1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 1996-2013 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
@c for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <http://www.gnu.org/licenses/>.
@node Functions and Scripts
@chapter Functions and Scripts
@cindex defining functions
@cindex user-defined functions
@cindex functions, user-defined
@cindex script files
Complicated Octave programs can often be simplified by defining
functions. Functions can be defined directly on the command line during
interactive Octave sessions, or in external files, and can be called just
like built-in functions.
@menu
* Introduction to Function and Script Files::
* Defining Functions::
* Multiple Return Values::
* Variable-length Argument Lists::
* Ignoring Arguments::
* Variable-length Return Lists::
* Returning from a Function::
* Default Arguments::
* Function Files::
* Script Files::
* Function Handles Anonymous Functions Inline Functions::
* Commands::
* Organization of Functions::
@end menu
@node Introduction to Function and Script Files
@section Introduction to Function and Script Files
There are seven different things covered in this section.
@enumerate
@item
Typing in a function at the command prompt.
@item
Storing a group of commands in a file --- called a script file.
@item
Storing a function in a file---called a function file.
@item
Subfunctions in function files.
@item
Multiple functions in one script file.
@item
Private functions.
@item
Nested functions.
@end enumerate
Both function files and script files end with an extension of .m, for
@sc{matlab} compatibility. If you want more than one independent
functions in a file, it must be a script file (@pxref{Script Files}),
and to use these functions you must execute the script file before you
can use the functions that are in the script file.
@node Defining Functions
@section Defining Functions
@cindex @code{function} statement
@cindex @code{endfunction} statement
In its simplest form, the definition of a function named @var{name}
looks like this:
@example
@group
function @var{name}
@var{body}
endfunction
@end group
@end example
@noindent
A valid function name is like a valid variable name: a sequence of
letters, digits and underscores, not starting with a digit. Functions
share the same pool of names as variables.
The function @var{body} consists of Octave statements. It is the
most important part of the definition, because it says what the function
should actually @emph{do}.
For example, here is a function that, when executed, will ring the bell
on your terminal (assuming that it is possible to do so):
@example
@group
function wakeup
printf ("\a");
endfunction
@end group
@end example
The @code{printf} statement (@pxref{Input and Output}) simply tells
Octave to print the string @qcode{"\a"}. The special character @samp{\a}
stands for the alert character (ASCII 7). @xref{Strings}.
Once this function is defined, you can ask Octave to evaluate it by
typing the name of the function.
Normally, you will want to pass some information to the functions you
define. The syntax for passing parameters to a function in Octave is
@example
@group
function @var{name} (@var{arg-list})
@var{body}
endfunction
@end group
@end example
@noindent
where @var{arg-list} is a comma-separated list of the function's
arguments. When the function is called, the argument names are used to
hold the argument values given in the call. The list of arguments may
be empty, in which case this form is equivalent to the one shown above.
To print a message along with ringing the bell, you might modify the
@code{wakeup} to look like this:
@example
@group
function wakeup (message)
printf ("\a%s\n", message);
endfunction
@end group
@end example
Calling this function using a statement like this
@example
wakeup ("Rise and shine!");
@end example
@noindent
will cause Octave to ring your terminal's bell and print the message
@samp{Rise and shine!}, followed by a newline character (the @samp{\n}
in the first argument to the @code{printf} statement).
In most cases, you will also want to get some information back from the
functions you define. Here is the syntax for writing a function that
returns a single value:
@example
@group
function @var{ret-var} = @var{name} (@var{arg-list})
@var{body}
endfunction
@end group
@end example
@noindent
The symbol @var{ret-var} is the name of the variable that will hold the
value to be returned by the function. This variable must be defined
before the end of the function body in order for the function to return
a value.
Variables used in the body of a function are local to the
function. Variables named in @var{arg-list} and @var{ret-var} are also
local to the function. @xref{Global Variables}, for information about
how to access global variables inside a function.
For example, here is a function that computes the average of the
elements of a vector:
@example
@group
function retval = avg (v)
retval = sum (v) / length (v);
endfunction
@end group
@end example
If we had written @code{avg} like this instead,
@example
@group
function retval = avg (v)
if (isvector (v))
retval = sum (v) / length (v);
endif
endfunction
@end group
@end example
@noindent
and then called the function with a matrix instead of a vector as the
argument, Octave would have printed an error message like this:
@example
@group
error: value on right hand side of assignment is undefined
@end group
@end example
@noindent
because the body of the @code{if} statement was never executed, and
@code{retval} was never defined. To prevent obscure errors like this,
it is a good idea to always make sure that the return variables will
always have values, and to produce meaningful error messages when
problems are encountered. For example, @code{avg} could have been
written like this:
@example
@group
function retval = avg (v)
retval = 0;
if (isvector (v))
retval = sum (v) / length (v);
else
error ("avg: expecting vector argument");
endif
endfunction
@end group
@end example
There is still one additional problem with this function. What if it is
called without an argument? Without additional error checking, Octave
will probably print an error message that won't really help you track
down the source of the error. To allow you to catch errors like this,
Octave provides each function with an automatic variable called
@code{nargin}. Each time a function is called, @code{nargin} is
automatically initialized to the number of arguments that have actually
been passed to the function. For example, we might rewrite the
@code{avg} function like this:
@example
@group
function retval = avg (v)
retval = 0;
if (nargin != 1)
usage ("avg (vector)");
endif
if (isvector (v))
retval = sum (v) / length (v);
else
error ("avg: expecting vector argument");
endif
endfunction
@end group
@end example
Although Octave does not automatically report an error if you call a
function with more arguments than expected, doing so probably indicates
that something is wrong. Octave also does not automatically report an
error if a function is called with too few arguments, but any attempt to
use a variable that has not been given a value will result in an error.
