1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 2007-2013 John W. Eaton and David Bateman
@c Copyright (C) 2007 Paul Thomas and Christoph Spiel
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
@c for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <http://www.gnu.org/licenses/>.
@node External Code Interface
@appendix External Code Interface
@cindex dynamic-linking
@cindex Dynamically Linked Functions
@cindex Octave API
"The sum of human wisdom is not contained in any one language"
---Ezra Pound
Octave is a fantastic language for solving many problems in science and
engineering. However, it is not the only computer language and there
are times when you may want to use code written in other languages.
Good reasons for doing so include: 1) not re-inventing the wheel; existing
function libraries which have been thoroughly tested and debugged or
large scale simulation codebases are a good example, 2) accessing unique
capabilities of a different language; for example the well-known regular
expression functions of Perl (but don't do that because @code{regexp}
already exists in Octave).
Performance should generally @strong{not} be a reason for using compiled
extensions. Although compiled extensions can run faster, particularly
if they replace a loop in Octave code, this is almost never the best path
to take. First, there are many techniques to speed up Octave performance while
remaining within the language. Second, Octave is a high-level language that
makes it easy to perform common mathematical tasks. Giving that up means
shifting the focus from solving the real problem to solving a computer
programming problem. It means returning to low-level constructs such as
pointers, memory management, mathematical overflow/underflow, etc. Because
of the low level nature, and the fact that the compiled code is executed outside
of Octave, there is the very real possibility of crashing the interpreter and
losing work.
Before going further, you should first determine if you really need to bother
writing code outside of Octave.
@itemize @bullet
@item
Can I get the same functionality using the Octave scripting language alone?
Even when a function already exists outside the language, it may be
better to simply reproduce the behavior in an m-file rather than attempt to
interface to the outside code.
@item
Is the code thoroughly optimized for Octave?
If performance is an issue you should always start with the in-language
techniques for getting better performance. Chief among these is vectorization
(@pxref{Vectorization and Faster Code Execution}) which not only makes the
code concise and more understandable but improves performance (10X-100X).
If loops must be used, make sure that the allocation of space for variables
takes place outside the loops using an assignment to a matrix of the right
size, or zeros.
@item
Does the code make as much use as possible of existing built-in library
routines?
These routines are highly optimized and many do not carry the overhead
of being interpreted.
@item
Does writing a dynamically linked function represent a useful investment
of your time, relative to staying in Octave?
It will take time to learn Octave's interface for external code and
there will inevitably be issues with tools such as compilers.
@end itemize
With that said, Octave offers a versatile interface for including chunks
of compiled code as dynamically linked extensions. These dynamically linked
functions can be called from the interpreter in the same manner as any
ordinary function. The interface is bi-directional and external code can
call Octave functions (like @code{plot}) which otherwise might be very
difficult to develop.
The interface is centered around supporting the languages C++, C, and Fortran.
Octave itself is written in C++ and can call external C++/C code through its
native oct-file interface. The C language is also supported through the
mex-file interface for compatibility with @sc{matlab}. Fortran code is easiest
to reach through the oct-file interface.
Because many other languages provide C or C++ APIs it is relatively simple
to build bridges between Octave and other languages. This is also a way to
bridge to hardware resources which often have device drivers written in C.
@menu
* Oct-Files::
* Mex-Files::
* Standalone Programs::
@end menu
@node Oct-Files
@section Oct-Files
@cindex oct-files
@cindex mkoctfile
@cindex oct
@menu
* Getting Started with Oct-Files::
* Matrices and Arrays in Oct-Files::
* Character Strings in Oct-Files::
* Cell Arrays in Oct-Files::
* Structures in Oct-Files::
* Sparse Matrices in Oct-Files::
* Accessing Global Variables in Oct-Files::
* Calling Octave Functions from Oct-Files::
* Calling External Code from Oct-Files::
* Allocating Local Memory in Oct-Files::
* Input Parameter Checking in Oct-Files::
* Exception and Error Handling in Oct-Files::
* Documentation and Test of Oct-Files::
@c * Application Programming Interface for Oct-Files::
@end menu
@node Getting Started with Oct-Files
@subsection Getting Started with Oct-Files
Oct-files are pieces of C++ code that have been compiled with the Octave
API into a dynamically loadable object. They take their name from the file
which contains the object which has the extension @file{.oct}.
Finding a C++ compiler, using the correct switches, adding the right include
paths for header files, etc. is a difficult task. Octave automates this by
providing the @code{mkoctfile} command with which to build oct-files. The
command is available from within Octave or at the shell command line.
@c mkoctfile scripts/miscellaneous/mkoctfile.m
@anchor{XREFmkoctfile}
@deftypefn {Command} {} mkoctfile [-options] file @dots{}
@deftypefnx {Function File} {[@var{output}, @var{status}] =} mkoctfile (@dots{})
The @code{mkoctfile} function compiles source code written in C,
C++, or Fortran. Depending on the options used with @code{mkoctfile}, the
compiled code can be called within Octave or can be used as a stand-alone
application.
@code{mkoctfile} can be called from the shell prompt or from the Octave
prompt. Calling it from the Octave prompt simply delegates the
call to the shell prompt. The output is stored in the @var{output}
variable and the exit status in the @var{status} variable.
@code{mkoctfile} accepts the following options, all of which are optional
except for the file name of the code you wish to compile:
@table @samp
@item -I DIR
Add the include directory DIR to compile commands.
@item -D DEF
Add the definition DEF to the compiler call.
@item -l LIB
Add the library LIB to the link command.
@item -L DIR
Add the library directory DIR to the link command.
@item -M
@itemx --depend
Generate dependency files (.d) for C and C++ source files.
@item -R DIR
Add the run-time path to the link command.
@item @nospell{-Wl,@dots{}}
Pass flags though the linker like @nospell{"-Wl,-rpath=@dots{}"}.
The quotes are needed since commas are interpreted as command
separators.
@item -W@dots{}
Pass flags though the compiler like @nospell{"-Wa,OPTION"}.
@item -c
Compile but do not link.
@item -g
Enable debugging options for compilers.
@item -o FILE
@itemx --output FILE
Output file name. Default extension is .oct
(or .mex if @samp{--mex} is specified) unless linking
a stand-alone executable.
@item -p VAR
@itemx --print VAR
Print the configuration variable VAR@. Recognized variables are:
@example
ALL_CFLAGS INCFLAGS
ALL_CXXFLAGS INCLUDEDIR
ALL_FFLAGS LAPACK_LIBS
ALL_LDFLAGS LD_CXX
AR LDFLAGS
BLAS_LIBS LD_STATIC_FLAG
CC LFLAGS
CFLAGS LIBDIR
CPICFLAG LIBOCTAVE
CPPFLAGS LIBOCTINTERP
CXX LIBS
CXXFLAGS OCTAVE_HOME
CXXPICFLAG OCTAVE_LIBS
DEPEND_EXTRA_SED_PATTERN OCTAVE_LINK_DEPS
DEPEND_FLAGS OCTAVE_LINK_OPTS
DL_LD OCTAVE_PREFIX
DL_LDFLAGS OCTINCLUDEDIR
F77 OCTLIBDIR
F77_INTEGER8_FLAG OCT_LINK_DEPS
FFLAGS OCT_LINK_OPTS
FFTW3F_LDFLAGS RANLIB
FFTW3F_LIBS RDYNAMIC_FLAG
FFTW3_LDFLAGS READLINE_LIBS
FFTW3_LIBS SED
FFTW_LIBS SPECIAL_MATH_LIB
FLIBS XTRA_CFLAGS
FPICFLAG XTRA_CXXFLAGS
@end example
@item --link-stand-alone
Link a stand-alone executable file.
@item --mex
Assume we are creating a MEX file. Set the default output extension
to ".mex".
@item -s
@itemx --strip
Strip the output file.
@item -v
@itemx --verbose
Echo commands as they are executed.
@item file
The file to compile or link. Recognized file types are
@example
@group
.c C source
.cc C++ source
.C C++ source
.cpp C++ source
.f Fortran source (fixed form)
.F Fortran source (fixed form)
.f90 Fortran source (free form)
.F90 Fortran source (free form)
.o object file
.a library file
@end group
@end example
@end table
@end deftypefn
Consider the following short example which introduces the basics of
writing a C++ function that can be linked to Octave.
@example
@group
@verbatim
#include <octave/oct.h>
DEFUN_DLD (helloworld, args, nargout,
"Hello World Help String")
{
int nargin = args.length ();
octave_stdout << "Hello World has "
<< nargin << " input arguments and "
<< nargout << " output arguments.\n";
return octave_value_list ();
}
@end verbatim
@end group
@end example
The first critical line is @code{#include <octave/oct.h>} which
makes available most of the definitions necessary for a C++ oct-file.
Note that @file{octave/oct.h} is a C++ header and cannot be directly
@code{#include}'ed in a C source file, nor any other language.
Included by @file{oct.h} is a definition for the macro
@w{@code{DEFUN_DLD}} which creates a dynamically loaded function. This
macro takes four arguments:
@enumerate 1
@item The function name as it will be seen in Octave,
@item The list of arguments to the function of type @code{octave_value_list},
@item The number of output arguments, which can and often is omitted if
not used, and
@item The string to use for the help text of the function.
@end enumerate
The return type of functions defined with @w{@code{DEFUN_DLD}} is always
@code{octave_value_list}.
