArray *ptr, mwIndex *ir);
void mxSetJc (mxArray *ptr, mwIndex *jc);
void mxSetNzmax (mxArray *ptr, mwSize nzmax);
@end group
@end example

@noindent
@code{mxGetNzmax} gets the maximum number of elements that can be stored
in the sparse matrix.  This is not necessarily the number of non-zero
elements in the sparse matrix.  @code{mxGetJc} returns an array with one
additional value than the number of columns in the sparse matrix.  The
difference between consecutive values of the array returned by
@code{mxGetJc} define the number of non-zero elements in each column of
the sparse matrix.  Therefore,

@example
@group
mwSize nz, n;
mwIndex *Jc;
mxArray *m;
@dots{}
n = mxGetN (m);
Jc = mxGetJc (m);
nz = Jc[n];
@end group
@end example

@noindent
returns the actual number of non-zero elements stored in the matrix in
@code{nz}.  As the arrays returned by @code{mxGetPr} and @code{mxGetPi}
only contain the non-zero values of the matrix, we also need a pointer
to the rows of the non-zero elements, and this is given by
@code{mxGetIr}.  A complete example of the use of sparse matrices in
mex-files is given by the file @file{mysparse.c} shown below.

@example
@verbatim
#include "mex.h"

void
mexFunction (int nlhs, mxArray *plhs[],
             int nrhs, const mxArray *prhs[])
{
  mwSize m, n, nz;
  mxArray *v;
  mwIndex i;
  double *pr, *pi;
  double *pr2, *pi2;
  mwIndex *ir, *jc;
  mwIndex *ir2, *jc2;

  if (nrhs != 1 || ! mxIsSparse (prhs[0]))
    mexErrMsgTxt ("ARG1 must be a sparse matrix");

  m = mxGetM (prhs[0]);
  n = mxGetN (prhs[0]);
  nz = mxGetNzmax (prhs[0]);

  if (mxIsComplex (prhs[0]))
    {
      mexPrintf ("Matrix is %d-by-%d complex sparse matrix", m, n);
      mexPrintf (" with %d elements\n", nz);

      pr = mxGetPr (prhs[0]);
      pi = mxGetPi (prhs[0]);
      ir = mxGetIr (prhs[0]);
      jc = mxGetJc (prhs[0]);

      i = n;
      while (jc[i] == jc[i-1] && i != 0) i--;

      mexPrintf ("last non-zero element (%d, %d) = (%g, %g)\n",
                 ir[nz-1]+ 1, i, pr[nz-1], pi[nz-1]);

      v = mxCreateSparse (m, n, nz, mxCOMPLEX);
      pr2 = mxGetPr (v);
      pi2 = mxGetPi (v);
      ir2 = mxGetIr (v);
      jc2 = mxGetJc (v);

      for (i = 0; i < nz; i++)
        {
          pr2[i] = 2 * pr[i];
          pi2[i] = 2 * pi[i];
          ir2[i] = ir[i];
        }
      for (i = 0; i < n + 1; i++)
        jc2[i] = jc[i];

      if (nlhs > 0)
        plhs[0] = v;
    }
  else if (mxIsLogical (prhs[0]))
    {
      mxLogical *pbr, *pbr2;
      mexPrintf ("Matrix is %d-by-%d logical sparse matrix", m, n);
      mexPrintf (" with %d elements\n", nz);

      pbr = mxGetLogicals (prhs[0]);
      ir = mxGetIr (prhs[0]);
      jc = mxGetJc (prhs[0]);

      i = n;
      while (jc[i] == jc[i-1] && i != 0) i--;
      mexPrintf ("last non-zero element (%d, %d) = %d\n",
                 ir[nz-1]+ 1, i, pbr[nz-1]);

      v = mxCreateSparseLogicalMatrix (m, n, nz);
      pbr2 = mxGetLogicals (v);
      ir2 = mxGetIr (v);
      jc2 = mxGetJc (v);

      for (i = 0; i < nz; i++)
        {
          pbr2[i] = pbr[i];
          ir2[i] = ir[i];
        }
      for (i = 0; i < n + 1; i++)
        jc2[i] = jc[i];

      if (nlhs > 0)
        plhs[0] = v;
    }
  else
    {
      mexPrintf ("Matrix is %d-by-%d real sparse matrix", m, n);
      mexPrintf (" with %d elements\n", nz);

      pr = mxGetPr (prhs[0]);
      ir = mxGetIr (prhs[0]);
      jc = mxGetJc (prhs[0]);

      i = n;
      while (jc[i] == jc[i-1] && i != 0) i--;
      mexPrintf ("last non-zero element (%d, %d) = %g\n",
                 ir[nz-1]+ 1, i, pr[nz-1]);

      v = mxCreateSparse (m, n, nz, mxREAL);
      pr2 = mxGetPr (v);
      ir2 = mxGetIr (v);
      jc2 = mxGetJc (v);

      for (i = 0; i < nz; i++)
        {
          pr2[i] = 2 * pr[i];
          ir2[i] = ir[i];
        }
      for (i = 0; i < n + 1; i++)
        jc2[i] = jc[i];

      if (nlhs > 0)
        plhs[0] = v;
    }
}
@end verbatim

@end example

A sample usage of @code{mysparse} is

@example
@group
sm = sparse ([1, 0; 0, pi]);
mysparse (sm)
@result{}
Matrix is 2-by-2 real sparse matrix with 2 elements
last non-zero element (2, 2) = 3.14159
@end group
@end example

@node Calling Other Functions in Mex-Files
@subsection Calling Other Functions in Mex-Files

It is possible to call other Octave functions from within a mex-file
using @code{mexCallMATLAB}.  An example of the use of @code{mexCallMATLAB}
can be see in the example below.