To avoid such problems and to provide useful messages, we check for both
possibilities and issue our own error message.
@c nargin libinterp/octave-value/ov-usr-fcn.cc
@anchor{XREFnargin}
@deftypefn {Built-in Function} {} nargin ()
@deftypefnx {Built-in Function} {} nargin (@var{fcn})
Within a function, return the number of arguments passed to the function.
At the top level, return the number of command line arguments passed to
Octave.
If called with the optional argument @var{fcn}---a function name or handle---
return the declared number of arguments that the function can accept.
If the last argument to @var{fcn} is @var{varargin} the returned value is
negative. For example, the function @code{union} for sets is declared as
@example
@group
function [y, ia, ib] = union (a, b, varargin)
and
nargin ("union")
@result{} -3
@end group
@end example
Programming Note: @code{nargin} does not work on built-in functions.
@seealso{@ref{XREFnargout,,nargout}, @ref{XREFvarargin,,varargin}, @ref{XREFisargout,,isargout}, @ref{XREFvarargout,,varargout}, @ref{XREFnthargout,,nthargout}}
@end deftypefn
@c inputname scripts/miscellaneous/inputname.m
@anchor{XREFinputname}
@deftypefn {Function File} {} inputname (@var{n})
Return the name of the @var{n}-th argument to the calling function.
If the argument is not a simple variable name, return an empty string.
@end deftypefn
@c silent_functions libinterp/parse-tree/pt-eval.cc
@anchor{XREFsilent_functions}
@deftypefn {Built-in Function} {@var{val} =} silent_functions ()
@deftypefnx {Built-in Function} {@var{old_val} =} silent_functions (@var{new_val})
@deftypefnx {Built-in Function} {} silent_functions (@var{new_val}, "local")
Query or set the internal variable that controls whether internal
output from a function is suppressed. If this option is disabled,
Octave will display the results produced by evaluating expressions
within a function body that are not terminated with a semicolon.
When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
@end deftypefn
@node Multiple Return Values
@section Multiple Return Values
Unlike many other computer languages, Octave allows you to define
functions that return more than one value. The syntax for defining
functions that return multiple values is
@example
@group
function [@var{ret-list}] = @var{name} (@var{arg-list})
@var{body}
endfunction
@end group
@end example
@noindent
where @var{name}, @var{arg-list}, and @var{body} have the same meaning
as before, and @var{ret-list} is a comma-separated list of variable
names that will hold the values returned from the function. The list of
return values must have at least one element. If @var{ret-list} has
only one element, this form of the @code{function} statement is
equivalent to the form described in the previous section.
Here is an example of a function that returns two values, the maximum
element of a vector and the index of its first occurrence in the vector.
@example
@group
function [max, idx] = vmax (v)
idx = 1;
max = v (idx);
for i = 2:length (v)
if (v (i) > max)
max = v (i);
idx = i;
endif
endfor
endfunction
@end group
@end example
In this particular case, the two values could have been returned as
elements of a single array, but that is not always possible or
convenient. The values to be returned may not have compatible
dimensions, and it is often desirable to give the individual return
values distinct names.
It is possible to use the @code{nthargout} function to obtain only some
of the return values or several at once in a cell array.
@xref{Cell Array Objects}.
@c nthargout scripts/general/nthargout.m
@anchor{XREFnthargout}
@deftypefn {Function File} {} nthargout (@var{n}, @var{func}, @dots{})
@deftypefnx {Function File} {} nthargout (@var{n}, @var{ntot}, @var{func}, @dots{})
Return the @var{n}th output argument of function given by the
function handle or string @var{func}. Any arguments after @var{func}
are passed to @var{func}. The total number of arguments to call
@var{func} with can be passed in @var{ntot}; by default @var{ntot}
is @var{n}. The input @var{n} can also be a vector of indices of the
output, in which case the output will be a cell array of the
requested output arguments.
The intended use @code{nthargout} is to avoid intermediate variables.
For example, when finding the indices of the maximum entry of a
matrix, the following two compositions of nthargout
@example
@group
@var{m} = magic (5);
cell2mat (nthargout ([1, 2], @@ind2sub, size (@var{m}),
nthargout (2, @@max, @var{m}(:))))
@result{} 5 3
@end group
@end example
@noindent
are completely equivalent to the following lines:
@example
@group
@var{m} = magic (5);
[~, idx] = max (@var{M}(:));
[i, j] = ind2sub (size (@var{m}), idx);
[i, j]
@result{} 5 3
@end group
@end example
It can also be helpful to have all output arguments in a single cell
in the following manner:
@example
@var{USV} = nthargout ([1:3], @@svd, hilb (5));
@end example
@seealso{@ref{XREFnargin,,nargin}, @ref{XREFnargout,,nargout}, @ref{XREFvarargin,,varargin}, @ref{XREFvarargout,,varargout}, @ref{XREFisargout,,isargout}}
@end deftypefn
In addition to setting @code{nargin} each time a function is called,
Octave also automatically initializes @code{nargout} to the number of
values that are expected to be returned. This allows you to write
functions that behave differently depending on the number of values that
the user of the function has requested. The implicit assignment to the
built-in variable @code{ans} does not figure in the count of output
arguments, so the value of @code{nargout} may be zero.
The @code{svd} and @code{lu} functions are examples of built-in
functions that behave differently depending on the value of
@code{nargout}.
It is possible to write functions that only set some return values. For
example, calling the function
@example
@group
function [x, y, z] = f ()
x = 1;
z = 2;
endfunction
@end group
@end example
@noindent
as
@example
[a, b, c] = f ()
@end example
@noindent
produces:
@example
@group
a = 1
b = [](0x0)
c = 2
@end group
@end example
@noindent
along with a warning.