There are a couple of important considerations in the choice of function
name. First, it must be a valid Octave function name and so must be a
sequence of letters, digits, and underscores not starting with a
digit. Second, as Octave uses the function name to define the filename
it attempts to find the function in, the function name in the
@w{@code{DEFUN_DLD}} macro must match the filename of the oct-file. Therefore,
the above function should be in a file @file{helloworld.cc}, and would be
compiled to an oct-file using the command
@example
mkoctfile helloworld.cc
@end example
This will create a file called @file{helloworld.oct} that is the compiled
version of the function. It should be noted that it is perfectly
acceptable to have more than one @w{@code{DEFUN_DLD}} function in a source
file. However, there must either be a symbolic link to the oct-file for
each of the functions defined in the source code with the @w{@code{DEFUN_DLD}}
macro or the @code{autoload} (@ref{Function Files}) function should be used.
The rest of the function shows how to find the number of input arguments,
how to print through the Octave pager, and return from the function. After
compiling this function as above, an example of its use is
@example
@group
helloworld (1, 2, 3)
@print{} Hello World has 3 input arguments and 0 output arguments.
@end group
@end example
Subsequent sections show how to use specific classes from Octave's core
internals. Base classes like dMatrix (a matrix of double values) are
found in the directory @file{liboctave/array}. The definitive reference for
how to use a particular class is the header file itself. However, it is
often enough just to study the examples in the manual in order to be able
to use the class.
@node Matrices and Arrays in Oct-Files
@subsection Matrices and Arrays in Oct-Files
Octave supports a number of different array and matrix classes, the
majority of which are based on the Array class. The exception is the
sparse matrix types discussed separately below. There are three basic
matrix types
@table @code
@item Matrix
A double precision matrix class defined in @file{dMatrix.h},
@item ComplexMatrix
A complex matrix class defined in @file{CMatrix.h}, and
@item BoolMatrix
A boolean matrix class defined in @file{boolMatrix.h}.
@end table
These are the basic two-dimensional matrix types of Octave. In
addition there are a number of multi-dimensional array types including
@table @code
@item NDArray
A double precision array class defined in @file{dNDArray.h}
@item ComplexNDarray
A complex array class defined in @file{CNDArray.h}
@item boolNDArray
A boolean array class defined in @file{boolNDArray.h}
@item int8NDArray
@itemx int16NDArray
@itemx int32NDArray
@itemx int64NDArray
8, 16, 32, and 64-bit signed array classes defined in
@file{int8NDArray.h}, @file{int16NDArray.h}, etc.
@item uint8NDArray
@itemx uint16NDArray
@itemx uint32NDArray
@itemx uint64NDArray
8, 16, 32, and 64-bit unsigned array classes defined in
@file{uint8NDArray.h}, @file{uint16NDArray.h}, etc.
@end table
There are several basic ways of constructing matrices or
multi-dimensional arrays. Using the class @code{Matrix} as an example
one can
@itemize @bullet
@item
Create an empty matrix or array with the empty constructor. For example:
@example
Matrix a;
@end example
This can be used for all matrix and array types.
@item
Define the dimensions of the matrix or array with a dim_vector which has
the same characteristics as the vector returned from @code{size}. For example:
@example
@group
dim_vector dv (2);
dv(0) = 2; dv(1) = 3; // 2 rows, 3 columns
Matrix a (dv);
@end group
@end example
This can be used on all matrix and array types.
@item
Define the number of rows and columns in the matrix. For example:
@example
Matrix a (2, 2)
@end example
However, this constructor can only be used with matrix types.
@end itemize
These types all share a number of basic methods and operators. Many bear
a resemblance to functions that exist in the interpreter. A selection of
useful methods include
@deftypefn {Method} {T&} operator () (octave_idx_type)
@deftypefnx {Method} {T&} elem (octave_idx_type)
The @code{()} operator or @code{elem} method allow the values of the
matrix or array to be read or set. These can take a single argument,
which is of type @code{octave_idx_type}, that is the index into the matrix or
array. Additionally, the matrix type allows two argument versions of the
@code{()} operator and elem method, giving the row and column index of the
value to obtain or set.
@end deftypefn
Note that these functions do significant error checking and so in some
circumstances the user might prefer to access the data of the array or
matrix directly through the @nospell{fortran_vec} method discussed below.
@deftypefn {Method} {} octave_idx_type numel (void) const
The total number of elements in the matrix or array.
@end deftypefn
@deftypefn {Method} {size_t} byte_size (void) const
The number of bytes used to store the matrix or array.
@end deftypefn
@deftypefn {Method} {dim_vector} dims (void) const
The dimensions of the matrix or array in value of type dim_vector.
@end deftypefn
@deftypefn {Method} {int} ndims (void) const
The number of dimensions of the matrix or array. Matrices are 2-D,
but arrays can be N-dimensional.
@end deftypefn
@deftypefn {Method} {void} resize (const dim_vector&)
A method taking either an argument of type @code{dim_vector}, or in the
case of a matrix two arguments of type @code{octave_idx_type} defining
the number of rows and columns in the matrix.
@end deftypefn
@deftypefn {Method} {T*} fortran_vec (void)
This method returns a pointer to the underlying data of the matrix or
array so that it can be manipulated directly, either within Octave or by
an external library.
@end deftypefn
Operators such an @code{+}, @code{-}, or @code{*} can be used on the
majority of the matrix and array types. In addition there are a number of
methods that are of interest only for matrices such as @code{transpose},
@code{hermitian}, @code{solve}, etc.
The typical way to extract a matrix or array from the input arguments of
@w{@code{DEFUN_DLD}} function is as follows
@example
@verbatim
#include <octave/oct.h>
DEFUN_DLD (addtwomatrices, args, , "Add A to B")
{
int nargin = args.length ();
if (nargin != 2)
print_usage ();
else
{
NDArray A = args(0).array_value ();
NDArray B = args(1).array_value ();
if (! error_state)
return octave_value (A + B);
}
return octave_value_list ();
}
@end verbatim
@end example
To avoid segmentation faults causing Octave to abort this function
explicitly checks that there are sufficient arguments available before
accessing these arguments. It then obtains two multi-dimensional arrays
of type @code{NDArray} and adds these together. Note that the array_value
method is called without using the @code{is_matrix_type} type, and instead the
error_state is checked before returning @code{A + B}. The reason to
prefer this is that the arguments might be a type that is not an
@code{NDArray}, but it would make sense to convert it to one. The
@code{array_value} method allows this conversion to be performed
transparently if possible, and sets @code{error_state} if it is not.
@code{A + B}, operating on two @code{NDArray}'s returns an
@code{NDArray}, which is cast to an @code{octave_value} on the return
from the function. An example of the use of this demonstration function is
@example
@group
addtwomatrices (ones (2, 2), eye (2, 2))
@result{} 2 1
1 2
@end group
@end example
A list of the basic @code{Matrix} and @code{Array} types, the methods to
extract these from an @code{octave_value}, and the associated header file is
listed below.
@multitable @columnfractions .3 .4 .3
@headitem Type @tab Function @tab Source Code
@item @code{RowVector} @tab @code{row_vector_value} @tab @file{dRowVector.h}
@item @code{ComplexRowVector} @tab @code{complex_row_vector_value} @tab @file{CRowVector.h}
@item @code{ColumnVector} @tab @code{column_vector_value} @tab @file{dColVector.h}
@item @code{ComplexColumnVector} @tab @code{complex_column_vector_value} @tab @file{CColVector.h}
@item @code{Matrix} @tab @code{matrix_value} @tab @file{dMatrix.h}
@item @code{ComplexMatrix} @tab @code{complex_matrix_value} @tab @file{CMatrix.h}
@item @code{boolMatrix} @tab @code{bool_matrix_value} @tab @file{boolMatrix.h}
@item @code{charMatrix} @tab @code{char_matrix_value} @tab @file{chMatrix.h}
@item @code{NDArray} @tab @code{array_value} @tab @file{dNDArray.h}
@item @code{ComplexNDArray} @tab @code{complex_array_value} @tab @file{CNDArray.h}
@item @code{boolNDArray} @tab @code{bool_array_value} @tab @file{boolNDArray.h}
@item @code{charNDArray} @tab @code{char_array_value} @tab @file{charNDArray.h}
@item @code{int8NDArray} @tab @code{int8_array_value} @tab @file{int8NDArray.h}
@item @code{int16NDArray} @tab @code{int16_array_value} @tab @file{int16NDArray.h}
@item @code{int32NDArray} @tab @code{int32_array_value} @tab @file{int32NDArray.h}
@item @code{int64NDArray} @tab @code{int64_array_value} @tab @file{int64NDArray.h}
@item @code{uint8NDArray} @tab @code{uint8_array_value} @tab @file{uint8NDArray.h}
@item @code{uint16NDArray} @tab @code{uint16_array_value} @tab @file{uint16NDArray.h}
@item @code{uint32NDArray} @tab @code{uint32_array_value} @tab @file{uint32NDArray.h}
@item @code{uint64NDArray} @tab @code{uint64_array_value} @tab @file{uint64NDArray.h}
@end multitable
@node Character Strings in Oct-Files
@subsection Character Strings in Oct-Files
A character string in Octave is just a special @code{Array} class.
Consider the example:
@example
@verbatim
#include <octave/oct.h>
DEFUN_DLD (stringdemo, args, , "String Demo")
{
octave_value_list retval;
int nargin = args.length ();
if (nargin != 1)
print_usage ();
else
{
charMatrix ch = args(0).char_matrix_value ();
if (! error_state)
{
retval(1) = octave_value (ch, '\''); // Single Quote String
octave_idx_type nr = ch.rows ();
for (octave_idx_type i = 0; i < nr / 2; i++)
{
std::string tmp = ch.row_as_string (i);
ch.insert (ch.row_as_string (nr-i-1).c_str (), i, 0);
ch.insert (tmp.c_str (), nr-i-1, 0);
}
retval(0) = octave_value (ch, '"'); // Double Quote String
}
}
return retval;
}
@end verbatim
@end example
An example of the use of this function is
@example
@group
s0 = ["First String"; "Second String"];
[s1,s2] = stringdemo (s0)
@result{} s1 = Second String
First String
@result{} s2 = First String
Second String
typeinfo (s2)
@result{} sq_string
typeinfo (s1)
@result{} string
@end group
@end example
One additional complication of strings in Octave is the difference
between single quoted and double quoted strings. To find out if an
@code{octave_value} contains a single or double quoted string use
one of the predicate tests shown below.