@example
@verbatim
#include "mex.h"

void
mexFunction (int nlhs, mxArray* plhs[],
             int nrhs, const mxArray* prhs[])
{
  char *str;

  mexPrintf ("Starting file myfeval.mex\n");

  mexPrintf ("I have %d inputs and %d outputs\n", nrhs, nlhs);

  if (nrhs < 1 || ! mxIsString (prhs[0]))
    mexErrMsgTxt ("ARG1 must be a function name");

  str = mxArrayToString (prhs[0]);

  mexPrintf ("I'm going to call the function %s\n", str);

  if (nlhs == 0)
    nlhs = 1;  // Octave's automatic 'ans' variable

  /* Cast prhs just to get rid of 'const' qualifier and stop compile warning */
  mexCallMATLAB (nlhs, plhs, nrhs-1, (mxArray**)prhs+1, str);

  mxFree (str);
}
@end verbatim

@end example

If this code is in the file @file{myfeval.c}, and is compiled to
@file{myfeval.mex}, then an example of its use is

@example
@group
a = myfeval ("sin", 1)
@result{} Starting file myfeval.mex
   I have 2 inputs and 1 outputs
   I'm going to call the interpreter function sin
   a =  0.84147
@end group
@end example

Note that it is not possible to use function handles or inline functions
within a mex-file.

@c @node Application Programming Interface for Mex-Files
@c @subsection Application Programming Interface for Mex-Files
@c 
@c WRITE ME, refer to mex.h and mexproto.h

@node Standalone Programs
@section Standalone Programs

The libraries Octave itself uses can be utilized in standalone
applications.  These applications then have access, for example, to the
array and matrix classes, as well as to all of the Octave algorithms.  The
following C++ program, uses class Matrix from @file{liboctave.a} or
@file{liboctave.so}.

@example
@verbatim
#include <iostream>
#include <octave/oct.h>

int
main (void)
{
  std::cout << "Hello Octave world!\n";

  int n = 2;
  Matrix a_matrix = Matrix (n, n);

  for (octave_idx_type i = 0; i < n; i++)
    for (octave_idx_type j = 0; j < n; j++)
      a_matrix(i,j) = (i + 1) * 10 + (j + 1);

  std::cout << a_matrix;

  return 0;
}
@end verbatim

@end example

@noindent
mkoctfile can be used to build a standalone application with a
command like

@example
@group
$ mkoctfile --link-stand-alone standalone.cc -o standalone
$ ./standalone
Hello Octave world!
  11 12
  21 22
$
@end group
@end example

Note that the application @code{standalone} will be dynamically linked
against the Octave libraries and any Octave support libraries.  The above
allows the Octave math libraries to be used by an application.  It does
not, however, allow the script files, oct-files, or built-in functions of
Octave to be used by the application.  To do that the Octave interpreter
needs to be initialized first.  An example of how to do this can then be
seen in the code

@example
@verbatim
#include <iostream>
#include <octave/oct.h>
#include <octave/octave.h>
#include <octave/parse.h>
#include <octave/toplev.h>

int
main (void)
{
  string_vector argv (2);
  argv(0) = "embedded";
  argv(1) = "-q";

  octave_main (2, argv.c_str_vec (), 1);

  octave_idx_type n = 2;
  octave_value_list in;

  for (octave_idx_type i = 0; i < n; i++)
    in(i) = octave_value (5 * (i + 2));

  octave_value_list out = feval ("gcd", in, 1);

  if (! error_state && out.length () > 0)
    std::cout << "GCD of ["
              << in(0).int_value ()
              << ", "
              << in(1).int_value ()
              << "] is " << out(0).int_value ()
              << std::endl;
  else
    std::cout << "invalid\n";

  clean_up_and_exit (0);
}
@end verbatim

@end example

@noindent
which, as before, is compiled and run as a standalone application with

@example
@group
$ mkoctfile --link-stand-alone embedded.cc -o embedded
$ ./embedded
GCD of [10, 15] is 5
$
@end group
@end example

It is worth noting that, if only built-in functions are to be called from 
a C++ standalone program, then it does not need to initialize the 
interpreter to do so.  The general rule is that, for a built-in 
function named @code{function_name} in the interpreter, there will be
a C++ function named @code{Ffunction_name} (note the prepended capital 
@code{F}) accessible in the C++ API@.  The declarations for all built-in 
functions are collected in the header file @code{builtin-defun-decls.h}.
This feature should be used with care as the list of built-in functions can
change.  No guarantees can be made that a function that is currently built in
won't be implemented as a .m file or as a dynamically linked function in the
future.  An example of how to call built-in functions from C++ can be seen in the
code

@example
@verbatim
#include <iostream>
#include <octave/oct.h>
#include <octave/builtin-defun-decls.h>

int
main (void)
{
  int n = 2;
  Matrix a_matrix = Matrix (n, n);

  for (octave_idx_type i = 0; i < n; i++)
    for (octave_idx_type j = 0; j < n; j++)
      a_matrix(i,j) = (i + 1) * 10 + (j + 1);

  std::cout << "This is a matrix:" << std::endl 
            << a_matrix            << std::endl;

  octave_value_list in;
  in(0) = a_matrix;

  octave_value_list out = Fnorm (in, 1);
  double norm_of_the_matrix = out(0).double_value ();

  std::cout << "This is the norm of the matrix:" << std::endl 
            << norm_of_the_matrix                << std::endl;
  
  return 0;
}
@end verbatim

@end example

@noindent
which, again, is compiled and run as a standalone application with

@example
@group
$ mkoctfile --link-stand-alone standalonebuiltin.cc -o standalonebuiltin
$ ./standalonebuiltin 
This is a matrix:
 11 12
 21 22

This is the norm of the matrix:
34.4952
$
@end group
@end example