@c nargout libinterp/octave-value/ov-usr-fcn.cc
@anchor{XREFnargout}
@deftypefn {Built-in Function} {} nargout ()
@deftypefnx {Built-in Function} {} nargout (@var{fcn})
Within a function, return the number of values the caller expects to
receive. If called with the optional argument @var{fcn}---a function
name or handle---return the number of declared output values that the
function can produce. If the final output argument is @var{varargout}
the returned value is negative.
For example,
@example
f ()
@end example
@noindent
will cause @code{nargout} to return 0 inside the function @code{f} and
@example
[s, t] = f ()
@end example
@noindent
will cause @code{nargout} to return 2 inside the function @code{f}.
In the second usage,
@example
nargout (@@histc) % or nargout ("histc")
@end example
@noindent
will return 2, because @code{histc} has two outputs, whereas
@example
nargout (@@imread)
@end example
@noindent
will return -2, because @code{imread} has two outputs and the second is
@var{varargout}.
At the top level, @code{nargout} with no argument is undefined and will
produce an error. @code{nargout} does not work for built-in functions and
returns -1 for all anonymous functions.
@seealso{@ref{XREFnargin,,nargin}, @ref{XREFvarargin,,varargin}, @ref{XREFisargout,,isargout}, @ref{XREFvarargout,,varargout}, @ref{XREFnthargout,,nthargout}}
@end deftypefn
It is good practice at the head of a function to verify that it has been called
correctly. In Octave the following idiom is seen frequently
@example
@group
if (nargin < min_#_inputs || nargin > max_#_inputs)
print_usage ();
endif
@end group
@end example
@noindent
which stops the function execution and prints a message about the correct
way to call the function whenever the number of inputs is wrong.
For compatibility with @sc{matlab}, @code{nargchk}, @code{narginchk} and
@code{nargoutchk} are available which provide similar error checking.
@c nargchk scripts/general/nargchk.m
@anchor{XREFnargchk}
@deftypefn {Function File} {@var{msgstr} =} nargchk (@var{minargs}, @var{maxargs}, @var{nargs})
@deftypefnx {Function File} {@var{msgstr} =} nargchk (@var{minargs}, @var{maxargs}, @var{nargs}, "string")
@deftypefnx {Function File} {@var{msgstruct} =} nargchk (@var{minargs}, @var{maxargs}, @var{nargs}, "struct")
Return an appropriate error message string (or structure) if the
number of inputs requested is invalid.
This is useful for checking to see that the number of input arguments
supplied to a function is within an acceptable range.
@seealso{@ref{XREFnargoutchk,,nargoutchk}, @ref{XREFnarginchk,,narginchk}, @ref{XREFerror,,error}, @ref{XREFnargin,,nargin}, @ref{XREFnargout,,nargout}}
@end deftypefn
@c narginchk scripts/general/narginchk.m
@anchor{XREFnarginchk}
@deftypefn {Function File} {} narginchk (@var{minargs}, @var{maxargs})
Check for correct number of arguments or generate an error message if
the number of arguments in the calling function is outside the range
@var{minargs} and @var{maxargs}. Otherwise, do nothing.
Both @var{minargs} and @var{maxargs} need to be scalar numeric
values. Zero, Inf and negative values are all allowed, and
@var{minargs} and @var{maxargs} may be equal.
Note that this function evaluates @code{nargin} on the caller.
@seealso{@ref{XREFnargchk,,nargchk}, @ref{XREFnargoutchk,,nargoutchk}, @ref{XREFerror,,error}, @ref{XREFnargout,,nargout}, @ref{XREFnargin,,nargin}}
@end deftypefn
@c nargoutchk scripts/general/nargoutchk.m
@anchor{XREFnargoutchk}
@deftypefn {Function File} {} nargoutchk (@var{minargs}, @var{maxargs})
@deftypefnx {Function File} {@var{msgstr} =} nargoutchk (@var{minargs}, @var{maxargs}, @var{nargs})
@deftypefnx {Function File} {@var{msgstr} =} nargoutchk (@var{minargs}, @var{maxargs}, @var{nargs}, "string")
@deftypefnx {Function File} {@var{msgstruct} =} nargoutchk (@var{minargs}, @var{maxargs}, @var{nargs}, "struct")
Check for correct number of output arguments.
On the first form, returns an error unless the number of arguments in its
caller is between the values of @var{minargs} and @var{maxargs}. It does
nothing otherwise. Note that this function evaluates the value of
@code{nargout} on the caller so its value must have not been tampered with.
Both @var{minargs} and @var{maxargs} need to be a numeric scalar. Zero, Inf
and negative are all valid, and they can have the same value.
For backward compatibility reasons, the other forms return an appropriate
error message string (or structure) if the number of outputs requested is
invalid.
This is useful for checking to see that the number of output
arguments supplied to a function is within an acceptable range.
@seealso{@ref{XREFnargchk,,nargchk}, @ref{XREFnarginchk,,narginchk}, @ref{XREFerror,,error}, @ref{XREFnargout,,nargout}, @ref{XREFnargin,,nargin}}
@end deftypefn
@anchor{XREFvarargin} @anchor{XREFvarargout}
@node Variable-length Argument Lists
@section Variable-length Argument Lists
@cindex variable-length argument lists
@cindex @code{varargin}
Sometimes the number of input arguments is not known when the function
is defined. As an example think of a function that returns the smallest
of all its input arguments. For example:
@example
@group
a = smallest (1, 2, 3);
b = smallest (1, 2, 3, 4);
@end group
@end example
@noindent
In this example both @code{a} and @code{b} would be 1. One way to write
the @code{smallest} function is
@example
@group
function val = smallest (arg1, arg2, arg3, arg4, arg5)
@var{body}
endfunction
@end group
@end example
@noindent
and then use the value of @code{nargin} to determine which of the input
arguments should be considered. The problem with this approach is
that it can only handle a limited number of input arguments.