@example
@group
if (args(0).is_sq_string ())
octave_stdout << "First argument is a single quoted string\n";
else if (args(0).is_dq_string ())
octave_stdout << "First argument is a double quoted string\n";
@end group
@end example
Note, however, that both types of strings are represented by the
@code{charNDArray} type, and so when assigning to an
@code{octave_value}, the type of string should be specified. For example:
@example
@group
octave_value_list retval;
charNDArray ch;
@dots{}
// Create single quoted string
retval(1) = octave_value (ch); // default constructor is sq_string
OR
retval(1) = octave_value (ch, '\''); // explicitly create sq_string
// Create a double quoted string
retval(0) = octave_value (ch, '"');
@end group
@end example
@node Cell Arrays in Oct-Files
@subsection Cell Arrays in Oct-Files
Octave's cell type is also available from within oct-files. A cell
array is just an array of @code{octave_value}s, and thus each element of the
cell array can be treated just like any other @code{octave_value}. A simple
example is
@example
@verbatim
#include <octave/oct.h>
#include <octave/Cell.h>
DEFUN_DLD (celldemo, args, , "Cell Demo")
{
octave_value_list retval;
int nargin = args.length ();
if (nargin != 1)
print_usage ();
else
{
Cell c = args(0).cell_value ();
if (! error_state)
for (octave_idx_type i = 0; i < c.numel (); i++)
{
retval(i) = c(i); // using operator syntax
//retval(i) = c.elem (i); // using method syntax
}
}
return retval;
}
@end verbatim
@end example
Note that cell arrays are used less often in standard oct-files and so
the @file{Cell.h} header file must be explicitly included. The rest of the
example extracts the @code{octave_value}s one by one from the cell array and
returns them as individual return arguments. For example:
@example
@group
[b1, b2, b3] = celldemo (@{1, [1, 2], "test"@})
@result{}
b1 = 1
b2 =
1 2
b3 = test
@end group
@end example
@node Structures in Oct-Files
@subsection Structures in Oct-Files
A structure in Octave is a map between a number of fields represented and
their values. The Standard Template Library @code{map} class is used,
with the pair consisting of a @code{std::string} and an Octave
@code{Cell} variable.
A simple example demonstrating the use of structures within oct-files is
@example
@verbatim
#include <octave/oct.h>
#include <octave/ov-struct.h>
DEFUN_DLD (structdemo, args, , "Struct Demo")
{
octave_value retval;
int nargin = args.length ();
if (args.length () == 2)
{
octave_scalar_map arg0 = args(0).scalar_map_value ();
//octave_map arg0 = args(0).map_value ();
if (! error_state)
{
std::string arg1 = args(1).string_value ();
if (! error_state)
{
octave_value tmp = arg0.contents (arg1);
//octave_value tmp = arg0.contents (arg1)(0);
if (tmp.is_defined ())
{
octave_scalar_map st;
st.assign ("selected", tmp);
retval = octave_value (st);
}
else
error ("structdemo: struct does not have a field named '%s'\n",
arg1.c_str ());
}
else
error ("structdemo: ARG2 must be a character string");
}
else
error ("structdemo: ARG1 must be a struct");
}
else
print_usage ();
return retval;
}
@end verbatim
@end example
An example of its use is
@example
@group
x.a = 1; x.b = "test"; x.c = [1, 2];
structdemo (x, "b")
@result{} selected = test
@end group
@end example
The example above specifically uses the @code{octave_scalar_map} class which
is for representing a single struct. For structure arrays the
@code{octave_map} class is used instead. The commented code shows how the
demo could be modified to handle a structure array. In that case the
@code{contents} method returns a @code{Cell} which may have more than one
element. Therefore, to obtain the underlying @code{octave_value} in
this single-struct example we write
@example
octave_value tmp = arg0.contents (arg1)(0);
@end example
@noindent
where the trailing (0) is the () operator on the @code{Cell} object. If
this were a true structure array with multiple elements we could iterate
over the elements using the () operator.
Structures are a relatively complex data container and there are more
functions available in @file{oct-map.h} which make coding with them easier
than relying on just @code{contents}.
@node Sparse Matrices in Oct-Files
@subsection Sparse Matrices in Oct-Files
There are three classes of sparse objects that are of interest to the user.
@table @code
@item SparseMatrix
A double precision sparse matrix class
@item SparseComplexMatrix
A complex sparse matrix class
@item SparseBoolMatrix
A boolean sparse matrix class
@end table
All of these classes inherit from the @code{Sparse<T>} template class,
and so all have similar capabilities and usage. The @code{Sparse<T>}
class was based on Octave's @code{Array<T>} class, and so users familiar
with Octave's @code{Array} classes will be comfortable with the use of
the sparse classes.
The sparse classes will not be entirely described in this section, due
to their similarity with the existing @code{Array} classes. However,
there are a few differences due the different nature of sparse objects,
and these will be described. First, although it is fundamentally
possible to have N-dimensional sparse objects, the Octave sparse classes do
not allow them at this time; All instances of the sparse classes
must be 2-dimensional. This means that @code{SparseMatrix} is actually
more similar to Octave's @code{Matrix} class than its @code{NDArray} class.
@menu
* Array and Sparse Class Differences::
* Creating Sparse Matrices in Oct-Files::
* Using Sparse Matrices in Oct-Files::
@end menu
@node Array and Sparse Class Differences
@subsubsection Array and Sparse Class Differences
The number of elements in a sparse matrix is considered to be the number
of non-zero elements rather than the product of the dimensions. Therefore
@example
@group
SparseMatrix sm;
@dots{}
int nel = sm.nelem ();
@end group
@end example
@noindent
returns the number of non-zero elements. If the user really requires the
number of elements in the matrix, including the non-zero elements, they
should use @code{numel} rather than @code{nelem}. Note that for very
large matrices, where the product of the two dimensions is larger than
the representation of an unsigned int, then @code{numel} can overflow.
An example is @code{speye (1e6)} which will create a matrix with a million
rows and columns, but only a million non-zero elements. Therefore the
number of rows by the number of columns in this case is more than two
hundred times the maximum value that can be represented by an unsigned int.
The use of @code{numel} should therefore be avoided useless it is known
it won't overflow.
Extreme care must be take with the elem method and the @qcode{"()"} operator,
which perform basically the same function. The reason is that if a
sparse object is non-const, then Octave will assume that a
request for a zero element in a sparse matrix is in fact a request
to create this element so it can be filled. Therefore a piece of
code like
@example
@group
SparseMatrix sm;
@dots{}
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
std::cerr << " (" << i << "," << j << "): " << sm(i,j) << std::endl;
@end group
@end example
@noindent
is a great way of turning the sparse matrix into a dense one, and a
very slow way at that since it reallocates the sparse object at each
zero element in the matrix.
An easy way of preventing the above from happening is to create a temporary
constant version of the sparse matrix. Note that only the container for
the sparse matrix will be copied, while the actual representation of the
data will be shared between the two versions of the sparse matrix. So this
is not a costly operation. For example, the above would become
@example
@group
SparseMatrix sm;
@dots{}
const SparseMatrix tmp (sm);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
std::cerr << " (" << i << "," << j << "): " << tmp(i,j) << std::endl;
@end group
@end example
Finally, as the sparse types aren't represented by a contiguous
block of memory, the @nospell{@code{fortran_vec}} method of the @code{Array<T>}
is not available. It is, however, replaced by three separate methods
@code{ridx}, @code{cidx} and @code{data}, that access the raw compressed
column format that Octave sparse matrices are stored in. These methods can be
used in a manner similar to @code{elem} to allow the matrix to be accessed or
filled. However, in that case it is up to the user to respect the sparse
matrix compressed column format.
@node Creating Sparse Matrices in Oct-Files
@subsubsection Creating Sparse Matrices in Oct-Files
There are several useful alternatives for creating a sparse matrix.
The first is to create three vectors representing the row index, column index,
and data values, and from these create the matrix.
The second alternative is to create a sparse matrix with the appropriate
amount of space and then fill in the values. Both techniques have their
advantages and disadvantages.
Below is an example of creating a small sparse matrix using the first
technique
@example
@group
int nz, nr, nc;
nz = 4, nr = 3, nc = 4;
ColumnVector ridx (nz);
ColumnVector cidx (nz);
ColumnVector data (nz);
ridx(0) = 1; cidx(0) = 1; data(0) = 1;
ridx(1) = 2; cidx(1) = 2; data(1) = 2;
ridx(2) = 2; cidx(2) = 4; data(2) = 3;
ridx(3) = 3; cidx(3) = 4; data(3) = 4;
SparseMatrix sm (data, ridx, cidx, nr, nc);
@end group
@end example
@noindent
which creates the matrix given in section
@ref{Storage of Sparse Matrices}. Note that the compressed matrix
format is not used at the time of the creation of the matrix itself,
but is used internally.
As discussed in the chapter on Sparse Matrices, the values of the sparse
matrix are stored in increasing column-major ordering. Although the data
passed by the user need not respect this requirement, pre-sorting the
data will significantly speed up creation of the sparse matrix.
The disadvantage of this technique for creating a sparse matrix is
that there is a brief time when two copies of the data exist. For
extremely memory constrained problems this may not be the best
technique for creating a sparse matrix.
The alternative is to first create a sparse matrix with the desired
number of non-zero elements and then later fill those elements in.