If the special parameter name @code{varargin} appears at the end of a
function parameter list it indicates that the function takes a variable
number of input arguments. Using @code{varargin} the function
looks like this
@example
@group
function val = smallest (varargin)
@var{body}
endfunction
@end group
@end example
@noindent
In the function body the input arguments can be accessed through the
variable @code{varargin}. This variable is a cell array containing
all the input arguments. @xref{Cell Arrays}, for details on working
with cell arrays. The @code{smallest} function can now be defined
like this
@example
@group
function val = smallest (varargin)
val = min ([varargin@{:@}]);
endfunction
@end group
@end example
@noindent
This implementation handles any number of input arguments, but it's also
a very simple solution to the problem.
A slightly more complex example of @code{varargin} is a function
@code{print_arguments} that prints all input arguments. Such a function
can be defined like this
@example
@group
function print_arguments (varargin)
for i = 1:length (varargin)
printf ("Input argument %d: ", i);
disp (varargin@{i@});
endfor
endfunction
@end group
@end example
@noindent
This function produces output like this
@example
@group
print_arguments (1, "two", 3);
@print{} Input argument 1: 1
@print{} Input argument 2: two
@print{} Input argument 3: 3
@end group
@end example
@c parseparams scripts/miscellaneous/parseparams.m
@anchor{XREFparseparams}
@deftypefn {Function File} {[@var{reg}, @var{prop}] =} parseparams (@var{params})
@deftypefnx {Function File} {[@var{reg}, @var{var1}, @dots{}] =} parseparams (@var{params}, @var{name1}, @var{default1}, @dots{})
Return in @var{reg} the cell elements of @var{param} up to the first
string element and in @var{prop} all remaining elements beginning
with the first string element. For example:
@example
@group
[reg, prop] = parseparams (@{1, 2, "linewidth", 10@})
reg =
@{
[1,1] = 1
[1,2] = 2
@}
prop =
@{
[1,1] = linewidth
[1,2] = 10
@}
@end group
@end example
The parseparams function may be used to separate regular numeric
arguments from additional arguments given as property/value pairs of
the @var{varargin} cell array.
In the second form of the call, available options are specified directly
with their default values given as name-value pairs.
If @var{params} do not form name-value pairs, or if an option occurs
that does not match any of the available options, an error occurs.
When called from an m-file function, the error is prefixed with the
name of the caller function.
The matching of options is case-insensitive.
@seealso{@ref{XREFvarargin,,varargin}}
@end deftypefn
@node Ignoring Arguments
@section Ignoring Arguments
In the formal argument list, it is possible to use the dummy placeholder
@code{~} instead of a name. This indicates that the corresponding argument
value should be ignored and not stored to any variable.
@example
@group
function val = pick2nd (~, arg2)
val = arg2;
endfunction
@end group
@end example
The value of @code{nargin} is not affected by using this declaration.
Return arguments can also be ignored using the same syntax. Functions may
take advantage of ignored outputs to reduce the number of calculations
performed. To do so, use the @code{isargout} function to query whether the
output argument is wanted. For example:
@example
@group
function [out1, out2] = long_function (x, y, z)
if (isargout (1))
## Long calculation
@dots{}
out1 = result;
endif
@dots{}
endfunction
@end group
@end example
@c isargout libinterp/octave-value/ov-usr-fcn.cc
@anchor{XREFisargout}
@deftypefn {Built-in Function} {} isargout (@var{k})
Within a function, return a logical value indicating whether the argument
@var{k} will be assigned to a variable on output. If the result is false,
the argument has been ignored during the function call through the use of
the tilde (~) special output argument. Functions can use @code{isargout} to
avoid performing unnecessary calculations for outputs which are unwanted.
If @var{k} is outside the range @code{1:max (nargout)}, the function returns
false. @var{k} can also be an array, in which case the function works
element-by-element and a logical array is returned. At the top level,
@code{isargout} returns an error.
@seealso{@ref{XREFnargout,,nargout}, @ref{XREFnargin,,nargin}, @ref{XREFvarargin,,varargin}, @ref{XREFvarargout,,varargout}, @ref{XREFnthargout,,nthargout}}
@end deftypefn
@node Variable-length Return Lists
@section Variable-length Return Lists
@cindex variable-length return lists
@cindex @code{varargout}
It is possible to return a variable number of output arguments from a
function using a syntax that's similar to the one used with the
special @code{varargin} parameter name. To let a function return a
variable number of output arguments the special output parameter name
@code{varargout} is used. As with @code{varargin}, @code{varargout} is
a cell array that will contain the requested output arguments.
As an example the following function sets the first output argument to
1, the second to 2, and so on.
@example
@group
function varargout = one_to_n ()
for i = 1:nargout
varargout@{i@} = i;
endfor
endfunction
@end group
@end example
@noindent
When called this function returns values like this
@example
@group
[a, b, c] = one_to_n ()
@result{} a = 1
@result{} b = 2
@result{} c = 3
@end group
@end example
If @code{varargin} (@code{varargout}) does not appear as the last
element of the input (output) parameter list, then it is not special,
and is handled the same as any other parameter name.
@c deal scripts/general/deal.m
@anchor{XREFdeal}
@deftypefn {Function File} {[@var{r1}, @var{r2}, @dots{}, @var{rn}] =} deal (@var{a})
@deftypefnx {Function File} {[@var{r1}, @var{r2}, @dots{}, @var{rn}] =} deal (@var{a1}, @var{a2}, @dots{}, @var{an})
Copy the input parameters into the corresponding output parameters.
If only one input parameter is supplied, its value is copied to each
of the outputs.
For example,
@example
[a, b, c] = deal (x, y, z);
@end example
@noindent
is equivalent to
@example
@group
a = x;
b = y;
c = z;
@end group
@end example
@noindent
and
@example
[a, b, c] = deal (x);
@end example
@noindent
is equivalent to
@example
a = b = c = x;
@end example
@end deftypefn
@node Returning from a Function
@section Returning from a Function
The body of a user-defined function can contain a @code{return} statement.
This statement returns control to the rest of the Octave program. It
looks like this:
@example
return
@end example
Unlike the @code{return} statement in C, Octave's @code{return}
statement cannot be used to return a value from a function. Instead,
you must assign values to the list of return variables that are part of
the @code{function} statement. The @code{return} statement simply makes
it easier to exit a function from a deeply nested loop or conditional
statement.
Here is an example of a function that checks to see if any elements of a
vector are nonzero.
@example
@group
function retval = any_nonzero (v)
retval = 0;
for i = 1:length (v)
if (v (i) != 0)
retval = 1;
return;
endif
endfor
printf ("no nonzero elements found\n");
endfunction
@end group
@end example
Note that this function could not have been written using the
@code{break} statement to exit the loop once a nonzero value is found
without adding extra logic to avoid printing the message if the vector
does contain a nonzero element.
@deftypefn {Keyword} {} return
When Octave encounters the keyword @code{return} inside a function or
script, it returns control to the caller immediately. At the top level,
the return statement is ignored. A @code{return} statement is assumed
at the end of every function definition.
@end deftypefn
@node Default Arguments
@section Default Arguments
@cindex default arguments
Since Octave supports variable number of input arguments, it is very useful
to assign default values to some input arguments. When an input argument
is declared in the argument list it is possible to assign a default
value to the argument like this
@example
@group
function @var{name} (@var{arg1} = @var{val1}, @dots{})
@var{body}
endfunction
@end group
@end example
@noindent
If no value is assigned to @var{arg1} by the user, it will have the
value @var{val1}.
As an example, the following function implements a variant of the classic
``Hello, World'' program.
@example
@group
function hello (who = "World")
printf ("Hello, %s!\n", who);
endfunction
@end group
@end example
@noindent
When called without an input argument the function prints the following
@example
@group
hello ();
@print{} Hello, World!
@end group
@end example
@noindent
and when it's called with an input argument it prints the following
@example
@group
hello ("Beautiful World of Free Software");
@print{} Hello, Beautiful World of Free Software!
@end group
@end example
Sometimes it is useful to explicitly tell Octave to use the default value
of an input argument. This can be done writing a @samp{:} as the value
of the input argument when calling the function.
@example
@group
hello (:);
@print{} Hello, World!
@end group
@end example
@node Function Files
@section Function Files
@cindex function file
Except for simple one-shot programs, it is not practical to have to
define all the functions you need each time you need them. Instead, you
will normally want to save them in a file so that you can easily edit
them, and save them for use at a later time.
Octave does not require you to load function definitions from files
before using them. You simply need to put the function definitions in a
place where Octave can find them.
When Octave encounters an identifier that is undefined, it first looks
for variables or functions that are already compiled and currently
listed in its symbol table. If it fails to find a definition there, it
searches a list of directories (the @dfn{path}) for files ending in
@file{.m} that have the same base name as the undefined
identifier.@footnote{The @samp{.m} suffix was chosen for compatibility
with @sc{matlab}.} Once Octave finds a file with a name that matches,
the contents of the file are read. If it defines a @emph{single}
function, it is compiled and executed. @xref{Script Files}, for more
information about how you can define more than one function in a single
file.
When Octave defines a function from a function file, it saves the full
name of the file it read and the time stamp on the file. If the time
stamp on the file changes, Octave may reload the file. When Octave is
running interactively, time stamp checking normally happens at most once
each time Octave prints the prompt. Searching for new function
definitions also occurs if the current working directory changes.
Checking the time stamp allows you to edit the definition of a function
while Octave is running, and automatically use the new function
definition without having to restart your Octave session.
To avoid degrading performance unnecessarily by checking the time stamps
on functions that are not likely to change, Octave assumes that function
files in the directory tree
@file{@var{octave-home}/share/octave/@var{version}/m}
will not change, so it doesn't have to check their time stamps every time the
functions defined in those files are used. This is normally a very good
assumption and provides a significant improvement in performance for the
function files that are distributed with Octave.
If you know that your own function files will not change while you are
running Octave, you can improve performance by calling
@code{ignore_function_time_stamp ("all")}, so that Octave will
ignore the time stamps for all function files. Passing
@qcode{"system"} to this function resets the default behavior.
@c FIXME -- note about time stamps on files in NFS environments?
@c edit scripts/miscellaneous/edit.m
@anchor{XREFedit}
@deftypefn {Command} {} edit @var{name}
@deftypefnx {Command} {} edit @var{field} @var{value}
@deftypefnx {Command} {@var{value} =} edit get @var{field}
Edit the named function, or change editor settings.
If @code{edit} is called with the name of a file or function as
its argument it will be opened in the text editor defined by @code{EDITOR}.
@itemize @bullet
@item
If the function @var{name} is available in a file on your path and
that file is modifiable, then it will be edited in place. If it
is a system function, then it will first be copied to the directory
@env{HOME} (see below) and then edited.
If no file is found, then the m-file
variant, ending with ".m", will be considered. If still no file
is found, then variants with a leading "@@" and then with both a
leading "@@" and trailing ".m" will be considered.
@item
If @var{name} is the name of a function defined in the interpreter but
not in an m-file, then an m-file will be created in @env{HOME}
to contain that function along with its current definition.
@item
If @code{@var{name}.cc} is specified, then it will search for
@code{@var{name}.cc} in the path and try to modify it, otherwise it will
create a new @file{.cc} file in the current directory. If @var{name} happens
to be an m-file or interpreter defined function, then the text of that
function will be inserted into the .cc file as a comment.