Sample code:
@example
@group
int nz, nr, nc;
nz = 4, nr = 3, nc = 4;
SparseMatrix sm (nr, nc, nz);
sm(0,0) = 1; sm(0,1) = 2; sm(1,3) = 3; sm(2,3) = 4;
@end group
@end example
This creates the same matrix as previously. Again, although not
strictly necessary, it is significantly faster if the sparse matrix is
created and the elements are added in column-major ordering. The reason
for this is that when elements are inserted at the end of the current list
of known elements then no element in the matrix needs to be moved to allow
the new element to be inserted; Only the column indexes need to be updated.
There are a few further points to note about this method of creating
a sparse matrix. First, it is possible to create a sparse matrix
with fewer elements than are actually inserted in the matrix. Therefore,
@example
@group
int nr, nc;
nr = 3, nc = 4;
SparseMatrix sm (nr, nc, 0);
sm(0,0) = 1; sm(0,1) = 2; sm(1,3) = 3; sm(2,3) = 4;
@end group
@end example
@noindent
is perfectly valid. However, it is a very bad idea because as each new
element is added to the sparse matrix the matrix needs to request more
space and reallocate memory. This is an expensive operation, that will
significantly slow this means of creating a sparse matrix. Furthermore,
it is possible to create a sparse matrix with too much storage, so having
@var{nz} greater than 4 is also valid. The disadvantage is that the matrix
occupies more memory than strictly needed.
It is not always possible to know the number of non-zero elements prior
to filling a matrix. For this reason the additional unused storage of
a sparse matrix can be removed after its creation with the
@code{maybe_compress} function. In addition, @code{maybe_compress} can
deallocate the unused storage, but it can also remove zero elements
from the matrix. The removal of zero elements from the matrix is
controlled by setting the argument of the @code{maybe_compress} function
to be @code{true}. However, the cost of removing the zeros is high because it
implies re-sorting the elements. If possible, it is better
if the user does not add the unnecessary zeros in the first place.
An example of the use of @code{maybe_compress} is
@example
@group
int nz, nr, nc;
nz = 6, nr = 3, nc = 4;
SparseMatrix sm1 (nr, nc, nz);
sm1(0,0) = 1; sm1(0,1) = 2; sm1(1,3) = 3; sm1(2,3) = 4;
sm1.maybe_compress (); // No zero elements were added
SparseMatrix sm2 (nr, nc, nz);
sm2(0,0) = 1; sm2(0,1) = 2; sm(0,2) = 0; sm(1,2) = 0;
sm1(1,3) = 3; sm1(2,3) = 4;
sm2.maybe_compress (true); // Zero elements were added
@end group
@end example
The use of the @code{maybe_compress} function should be avoided if
possible as it will slow the creation of the matrix.
A third means of creating a sparse matrix is to work directly with
the data in compressed row format. An example of this technique might
be
@example
octave_value arg;
@dots{}
int nz, nr, nc;
nz = 6, nr = 3, nc = 4; // Assume we know the max # nz
SparseMatrix sm (nr, nc, nz);
Matrix m = arg.matrix_value ();
int ii = 0;
sm.cidx (0) = 0;
for (int j = 1; j < nc; j++)
@{
for (int i = 0; i < nr; i++)
@{
double tmp = foo (m(i,j));
if (tmp != 0.)
@{
sm.data(ii) = tmp;
sm.ridx(ii) = i;
ii++;
@}
@}
sm.cidx(j+1) = ii;
@}
sm.maybe_compress (); // If don't know a priori the final # of nz.
@end example
@noindent
which is probably the most efficient means of creating a sparse matrix.
Finally, it might sometimes arise that the amount of storage initially
created is insufficient to completely store the sparse matrix. Therefore,
the method @code{change_capacity} exists to reallocate the sparse memory.
The above example would then be modified as
@example
octave_value arg;
@dots{}
int nz, nr, nc;
nz = 6, nr = 3, nc = 4; // Assume we know the max # nz
SparseMatrix sm (nr, nc, nz);
Matrix m = arg.matrix_value ();
int ii = 0;
sm.cidx (0) = 0;
for (int j = 1; j < nc; j++)
@{
for (int i = 0; i < nr; i++)
@{
double tmp = foo (m(i,j));
if (tmp != 0.)
@{
if (ii == nz)
@{
nz += 2; // Add 2 more elements
sm.change_capacity (nz);
@}
sm.data(ii) = tmp;
sm.ridx(ii) = i;
ii++;
@}
@}
sm.cidx(j+1) = ii;
@}
sm.maybe_mutate (); // If don't know a priori the final # of nz.
@end example
Note that both increasing and decreasing the number of non-zero elements in
a sparse matrix is expensive as it involves memory reallocation. Also as
parts of the matrix, though not its entirety, exist as old and new copies
at the same time, additional memory is needed. Therefore, if possible this
should be avoided.
@node Using Sparse Matrices in Oct-Files
@subsubsection Using Sparse Matrices in Oct-Files
Most of the same operators and functions on sparse matrices that are
available from the Octave command line are also available within oct-files.
The basic means of extracting a sparse matrix from an @code{octave_value}
and returning it as an @code{octave_value}, can be seen in the
following example.
@example
@group
octave_value_list retval;
SparseMatrix sm = args(0).sparse_matrix_value ();
SparseComplexMatrix scm =
args(1).sparse_complex_matrix_value ();
SparseBoolMatrix sbm = args(2).sparse_bool_matrix_value ();
@dots{}
retval(2) = sbm;
retval(1) = scm;
retval(0) = sm;
@end group
@end example
The conversion to an @code{octave_value} is handled by the sparse
@code{octave_value} constructors, and so no special care is needed.
@node Accessing Global Variables in Oct-Files
@subsection Accessing Global Variables in Oct-Files
Global variables allow variables in the global scope to be
accessed. Global variables can be accessed within oct-files by using
the support functions @code{get_global_value} and @code{set_global_value}.
@code{get_global_value} takes two arguments, the first is a string representing
the variable name to obtain. The second argument is a boolean argument
specifying what to do if no global variable of the desired name is found.
An example of the use of these two functions is
@example
@verbatim
#include <octave/oct.h>
DEFUN_DLD (globaldemo, args, , "Global Demo")
{
octave_value retval;
int nargin = args.length ();
if (nargin != 1)
print_usage ();
else
{
std::string s = args(0).string_value ();
if (! error_state)
{
octave_value tmp = get_global_value (s, true);
if (tmp.is_defined ())
retval = tmp;
else
retval = "Global variable not found";
set_global_value ("a", 42.0);
}
}
return retval;
}
@end verbatim
@end example
An example of its use is
@example
@group
global a b
b = 10;
globaldemo ("b")
@result{} 10
globaldemo ("c")
@result{} "Global variable not found"
num2str (a)
@result{} 42
@end group
@end example
@node Calling Octave Functions from Oct-Files
@subsection Calling Octave Functions from Oct-Files
There is often a need to be able to call another Octave function from
within an oct-file, and there are many examples of such within Octave
itself. For example, the @code{quad} function is an oct-file that
calculates the definite integral by quadrature over a user supplied
function.
There are also many ways in which a function might be passed. It might
be passed as one of
@enumerate 1
@item Function Handle
@item Anonymous Function Handle
@item Inline Function
@item String
@end enumerate
The example below demonstrates an example that accepts all four means of
passing a function to an oct-file.
@example
@verbatim
#include <octave/oct.h>
#include <octave/parse.h>
DEFUN_DLD (funcdemo, args, nargout, "Function Demo")
{
octave_value_list retval;
int nargin = args.length ();
if (nargin < 2)
print_usage ();
else
{
octave_value_list newargs;
for (octave_idx_type i = nargin - 1; i > 0; i--)
newargs(i-1) = args(i);
if (args(0).is_function_handle () || args(0).is_inline_function ())
{
octave_function *fcn = args(0).function_value ();
if (! error_state)
retval = feval (fcn, newargs, nargout);
}
else if (args(0).is_string ())
{
std::string fcn = args(0).string_value ();
if (! error_state)
retval = feval (fcn, newargs, nargout);
}
else
error ("funcdemo: INPUT must be string, inline, or function handle");
}
return retval;
}
@end verbatim
@end example
The first argument to this demonstration is the user-supplied function
and the remaining arguments are all passed to the user function.
@example
@group
funcdemo (@@sin,1)
@result{} 0.84147
funcdemo (@@(x) sin (x), 1)
@result{} 0.84147
funcdemo (inline ("sin (x)"), 1)
@result{} 0.84147
funcdemo ("sin",1)
@result{} 0.84147
funcdemo (@@atan2, 1, 1)
@result{} 0.78540
@end group
@end example
When the user function is passed as a string the treatment of the
function is different. In some cases it is necessary to have the
user supplied function as an @code{octave_function} object. In that
case the string argument can be used to create a temporary function
as demonstrated below.
@example
@group
std::octave fcn_name = unique_symbol_name ("__fcn__");
std::string fcode = "function y = ";
fcode.append (fcn_name);
fcode.append ("(x) y = ");
fcn = extract_function (args(0), "funcdemo", fcn_name,
fcode, "; endfunction");
@dots{}
if (fcn_name.length ())
clear_function (fcn_name);
@end group
@end example
There are two important things to know in this case. First, the number of
input arguments to the user function is fixed, and in the above example is
a single argument. Second, to avoid leaving the temporary function in the
Octave symbol table it should be cleared after use. Also, by convention
internal function names begin and end with the character sequence @samp{__}.
@node Calling External Code from Oct-Files
@subsection Calling External Code from Oct-Files
Linking external C code to Octave is relatively simple, as the C
functions can easily be called directly from C++. One possible issue is
that the declarations of the external C functions may need to be explicitly
defined as C functions to the compiler. If the declarations of the
external C functions are in the header @file{foo.h}, then the tactic to
ensure that the C++ compiler treats these declarations as C code is
@example
@group
#ifdef __cplusplus
extern "C"
@{
#endif
#include "foo.h"
#ifdef __cplusplus
@} /* end extern "C" */
#endif
@end group
@end example
Calling Fortran code, however, can pose more difficulties. This is due to
differences in the manner in which compilers treat the linking of Fortran code
with C or C++ code. Octave supplies a number of macros that allow consistent
behavior across a number of compilers.
The underlying Fortran code should use the @code{XSTOPX} function to
replace the Fortran @code{STOP} function. @code{XSTOPX} uses the Octave
exception handler to treat failing cases in the Fortran code
explicitly. Note that Octave supplies its own replacement @sc{blas}
@code{XERBLA} function, which uses @code{XSTOPX}.
If the code calls @code{XSTOPX}, then the @w{@code{F77_XFCN}}
macro should be used to call the underlying Fortran function. The Fortran
exception state can then be checked with the global variable
@code{f77_exception_encountered}. If @code{XSTOPX} will not be called,
then the @w{@code{F77_FCN}} macro should be used instead to call the Fortran
code.
There is no great harm in using @w{@code{F77_XFCN}} in all cases, except that
for Fortran code that is short running and executes a large number of times,
there is potentially an overhead in doing so. However, if @w{@code{F77_FCN}}
is used with code that calls @code{XSTOP}, Octave can generate a
segmentation fault.
An example of the inclusion of a Fortran function in an oct-file is
given in the following example, where the C++ wrapper is
@example
@verbatim
#include <octave/oct.h>
#include <octave/f77-fcn.h>
extern "C"
{
F77_RET_T
F77_FUNC (fortransub, FORTSUB)
(const int&, double*, F77_CHAR_ARG_DECL F77_CHAR_ARG_LEN_DECL);
}
DEFUN_DLD (fortrandemo, args, , "Fortran Demo")
{
octave_value_list retval;
int nargin = args.length ();
if (nargin != 1)
print_usage ();
else
{
NDArray a = args(0).array_value ();
if (! error_state)
{
double *av = a.fortran_vec ();
octave_idx_type na = a.numel ();
OCTAVE_LOCAL_BUFFER (char, ctmp, 128);
F77_XFCN (fortransub, FORTSUB,
(na, av, ctmp F77_CHAR_ARG_LEN (128)));
retval(1) = std::string (ctmp);
retval(0) = a;
}
}
return retval;
}
@end verbatim
@end example
@noindent
and the Fortran function is
@example
@verbatim
subroutine fortransub (n, a, s)
implicit none
character*(*) s
real*8 a(*)
integer*4 i, n, ioerr
do i = 1, n
if (a(i) .eq. 0d0) then
call xstopx ('fortransub: divide by zero')
else
a(i) = 1d0 / a(i)
endif
enddo
write (unit = s, fmt = '(a,i3,a,a)', iostat = ioerr)
$ 'There are ', n,
$ ' values in the input vector', char(0)
if (ioerr .ne. 0) then
call xstopx ('fortransub: error writing string')
endif
return
end
@end verbatim
@end example
This example demonstrates most of the features needed to link to an
external Fortran function, including passing arrays and strings, as well
as exception handling. Both the Fortran and C++ files need to be compiled
in order for the example to work.
@example
@group
mkoctfile fortrandemo.cc fortransub.f
[b, s] = fortrandemo (1:3)
@result{}
b = 1.00000 0.50000 0.33333
s = There are 3 values in the input vector
[b, s] = fortrandemo (0:3)
error: fortrandemo: fortransub: divide by zero
@end group
@end example
@node Allocating Local Memory in Oct-Files
@subsection Allocating Local Memory in Oct-Files
Allocating memory within an oct-file might seem easy as the C++
new/delete operators can be used. However, in that case great care must be
taken to avoid memory leaks. The preferred manner in which to allocate
memory for use locally is to use the @w{@code{OCTAVE_LOCAL_BUFFER}} macro.
An example of its use is
@example
OCTAVE_LOCAL_BUFFER (double, tmp, len)
@end example
@noindent
that returns a pointer @code{tmp} of type @code{double *} of length
@code{len}.
In this case Octave itself will worry about reference counting and variable
scope and will properly free memory without programmer intervention.
@node Input Parameter Checking in Oct-Files
@subsection Input Parameter Checking in Oct-Files
As oct-files are compiled functions they open up the possibility of
crashing Octave through careless function calls or memory faults.
It is quite important that each and every function have a sufficient level
of parameter checking to ensure that Octave behaves well.
The minimum requirement, as previously discussed, is to check the number
of input arguments before using them to avoid referencing a non-existent
argument. However, in some cases this might not be sufficient as the
underlying code imposes further constraints. For example, an external
function call might be undefined if the input arguments are not
integers, or if one of the arguments is zero, or if the input is complex
and a real value was expected. Therefore, oct-files often need additional
input parameter checking.
There are several functions within Octave that can be useful for the
purposes of parameter checking. These include the methods of the
octave_value class like @code{is_real_matrix}, @code{is_numeric_type}, etc.
Often, with a knowledge of the Octave m-file language, you can guess at what
the corresponding C++ routine will. In addition there are some more
specialized input validation functions of which a few are demonstrated below.
@example
@verbatim
#include <octave/oct.h>
DEFUN_DLD (paramdemo, args, nargout, "Parameter Check Demo")
{
octave_value retval;
int nargin = args.length ();
if (nargin != 1)
print_usage ();
else if (nargout != 0)
error ("paramdemo: OUTPUT argument required");
else
{
NDArray m = args(0).array_value ();
double min_val = -10.0;
double max_val = 10.0;
octave_stdout << "Properties of input array:\n";
if (m.any_element_is_negative ())
octave_stdout << " includes negative values\n";
if (m.any_element_is_inf_or_nan ())
octave_stdout << " includes Inf or NaN values\n";
if (m.any_element_not_one_or_zero ())
octave_stdout << " includes other values than 1 and 0\n";
if (m.all_elements_are_int_or_inf_or_nan ())
octave_stdout << " includes only int, Inf or NaN values\n";
if (m.all_integers (min_val, max_val))
octave_stdout << " includes only integers in [-10,10]\n";
}
return retval;
}
@end verbatim
@end example
@noindent
An example of its use is:
@example
@group
paramdemo ([1, 2, NaN, Inf])
@result{} Properties of input array:
includes Inf or NaN values
includes other values than 1 and 0
includes only int, Inf or NaN values
@end group
@end example
@node Exception and Error Handling in Oct-Files
@subsection Exception and Error Handling in Oct-Files
Another important feature of Octave is its ability to react to the user
typing @key{Control-C} even during calculations. This ability is based on the
C++ exception handler, where memory allocated by the C++ new/delete
methods are automatically released when the exception is treated. When
writing an oct-file, to allow Octave to treat the user typing @key{Control-C},
the @w{@code{OCTAVE_QUIT}} macro is supplied. For example:
@example
@group
for (octave_idx_type i = 0; i < a.nelem (); i++)
@{
OCTAVE_QUIT;
b.elem (i) = 2. * a.elem (i);
@}
@end group
@end example
The presence of the @w{@code{OCTAVE_QUIT}} macro in the inner loop allows
Octave to treat the user request with the @key{Control-C}. Without this macro,
the user must either wait for the function to return before the interrupt is
processed, or press @key{Control-C} three times to force Octave to exit.
The @w{@code{OCTAVE_QUIT}} macro does impose a very small speed penalty, and so
for loops that are known to be small it might not make sense to include
@w{@code{OCTAVE_QUIT}}.
When creating an oct-file that uses an external libraries, the function
might spend a significant portion of its time in the external
library. It is not generally possible to use the @w{@code{OCTAVE_QUIT}} macro
in this case. The alternative in this case is
@example
@group
BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
@dots{} some code that calls a "foreign" function @dots{}
END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
@end group
@end example
The disadvantage of this is that if the foreign code allocates any
memory internally, then this memory might be lost during an interrupt,
without being deallocated. Therefore, ideally Octave itself should
allocate any memory that is needed by the foreign code, with either the
@nospell{fortran_vec} method or the @w{@code{OCTAVE_LOCAL_BUFFER}} macro.
The Octave unwind_protect mechanism (@ref{The unwind_protect Statement})
can also be used in oct-files. In conjunction with the exception
handling of Octave, it is important to enforce that certain code is run
to allow variables, etc.@: to be restored even if an exception occurs. An
example of the use of this mechanism is
@example
@verbatim
#include <octave/oct.h>
#include <octave/unwind-prot.h>
void
my_err_handler (const char *fmt, ...)
{
// Do nothing!!
}
DEFUN_DLD (unwinddemo, args, nargout, "Unwind Demo")
{
octave_value retval;
int nargin = args.length ();
if (nargin < 2)
print_usage ();
else
{
NDArray a = args(0).array_value ();
NDArray b = args(1).array_value ();
if (! error_state)
{
// Declare unwind_protect frame which lasts as long as
// the variable frame has scope.
unwind_protect frame;
frame.protect_var (current_liboctave_warning_handler);
set_liboctave_warning_handler (my_err_handler);
retval = octave_value (quotient (a, b));
}
}
return retval;
}
@end verbatim
@end example
As can be seen in the example:
@example
@group
unwinddemo (1, 0)
@result{} Inf
1 / 0
@result{} warning: division by zero
Inf
@end group
@end example
The warning for division by zero (and in fact all warnings) are disabled in the
@code{unwinddemo} function.