@item
If @file{@var{name}.ext} is on your path then it will be edited, otherwise
the editor will be started with @file{@var{name}.ext} in the current
directory as the filename. If @file{@var{name}.ext} is not modifiable,
it will be copied to @env{HOME} before editing.
@strong{Warning:} You may need to clear @var{name} before the new definition
is available. If you are editing a .cc file, you will need
to execute @code{mkoctfile @file{@var{name}.cc}} before the definition
will be available.
@end itemize
If @code{edit} is called with @var{field} and @var{value} variables,
the value of the control field @var{field} will be set to @var{value}.
If an output argument is requested and the first input argument is @code{get}
then @code{edit} will return the value of the control field @var{field}.
If the control field does not exist, edit will return a structure
containing all fields and values. Thus, @code{edit get all} returns
a complete control structure.
The following control fields are used:
@table @samp
@item home
This is the location of user local m-files. Be sure it is in your
path. The default is @file{~/octave}.
@item author
This is the name to put after the "## Author:" field of new functions.
By default it guesses from the @code{gecos} field of the password database.
@item email
This is the e-mail address to list after the name in the author field.
By default it guesses @code{<$LOGNAME@@$HOSTNAME>}, and if @code{$HOSTNAME}
is not defined it uses @code{uname -n}. You probably want to override this.
Be sure to use the format @code{<user@@host>}.
@item license
@table @samp
@item gpl
GNU General Public License (default).
@item bsd
BSD-style license without advertising clause.
@item pd
Public domain.
@item "text"
Your own default copyright and license.
@end table
Unless you specify @samp{pd}, edit will prepend the copyright statement
with "Copyright (C) yyyy Function Author".
@item mode
This value determines whether the editor should be started in async mode
(editor is started in the background and Octave continues) or sync mode
(Octave waits until the editor exits). Set it to @qcode{"sync"} to start
the editor in sync mode. The default is @qcode{"async"}
(@pxref{XREFsystem,,system}).
@item editinplace
Determines whether files should be edited in place, without regard to
whether they are modifiable or not. The default is @code{false}.
@end table
@end deftypefn
@c mfilename libinterp/parse-tree/oct-parse.cc
@anchor{XREFmfilename}
@deftypefn {Built-in Function} {} mfilename ()
@deftypefnx {Built-in Function} {} mfilename ("fullpath")
@deftypefnx {Built-in Function} {} mfilename ("fullpathext")
Return the name of the currently executing file.
When called from outside an m-file return the empty string. Given the
argument @qcode{"fullpath"}, include the directory part of the file name,
but not the extension. Given the argument @qcode{"fullpathext"}, include
the directory part of the file name and the extension.
@end deftypefn
@c ignore_function_time_stamp libinterp/corefcn/symtab.cc
@anchor{XREFignore_function_time_stamp}
@deftypefn {Built-in Function} {@var{val} =} ignore_function_time_stamp ()
@deftypefnx {Built-in Function} {@var{old_val} =} ignore_function_time_stamp (@var{new_val})
Query or set the internal variable that controls whether Octave checks
the time stamp on files each time it looks up functions defined in
function files. If the internal variable is set to @qcode{"system"},
Octave will not automatically recompile function files in subdirectories of
@file{@var{octave-home}/lib/@var{version}} if they have changed since
they were last compiled, but will recompile other function files in the
search path if they change. If set to @qcode{"all"}, Octave will not
recompile any function files unless their definitions are removed with
@code{clear}. If set to @qcode{"none"}, Octave will always check time
stamps on files to determine whether functions defined in function files
need to recompiled.
@end deftypefn
@menu
* Manipulating the Load Path::
* Subfunctions::
* Private Functions::
* Nested Functions::
* Overloading and Autoloading::
* Function Locking::
* Function Precedence::
@end menu
@node Manipulating the Load Path
@subsection Manipulating the Load Path
When a function is called, Octave searches a list of directories for
a file that contains the function declaration. This list of directories
is known as the load path. By default the load path contains
a list of directories distributed with Octave plus the current
working directory. To see your current load path call the @code{path}
function without any input or output arguments.
It is possible to add or remove directories to or from the load path
using @code{addpath} and @code{rmpath}. As an example, the following
code adds @samp{~/Octave} to the load path.
@example
addpath ("~/Octave")
@end example
@noindent
After this the directory @samp{~/Octave} will be searched for functions.
@c addpath libinterp/corefcn/load-path.cc
@anchor{XREFaddpath}
@deftypefn {Built-in Function} {} addpath (@var{dir1}, @dots{})
@deftypefnx {Built-in Function} {} addpath (@var{dir1}, @dots{}, @var{option})
Add named directories to the function search path. If
@var{option} is @qcode{"-begin"} or 0 (the default), prepend the
directory name to the current path. If @var{option} is @qcode{"-end"}
or 1, append the directory name to the current path.
Directories added to the path must exist.
In addition to accepting individual directory arguments, lists of
directory names separated by @code{pathsep} are also accepted. For example:
@example
addpath ("dir1:/dir2:~/dir3")
@end example
@seealso{@ref{XREFpath,,path}, @ref{XREFrmpath,,rmpath}, @ref{XREFgenpath,,genpath}, @ref{XREFpathdef,,pathdef}, @ref{XREFsavepath,,savepath}, @ref{XREFpathsep,,pathsep}}
@end deftypefn
@c genpath libinterp/corefcn/load-path.cc
@anchor{XREFgenpath}
@deftypefn {Built-in Function} {} genpath (@var{dir})
@deftypefnx {Built-in Function} {} genpath (@var{dir}, @var{skip}, @dots{})
Return a path constructed from @var{dir} and all its subdirectories.
If additional string parameters are given, the resulting path will
exclude directories with those names.