@node Documentation and Test of Oct-Files
@subsection Documentation and Test of Oct-Files
The documentation of an oct-file is the fourth string parameter of the
@w{@code{DEFUN_DLD}} macro. This string can be formatted in the same manner
as the help strings for user functions (@pxref{Documentation Tips}),
however there are some issue that are particular to the formatting of
help strings within oct-files.
The major issue is that the help string will typically be longer than a
single line of text, and so the formatting of long help strings needs to
be taken into account. There are several possible solutions, but the most
common is illustrated in the following example,
@example
@group
DEFUN_DLD (do_what_i_want, args, nargout,
"-*- texinfo -*-\n\
@@deftypefn @{Function File@} @{@} do_what_i_say (@@var@{n@})\n\
A function that does what the user actually wants rather\n\
than what they requested.\n\
@@end deftypefn")
@{
@dots{}
@}
@end group
@end example
@noindent
where, as can be seen, each line of text is terminated by @code{\n\}
which is an embedded new-line in the string together with a C++ string
continuation character. Note that the final @code{\} must be the last
character on the line.
Octave also includes the ability to embed test and demonstration
code for a function within the code itself (@pxref{Test and Demo Functions}).
This can be used from within oct-files (or in fact any file) with
certain provisos. First, the test and demo functions of Octave look
for @code{%!} as the first two characters of a line to identify test
and demonstration code. This is a requirement for oct-files as well.
In addition, the test and demonstration code must be wrapped in a comment
block to avoid it being interpreted by the compiler. Finally, the Octave
test and demonstration code must have access to the original source code
of the oct-file and not just the compiled code as the tests are stripped
from the compiled code. An example in an oct-file might be
@example
@group
/*
%!assert (sin ([1,2]), [sin(1),sin(2)])
%!error (sin ())
%!error (sin (1,1))
*/
@end group
@end example
@c @node Application Programming Interface for Oct-Files
@c @subsection Application Programming Interface for Oct-Files
@c
@c WRITE ME, using Coda section 1.3 as a starting point.
@node Mex-Files
@section Mex-Files
@cindex mex-files
@cindex mex
Octave includes an interface to allow legacy mex-files to be compiled
and used with Octave. This interface can also be used to share code
between Octave and @sc{matlab} users. However, as mex-files expose
@sc{matlab}'s internal API, and the internal structure of Octave is
different, a mex-file can never have the same performance in Octave as
the equivalent oct-file. In particular, to support the manner in which
variables are passed to mex functions there are a significant number of
additional copies of memory blocks when calling or returning from a
mex-file function. For this reason, it is recommended that any new code
be written with the oct-file interface previously discussed.
@menu
* Getting Started with Mex-Files::
* Working with Matrices and Arrays in Mex-Files::
* Character Strings in Mex-Files::
* Cell Arrays with Mex-Files::
* Structures with Mex-Files::
* Sparse Matrices with Mex-Files::
* Calling Other Functions in Mex-Files::
@c * Application Programming Interface for Mex-Files::
@end menu
@node Getting Started with Mex-Files
@subsection Getting Started with Mex-Files
The basic command to build a mex-file is either @code{mkoctfile --mex}
or @code{mex}. The first command can be used either from within Octave or from
the command line. However, to avoid issues with @sc{matlab}'s own @code{mex}
command, the use of the command @code{mex} is limited to within Octave.
Compiled mex-files have the extension @file{.mex}.
@c mex scripts/miscellaneous/mex.m
@anchor{XREFmex}
@deftypefn {Command} {} mex [options] file @dots{}
Compile source code written in C, C++, or Fortran, to a MEX file.
This is equivalent to @code{mkoctfile --mex [options] file}.
@seealso{@ref{XREFmkoctfile,,mkoctfile}}
@end deftypefn
@c mexext scripts/miscellaneous/mexext.m
@anchor{XREFmexext}
@deftypefn {Function File} {} mexext ()
Return the filename extension used for MEX files.
@seealso{@ref{XREFmex,,mex}}
@end deftypefn
Consider the following short example:
@example
@group
@verbatim
#include "mex.h"
void
mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
mexPrintf ("Hello, World!\n");
mexPrintf ("I have %d inputs and %d outputs\n", nrhs, nlhs);
}
@end verbatim
@end group
@end example
The first line @code{#include "mex.h"} makes available all of the definitions
necessary for a mex-file. One important difference between Octave and
@sc{matlab} is that the header file @qcode{"matrix.h"} is implicitly included
through the inclusion of @qcode{"mex.h"}. This is necessary to avoid a conflict
with the Octave file @qcode{"Matrix.h"} for operating systems and compilers that
don't distinguish between filenames in upper and lower case.
The entry point into the mex-file is defined by @code{mexFunction}. The
function takes four arguments:
@enumerate 1
@item The number of return arguments (# of left-hand side args).
@item An array of pointers to return arguments.
@item The number of input arguments (# of right-hand side args).
@item An array of pointers to input arguments.
@end enumerate
Note that the function name definition is not explicitly included in
@code{mexFunction} and so there can only be a single @code{mexFunction}
entry point per file. Instead, the name of the function as seen in Octave is
determined by the name of the mex-file itself minus the extension. Therefore,
if the above function is in the file @file{myhello.c}, it can be compiled with
@example
mkoctfile --mex myhello.c
@end example
@noindent
which creates a file @file{myhello.mex}. The function can then be run from
Octave as
@example
@group
myhello (1,2,3)
@result{} Hello, World!
@result{} I have 3 inputs and 0 outputs
@end group
@end example
It should be noted that the mex-file contains no help string for the
functions it contains. To document mex-files, there should exist an
m-file in the same directory as the mex-file itself. Taking the above as
an example, we would therefore have a file @file{myhello.m} that might
contain the text
@example
%MYHELLO Simple test of the functionality of a mex-file.
@end example
In this case, the function that will be executed within Octave will be
given by the mex-file, while the help string will come from the
m-file. This can also be useful to allow a sample implementation of the
mex-file within the Octave language itself for testing purposes.
Although there cannot be multiple entry points in a single mex-file,
one can use the @code{mexFunctionName} function to determine what name
the mex-file was called with. This can be used to alter the behavior of
the mex-file based on the function name. For example, if
@example
@group
@verbatim
#include "mex.h"
void
mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
const char *nm;
nm = mexFunctionName ();
mexPrintf ("You called function: %s\n", nm);
if (strcmp (nm, "myfunc") == 0)
mexPrintf ("This is the principal function\n", nm);
return;
}
@end verbatim
@end group
@end example
@noindent
is in file @file{myfunc.c}, and it is compiled with
@example
@group
mkoctfile --mex myfunc.c
ln -s myfunc.mex myfunc2.mex
@end group
@end example
@noindent
then as can be seen by
@example
@group
myfunc ()
@result{} You called function: myfunc
This is the principal function
myfunc2 ()
@result{} You called function: myfunc2
@end group
@end example
@noindent
the behavior of the mex-file can be altered depending on the functions
name.
Although the user should only include @file{mex.h} in their code, Octave
declares additional functions, typedefs, etc., available to the user to
write mex-files in the headers @file{mexproto.h} and @file{mxarray.h}.
@node Working with Matrices and Arrays in Mex-Files
@subsection Working with Matrices and Arrays in Mex-Files
The basic mex type of all variables is @code{mxArray}. Any object,
such as a matrix, cell array, or structure is stored in this basic
type. As such, @code{mxArray} serves basically the same purpose as the
octave_value class in oct-files in that it acts as a container for the
more specialized types.
The @code{mxArray} structure contains at a minimum, the name of the
variable it represents, its dimensions, its type, and whether the variable is
real or complex. It can also contain a number of additional fields
depending on the type of the @code{mxArray}. There are a number of
functions to create @code{mxArray} structures, including
@code{mxCreateDoubleMatrix}, @code{mxCreateCellArray}, @code{mxCreateSparse},
and the generic @code{mxCreateNumericArray}.
The basic function to access the data contained in an array is
@code{mxGetPr}. As the mex interface assumes that real and imaginary
parts of a complex array are stored separately, there is an equivalent
function @code{mxGetPi} that gets the imaginary part. Both of these
functions are only for use with double precision matrices. The generic
functions @code{mxGetData} and @code{mxGetImagData} perform the same operation
on all matrix types. For example:
@example
@group
mxArray *m;
mwSize *dims;
UINT32_T *pr;
dims = (mwSize *) mxMalloc (2 * sizeof (mwSize));
dims[0] = 2; dims[1] = 2;
m = mxCreateNumericArray (2, dims, mxUINT32_CLASS, mxREAL);
pr = (UINT32_T *) mxGetData (m);
@end group
@end example
There are also the functions @code{mxSetPr}, etc., that perform the
inverse, and set the data of an array to use the block of memory pointed
to by the argument of @code{mxSetPr}.
Note the type @code{mwSize} used above, and also @code{mwIndex}, are defined
as the native precision of the indexing in Octave on the platform on
which the mex-file is built. This allows both 32- and 64-bit platforms
to support mex-files. @code{mwSize} is used to define array dimensions
and the maximum number or elements, while @code{mwIndex} is used to define
indexing into arrays.
An example that demonstrates how to work with arbitrary real or complex
double precision arrays is given by the file @file{mypow2.c} shown below.