@end deftypefn
@c rmpath libinterp/corefcn/load-path.cc
@anchor{XREFrmpath}
@deftypefn {Built-in Function} {} rmpath (@var{dir1}, @dots{})
Remove @var{dir1}, @dots{} from the current function search path.
In addition to accepting individual directory arguments, lists of
directory names separated by @code{pathsep} are also accepted. For example:
@example
rmpath ("dir1:/dir2:~/dir3")
@end example
@seealso{@ref{XREFpath,,path}, @ref{XREFaddpath,,addpath}, @ref{XREFgenpath,,genpath}, @ref{XREFpathdef,,pathdef}, @ref{XREFsavepath,,savepath}, @ref{XREFpathsep,,pathsep}}
@end deftypefn
@c savepath scripts/path/savepath.m
@anchor{XREFsavepath}
@deftypefn {Function File} {} savepath ()
@deftypefnx {Function File} {} savepath (@var{file})
@deftypefnx {Function File} {@var{status} =} savepath (@dots{})
Save the unique portion of the current function search path that is
not set during Octave's initialization process to @var{file}.
If @var{file} is omitted, @file{~/.octaverc} is used. If successful,
@code{savepath} returns 0.
@seealso{@ref{XREFpath,,path}, @ref{XREFaddpath,,addpath}, @ref{XREFrmpath,,rmpath}, @ref{XREFgenpath,,genpath}, @ref{XREFpathdef,,pathdef}}
@end deftypefn
@c path libinterp/corefcn/load-path.cc
@anchor{XREFpath}
@deftypefn {Built-in Function} {} path (@dots{})
Modify or display Octave's load path.
If @var{nargin} and @var{nargout} are zero, display the elements of
Octave's load path in an easy to read format.
If @var{nargin} is zero and nargout is greater than zero, return the
current load path.
If @var{nargin} is greater than zero, concatenate the arguments,
separating them with @code{pathsep}. Set the internal search path
to the result and return it.
No checks are made for duplicate elements.
@seealso{@ref{XREFaddpath,,addpath}, @ref{XREFrmpath,,rmpath}, @ref{XREFgenpath,,genpath}, @ref{XREFpathdef,,pathdef}, @ref{XREFsavepath,,savepath}, @ref{XREFpathsep,,pathsep}}
@end deftypefn
@c pathdef scripts/path/pathdef.m
@anchor{XREFpathdef}
@deftypefn {Function File} {@var{val} =} pathdef ()
Return the default path for Octave.
The path information is extracted from one of three sources.
The possible sources, in order of preference, are:
@enumerate
@item @file{~/.octaverc}
@item @file{<octave-home>/@dots{}/<version>/m/startup/octaverc}
@item Octave's path prior to changes by any octaverc.
@end enumerate
@seealso{@ref{XREFpath,,path}, @ref{XREFaddpath,,addpath}, @ref{XREFrmpath,,rmpath}, @ref{XREFgenpath,,genpath}, @ref{XREFsavepath,,savepath}}
@end deftypefn
@c pathsep libinterp/corefcn/dirfns.cc
@anchor{XREFpathsep}
@deftypefn {Built-in Function} {@var{val} =} pathsep ()
@deftypefnx {Built-in Function} {@var{old_val} =} pathsep (@var{new_val})
Query or set the character used to separate directories in a path.
@seealso{@ref{XREFfilesep,,filesep}}
@end deftypefn
@c rehash libinterp/corefcn/load-path.cc
@anchor{XREFrehash}
@deftypefn {Built-in Function} {} rehash ()
Reinitialize Octave's load path directory cache.
@end deftypefn
@c file_in_loadpath libinterp/corefcn/utils.cc
@anchor{XREFfile_in_loadpath}
@deftypefn {Built-in Function} {} file_in_loadpath (@var{file})
@deftypefnx {Built-in Function} {} file_in_loadpath (@var{file}, "all")
Return the absolute name of @var{file} if it can be found in
the list of directories specified by @code{path}.
If no file is found, return an empty character string.
If the first argument is a cell array of strings, search each
directory of the loadpath for element of the cell array and return
the first that matches.
If the second optional argument @qcode{"all"} is supplied, return
a cell array containing the list of all files that have the same
name in the path. If no files are found, return an empty cell array.
@seealso{@ref{XREFfile_in_path,,file_in_path}, @ref{XREFfind_dir_in_path,,find_dir_in_path}, @ref{XREFpath,,path}}
@end deftypefn
@c restoredefaultpath libinterp/corefcn/load-path.cc
@anchor{XREFrestoredefaultpath}
@deftypefn {Built-in Function} {} restoredefaultpath (@dots{})
Restore Octave's path to its initial state at startup.
@seealso{@ref{XREFpath,,path}, @ref{XREFaddpath,,addpath}, @ref{XREFrmpath,,rmpath}, @ref{XREFgenpath,,genpath}, @ref{XREFpathdef,,pathdef}, @ref{XREFsavepath,,savepath}, @ref{XREFpathsep,,pathsep}}
@end deftypefn
@c command_line_path libinterp/corefcn/load-path.cc
@anchor{XREFcommand_line_path}
@deftypefn {Built-in Function} {} command_line_path (@dots{})
Return the command line path variable.
@seealso{@ref{XREFpath,,path}, @ref{XREFaddpath,,addpath}, @ref{XREFrmpath,,rmpath}, @ref{XREFgenpath,,genpath}, @ref{XREFpathdef,,pathdef}, @ref{XREFsavepath,,savepath}, @ref{XREFpathsep,,pathsep}}
@end deftypefn
@c find_dir_in_path libinterp/corefcn/utils.cc
@anchor{XREFfind_dir_in_path}
@deftypefn {Built-in Function} {} find_dir_in_path (@var{dir})
@deftypefnx {Built-in Function} {} find_dir_in_path (@var{dir}, "all")
Return the full name of the path element matching @var{dir}. The
match is performed at the end of each path element. For example, if
@var{dir} is @qcode{"foo/bar"}, it matches the path element
@nospell{@qcode{"/some/dir/foo/bar"}}, but not
@nospell{@qcode{"/some/dir/foo/bar/baz"}}
@nospell{@qcode{"/some/dir/allfoo/bar"}}.