@example
@verbatim
#include "mex.h"
void
mexFunction (int nlhs, mxArray* plhs[],
int nrhs, const mxArray* prhs[])
{
mwSize n;
mwIndex i;
double *vri, *vro;
if (nrhs != 1 || ! mxIsNumeric (prhs[0]))
mexErrMsgTxt ("ARG1 must be a matrix");
n = mxGetNumberOfElements (prhs[0]);
plhs[0] = mxCreateNumericArray (mxGetNumberOfDimensions (prhs[0]),
mxGetDimensions (prhs[0]),
mxGetClassID (prhs[0]),
mxIsComplex (prhs[0]));
vri = mxGetPr (prhs[0]);
vro = mxGetPr (plhs[0]);
if (mxIsComplex (prhs[0]))
{
double *vii, *vio;
vii = mxGetPi (prhs[0]);
vio = mxGetPi (plhs[0]);
for (i = 0; i < n; i++)
{
vro[i] = vri[i] * vri[i] - vii[i] * vii[i];
vio[i] = 2 * vri[i] * vii[i];
}
}
else
{
for (i = 0; i < n; i++)
vro[i] = vri[i] * vri[i];
}
}
@end verbatim
@end example
@noindent
with an example of its use
@example
@group
b = randn (4,1) + 1i * randn (4,1);
all (b.^2 == mypow2 (b))
@result{} 1
@end group
@end example
The example above uses the functions @code{mxGetDimensions},
@code{mxGetNumberOfElements}, and @code{mxGetNumberOfDimensions} to work
with the dimensions of multi-dimensional arrays. The functions
@code{mxGetM}, and @code{mxGetN} are also available to find the number
of rows and columns in a 2-D matrix.
@node Character Strings in Mex-Files
@subsection Character Strings in Mex-Files
As mex-files do not make the distinction between single and double
quoted strings within Octave, there is perhaps less complexity in the
use of strings and character matrices in mex-files. An example of their
use that parallels the demo in @file{stringdemo.cc} is given in the
file @file{mystring.c}, as shown below.
@example
@verbatim
#include <string.h>
#include "mex.h"
void
mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
mwSize m, n;
mwIndex i, j;
mxChar *pi, *po;
if (nrhs != 1 || ! mxIsChar (prhs[0])
|| mxGetNumberOfDimensions (prhs[0]) > 2)
mexErrMsgTxt ("ARG1 must be a char matrix");
m = mxGetM (prhs[0]);
n = mxGetN (prhs[0]);
pi = mxGetChars (prhs[0]);
plhs[0] = mxCreateNumericMatrix (m, n, mxCHAR_CLASS, mxREAL);
po = mxGetChars (plhs[0]);
for (j = 0; j < n; j++)
for (i = 0; i < m; i++)
po[j*m + m - 1 - i] = pi[j*m + i];
}
@end verbatim
@end example
@noindent
An example of its expected output is
@example
@group
mystring (["First String"; "Second String"])
@result{} Second String
First String
@end group
@end example
Other functions in the mex interface for handling character strings are
@code{mxCreateString}, @code{mxArrayToString}, and
@code{mxCreateCharMatrixFromStrings}. In a mex-file, a character string
is considered to be a vector rather than a matrix. This is perhaps an
arbitrary distinction as the data in the mxArray for the matrix is
consecutive in any case.
@node Cell Arrays with Mex-Files
@subsection Cell Arrays with Mex-Files
One can perform exactly the same operations on Cell arrays in mex-files
as in oct-files. An example that reduplicates the function of
the @file{celldemo.cc} oct-file in a mex-file is given by @file{mycell.c}
as shown below.
@example
@verbatim
#include "mex.h"
void
mexFunction (int nlhs, mxArray* plhs[],
int nrhs, const mxArray* prhs[])
{
mwSize n;
mwIndex i;
if (nrhs != 1 || ! mxIsCell (prhs[0]))
mexErrMsgTxt ("ARG1 must be a cell");
n = mxGetNumberOfElements (prhs[0]);
n = (n > nlhs ? nlhs : n);
for (i = 0; i < n; i++)
plhs[i] = mxDuplicateArray (mxGetCell (prhs[0], i));
}
@end verbatim
@end example
@noindent
The output is identical to the oct-file version as well.
@example
@group
[b1, b2, b3] = mycell (@{1, [1, 2], "test"@})
@result{}
b1 = 1
b2 =
1 2
b3 = test
@end group
@end example
Note in the example the use of the @code{mxDuplicateArray} function. This
is needed as the @code{mxArray} pointer returned by @code{mxGetCell}
might be deallocated. The inverse function to @code{mxGetCell}, used for
setting Cell values, is @code{mxSetCell} and is defined as
@example
void mxSetCell (mxArray *ptr, int idx, mxArray *val);
@end example
Finally, to create a cell array or matrix, the appropriate functions are
@example
@group
mxArray *mxCreateCellArray (int ndims, const int *dims);
mxArray *mxCreateCellMatrix (int m, int n);
@end group
@end example
@node Structures with Mex-Files
@subsection Structures with Mex-Files
The basic function to create a structure in a mex-file is
@code{mxCreateStructMatrix} which creates a structure array with a two
dimensional matrix, or @code{mxCreateStructArray}.
@example
@group
mxArray *mxCreateStructArray (int ndims, int *dims,
int num_keys,
const char **keys);
mxArray *mxCreateStructMatrix (int rows, int cols,
int num_keys,
const char **keys);
@end group
@end example
Accessing the fields of the structure can then be performed with
@code{mxGetField} and @code{mxSetField} or alternatively with the
@code{mxGetFieldByNumber} and @code{mxSetFieldByNumber} functions.
@example
@group
mxArray *mxGetField (const mxArray *ptr, mwIndex index,
const char *key);
mxArray *mxGetFieldByNumber (const mxArray *ptr,
mwIndex index, int key_num);
void mxSetField (mxArray *ptr, mwIndex index,
const char *key, mxArray *val);
void mxSetFieldByNumber (mxArray *ptr, mwIndex index,
int key_num, mxArray *val);
@end group
@end example
A difference between the oct-file interface to structures and the
mex-file version is that the functions to operate on structures in
mex-files directly include an @code{index} over the elements of the
arrays of elements per @code{field}; Whereas, the oct-file structure
includes a Cell Array per field of the structure.
An example that demonstrates the use of structures in a mex-file can be
found in the file @file{mystruct.c} shown below.
@example
@verbatim
#include "mex.h"
void
mexFunction (int nlhs, mxArray* plhs[],
int nrhs, const mxArray* prhs[])
{
int i;
mwIndex j;
mxArray *v;
const char *keys[] = { "this", "that" };
if (nrhs != 1 || ! mxIsStruct (prhs[0]))
mexErrMsgTxt ("expects struct");
for (i = 0; i < mxGetNumberOfFields (prhs[0]); i++)
for (j = 0; j < mxGetNumberOfElements (prhs[0]); j++)
{
mexPrintf ("field %s(%d) = ", mxGetFieldNameByNumber (prhs[0], i), j);
v = mxGetFieldByNumber (prhs[0], j, i);
mexCallMATLAB (0, NULL, 1, &v, "disp");
}
v = mxCreateStructMatrix (2, 2, 2, keys);
mxSetFieldByNumber (v, 0, 0, mxCreateString ("this1"));
mxSetFieldByNumber (v, 0, 1, mxCreateString ("that1"));
mxSetFieldByNumber (v, 1, 0, mxCreateString ("this2"));
mxSetFieldByNumber (v, 1, 1, mxCreateString ("that2"));
mxSetFieldByNumber (v, 2, 0, mxCreateString ("this3"));
mxSetFieldByNumber (v, 2, 1, mxCreateString ("that3"));
mxSetFieldByNumber (v, 3, 0, mxCreateString ("this4"));
mxSetFieldByNumber (v, 3, 1, mxCreateString ("that4"));
if (nlhs)
plhs[0] = v;
}
@end verbatim
@end example
An example of the behavior of this function within Octave is then
@example
a(1).f1 = "f11"; a(1).f2 = "f12";
a(2).f1 = "f21"; a(2).f2 = "f22";
b = mystruct (a);
@result{} field f1(0) = f11
field f1(1) = f21
field f2(0) = f12
field f2(1) = f22
b
@result{} 2x2 struct array containing the fields:
this
that
b(3)
@result{} scalar structure containing the fields:
this = this3
that = that3
@end example
@node Sparse Matrices with Mex-Files
@subsection Sparse Matrices with Mex-Files
The Octave format for sparse matrices is identical to the mex format in
that it is a compressed column sparse format. Also in both, sparse
matrices are required to be two-dimensional. The only difference is that
the real and imaginary parts of the matrix are stored separately.
The mex-file interface, in addition to using @code{mxGetM}, @code{mxGetN},
@code{mxSetM}, @code{mxSetN}, @code{mxGetPr}, @code{mxGetPi},
@code{mxSetPr}, and @code{mxSetPi}, also supplies the following functions.
@example
@group
mwIndex *mxGetIr (const mxArray *ptr);
mwIndex *mxGetJc (const mxArray *ptr);
mwSize mxGetNzmax (const mxArray *ptr);
void mxSetIr (mxArray *ptr, mwIndex *ir);
void mxSetJc (mxArray *ptr, mwIndex *jc);
void mxSetNzmax (mxArray *ptr, mwSize nzmax);
@end group
@end example
@noindent
@code{mxGetNzmax} gets the maximum number of elements that can be stored
in the sparse matrix. This is not necessarily the number of non-zero
elements in the sparse matrix. @code{mxGetJc} returns an array with one
additional value than the number of columns in the sparse matrix. The
difference between consecutive values of the array returned by
@code{mxGetJc} define the number of non-zero elements in each column of
the sparse matrix. Therefore,
@example
@group
mwSize nz, n;
mwIndex *Jc;
mxArray *m;
@dots{}
n = mxGetN (m);
Jc = mxGetJc (m);
nz = Jc[n];
@end group
@end example
@noindent
returns the actual number of non-zero elements stored in the matrix in
@code{nz}. As the arrays returned by @code{mxGetPr} and @code{mxGetPi}
only contain the non-zero values of the matrix, we also need a pointer
to the rows of the non-zero elements, and this is given by
@code{mxGetIr}. A complete example of the use of sparse matrices in
mex-files is given by the file @file{mysparse.c} shown below.
@example
@verbatim
#include "mex.h"
void
mexFunction (int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
mwSize m, n, nz;
mxArray *v;
mwIndex i;
double *pr, *pi;
double *pr2, *pi2;
mwIndex *ir, *jc;
mwIndex *ir2, *jc2;
if (nrhs != 1 || ! mxIsSparse (prhs[0]))
mexErrMsgTxt ("ARG1 must be a sparse matrix");
m = mxGetM (prhs[0]);
n = mxGetN (prhs[0]);
nz = mxGetNzmax (prhs[0]);
if (mxIsComplex (prhs[0]))
{
mexPrintf ("Matrix is %d-by-%d complex sparse matrix", m, n);
mexPrintf (" with %d elements\n", nz);
pr = mxGetPr (prhs[0]);
pi = mxGetPi (prhs[0]);
ir = mxGetIr (prhs[0]);
jc = mxGetJc (prhs[0]);
i = n;
while (jc[i] == jc[i-1] && i != 0) i--;
mexPrintf ("last non-zero element (%d, %d) = (%g, %g)\n",
ir[nz-1]+ 1, i, pr[nz-1], pi[nz-1]);
v = mxCreateSparse (m, n, nz, mxCOMPLEX);
pr2 = mxGetPr (v);
pi2 = mxGetPi (v);
ir2 = mxGetIr (v);
jc2 = mxGetJc (v);
for (i = 0; i < nz; i++)
{
pr2[i] = 2 * pr[i];
pi2[i] = 2 * pi[i];
ir2[i] = ir[i];
}
for (i = 0; i < n + 1; i++)
jc2[i] = jc[i];
if (nlhs > 0)
plhs[0] = v;
}
else if (mxIsLogical (prhs[0]))
{
mxLogical *pbr, *pbr2;
mexPrintf ("Matrix is %d-by-%d logical sparse matrix", m, n);
mexPrintf (" with %d elements\n", nz);
pbr = mxGetLogicals (prhs[0]);
ir = mxGetIr (prhs[0]);
jc = mxGetJc (prhs[0]);
i = n;
while (jc[i] == jc[i-1] && i != 0) i--;
mexPrintf ("last non-zero element (%d, %d) = %d\n",
ir[nz-1]+ 1, i, pbr[nz-1]);
v = mxCreateSparseLogicalMatrix (m, n, nz);
pbr2 = mxGetLogicals (v);
ir2 = mxGetIr (v);
jc2 = mxGetJc (v);
for (i = 0; i < nz; i++)
{
pbr2[i] = pbr[i];
ir2[i] = ir[i];
}
for (i = 0; i < n + 1; i++)
jc2[i] = jc[i];
if (nlhs > 0)
plhs[0] = v;
}
else
{
mexPrintf ("Matrix is %d-by-%d real sparse matrix", m, n);
mexPrintf (" with %d elements\n", nz);
pr = mxGetPr (prhs[0]);
ir = mxGetIr (prhs[0]);
jc = mxGetJc (prhs[0]);
i = n;
while (jc[i] == jc[i-1] && i != 0) i--;
mexPrintf ("last non-zero element (%d, %d) = %g\n",
ir[nz-1]+ 1, i, pr[nz-1]);
v = mxCreateSparse (m, n, nz, mxREAL);
pr2 = mxGetPr (v);
ir2 = mxGetIr (v);
jc2 = mxGetJc (v);
for (i = 0; i < nz; i++)
{
pr2[i] = 2 * pr[i];
ir2[i] = ir[i];
}
for (i = 0; i < n + 1; i++)
jc2[i] = jc[i];
if (nlhs > 0)
plhs[0] = v;
}
}
@end verbatim
@end example
A sample usage of @code{mysparse} is
@example
@group
sm = sparse ([1, 0; 0, pi]);
mysparse (sm)
@result{}
Matrix is 2-by-2 real sparse matrix with 2 elements
last non-zero element (2, 2) = 3.14159
@end group
@end example
@node Calling Other Functions in Mex-Files
@subsection Calling Other Functions in Mex-Files
It is possible to call other Octave functions from within a mex-file
using @code{mexCallMATLAB}. An example of the use of @code{mexCallMATLAB}
can be see in the example below.
@example
@verbatim
#include "mex.h"
void
mexFunction (int nlhs, mxArray* plhs[],
int nrhs, const mxArray* prhs[])
{
char *str;
mexPrintf ("Starting file myfeval.mex\n");
mexPrintf ("I have %d inputs and %d outputs\n", nrhs, nlhs);
if (nrhs < 1 || ! mxIsString (prhs[0]))
mexErrMsgTxt ("ARG1 must be a function name");
str = mxArrayToString (prhs[0]);
mexPrintf ("I'm going to call the function %s\n", str);
if (nlhs == 0)
nlhs = 1; // Octave's automatic 'ans' variable
/* Cast prhs just to get rid of 'const' qualifier and stop compile warning */
mexCallMATLAB (nlhs, plhs, nrhs-1, (mxArray**)prhs+1, str);
mxFree (str);
}
@end verbatim
@end example
If this code is in the file @file{myfeval.c}, and is compiled to
@file{myfeval.mex}, then an example of its use is
@example
@group
a = myfeval ("sin", 1)
@result{} Starting file myfeval.mex
I have 2 inputs and 1 outputs
I'm going to call the interpreter function sin
a = 0.84147
@end group
@end example
Note that it is not possible to use function handles or inline functions
within a mex-file.
@c @node Application Programming Interface for Mex-Files
@c @subsection Application Programming Interface for Mex-Files
@c
@c WRITE ME, refer to mex.h and mexproto.h
@node Standalone Programs
@section Standalone Programs
The libraries Octave itself uses can be utilized in standalone
applications. These applications then have access, for example, to the
array and matrix classes, as well as to all of the Octave algorithms. The
following C++ program, uses class Matrix from @file{liboctave.a} or
@file{liboctave.so}.
@example
@verbatim
#include <iostream>
#include <octave/oct.h>
int
main (void)
{
std::cout << "Hello Octave world!\n";
int n = 2;
Matrix a_matrix = Matrix (n, n);
for (octave_idx_type i = 0; i < n; i++)
for (octave_idx_type j = 0; j < n; j++)
a_matrix(i,j) = (i + 1) * 10 + (j + 1);
std::cout << a_matrix;
return 0;
}
@end verbatim
@end example
@noindent
mkoctfile can be used to build a standalone application with a
command like
@example
@group
$ mkoctfile --link-stand-alone standalone.cc -o standalone
$ ./standalone
Hello Octave world!
11 12
21 22
$
@end group
@end example
Note that the application @code{standalone} will be dynamically linked
against the Octave libraries and any Octave support libraries. The above
allows the Octave math libraries to be used by an application. It does
not, however, allow the script files, oct-files, or built-in functions of
Octave to be used by the application. To do that the Octave interpreter
needs to be initialized first. An example of how to do this can then be
seen in the code
@example
@verbatim
#include <iostream>
#include <octave/oct.h>
#include <octave/octave.h>
#include <octave/parse.h>
#include <octave/toplev.h>
int
main (void)
{
string_vector argv (2);
argv(0) = "embedded";
argv(1) = "-q";
octave_main (2, argv.c_str_vec (), 1);
octave_idx_type n = 2;
octave_value_list in;
for (octave_idx_type i = 0; i < n; i++)
in(i) = octave_value (5 * (i + 2));
octave_value_list out = feval ("gcd", in, 1);
if (! error_state && out.length () > 0)
std::cout << "GCD of ["
<< in(0).int_value ()
<< ", "
<< in(1).int_value ()
<< "] is " << out(0).int_value ()
<< std::endl;
else
std::cout << "invalid\n";
clean_up_and_exit (0);
}
@end verbatim
@end example
@noindent
which, as before, is compiled and run as a standalone application with
@example
@group
$ mkoctfile --link-stand-alone embedded.cc -o embedded
$ ./embedded
GCD of [10, 15] is 5
$
@end group
@end example
It is worth noting that, if only built-in functions are to be called from
a C++ standalone program, then it does not need to initialize the
interpreter to do so. The general rule is that, for a built-in
function named @code{function_name} in the interpreter, there will be
a C++ function named @code{Ffunction_name} (note the prepended capital
@code{F}) accessible in the C++ API@. The declarations for all built-in
functions are collected in the header file @code{builtin-defun-decls.h}.
This feature should be used with care as the list of built-in functions can
change. No guarantees can be made that a function that is currently built in
won't be implemented as a .m file or as a dynamically linked function in the
future. An example of how to call built-in functions from C++ can be seen in the
code
@example
@verbatim
#include <iostream>
#include <octave/oct.h>
#include <octave/builtin-defun-decls.h>
int
main (void)
{
int n = 2;
Matrix a_matrix = Matrix (n, n);
for (octave_idx_type i = 0; i < n; i++)
for (octave_idx_type j = 0; j < n; j++)
a_matrix(i,j) = (i + 1) * 10 + (j + 1);
std::cout << "This is a matrix:" << std::endl
<< a_matrix << std::endl;
octave_value_list in;
in(0) = a_matrix;
octave_value_list out = Fnorm (in, 1);
double norm_of_the_matrix = out(0).double_value ();
std::cout << "This is the norm of the matrix:" << std::endl
<< norm_of_the_matrix << std::endl;
return 0;
}
@end verbatim
@end example
@noindent
which, again, is compiled and run as a standalone application with
@example
@group
$ mkoctfile --link-stand-alone standalonebuiltin.cc -o standalonebuiltin
$ ./standalonebuiltin
This is a matrix:
11 12
21 22
This is the norm of the matrix:
34.4952
$
@end group
@end example
|