The second argument is optional. If it is supplied, return a cell array
containing all name matches rather than just the first.
@seealso{@ref{XREFfile_in_path,,file_in_path}, @ref{XREFfile_in_loadpath,,file_in_loadpath}, @ref{XREFpath,,path}}
@end deftypefn
@node Subfunctions
@subsection Subfunctions
A function file may contain secondary functions called
@dfn{subfunctions}. These secondary functions are only visible to the
other functions in the same function file. For example, a file
@file{f.m} containing
@example
@group
function f ()
printf ("in f, calling g\n");
g ()
endfunction
function g ()
printf ("in g, calling h\n");
h ()
endfunction
function h ()
printf ("in h\n")
endfunction
@end group
@end example
@noindent
defines a main function @code{f} and two subfunctions. The
subfunctions @code{g} and @code{h} may only be called from the main
function @code{f} or from the other subfunctions, but not from outside
the file @file{f.m}.
@node Private Functions
@subsection Private Functions
In many cases one function needs to access one or more helper
functions. If the helper function is limited to the scope of a single
function, then subfunctions as discussed above might be used. However,
if a single helper function is used by more than one function, then
this is no longer possible. In this case the helper functions might
be placed in a subdirectory, called "private", of the directory in which
the functions needing access to this helper function are found.
As a simple example, consider a function @code{func1}, that calls a helper
function @code{func2} to do much of the work. For example:
@example
@group
function y = func1 (x)
y = func2 (x);
endfunction
@end group
@end example
@noindent
Then if the path to @code{func1} is @code{<directory>/func1.m}, and if
@code{func2} is found in the directory @code{<directory>/private/func2.m},
then @code{func2} is only available for use of the functions, like
@code{func1}, that are found in @code{<directory>}.
@node Nested Functions
@subsection Nested Functions
Nested functions are similar to subfunctions in that only the main function is
visible outside the file. However, they also allow for child functions to
access the local variables in their parent function. This shared access mimics
using a global variable to share information --- but a global variable which is
not visible to the rest of Octave. As a programming strategy, sharing data
this way can create code which is difficult to maintain. It is recommended to
use subfunctions in place of nested functions when possible.
As a simple example, consider a parent function @code{foo}, that calls a nested
child function @code{bar}, with a shared variable @var{x}.
@example
@group
function y = foo ()
x = 10;
bar ();
y = x;
function bar ()
x = 20;
endfunction
endfunction
foo ()
@result{} 20
@end group
@end example
@noindent
Notice that there is no special syntax for sharing @var{x}. This can lead to
problems with accidental variable sharing between a parent function and its
child. While normally variables are inherited, child function parameters and
return values are local to the child function.
Now consider the function @code{foobar} that uses variables @var{x} and
@var{y}. @code{foobar} calls a nested function @code{foo} which takes
@var{x} as a parameter and returns @var{y}. @code{foo} then calls @code{bat}
which does some computation.
@example
@group
function z = foobar ()
x = 0;
y = 0;
z = foo (5);
z += x + y;
function y = foo (x)
y = x + bat ();
function z = bat ()
z = x;
endfunction
endfunction
endfunction
foobar ()
@result{} 10
@end group
@end example
@noindent
It is important to note that the @var{x} and @var{y} in @code{foobar} remain
zero, as in @code{foo} they are a return value and parameter respectively. The
@var{x} in @code{bat} refers to the @var{x} in @code{foo}.
Variable inheritance leads to a problem for @code{eval} and scripts. If a
new variable is created in a parent function, it is not clear what should happen
in nested child functions. For example, consider a parent function @code{foo}
with a nested child function @code{bar}:
@example
@group
function y = foo (to_eval)
bar ();
eval (to_eval);
function bar ()
eval ("x = 100;");
eval ("y = x;");
endfunction
endfunction
foo ("x = 5;")
@result{} error: can not add variable "x" to a static workspace
foo ("y = 10;")
@result{} 10
foo ("")
@result{} 100
@end group
@end example
@noindent
The parent function @code{foo} is unable to create a new variable
@var{x}, but the child function @code{bar} was successful. Furthermore, even
in an @code{eval} statement @var{y} in @code{bar} is the same @var{y} as in its
parent function @code{foo}. The use of @code{eval} in conjunction with nested
functions is best avoided.
As with subfunctions, only the first nested function in a file may be called
from the outside. Inside a function the rules are more complicated. In
general a nested function may call:
@enumerate 0
@item
Globally visible functions
@item
Any function that the nested function's parent can call
@item
Sibling functions (functions that have the same parents)
@item
Direct children
@end enumerate
As a complex example consider a parent function @code{ex_top} with two
child functions, @code{ex_a} and @code{ex_b}. In addition, @code{ex_a} has two
more child functions, @code{ex_aa} and @code{ex_ab}. For example:
@example
function ex_top ()
## Can call: ex_top, ex_a, and ex_b
## Can NOT call: ex_aa and ex_ab
function ex_a ()
## Call call everything
function ex_aa ()
## Can call everything
endfunction
function ex_ab ()
## Can call everything
endfunction
endfunction
function ex_b ()
## Can call: ex_top, ex_a, and ex_b
## Can NOT call: ex_aa and ex_ab
endfunction
endfunction
@end example
@node Overloading and Autoloading
@subsection Overloading and Autoloading
Functions can be overloaded to work with different input arguments. For
example, the operator '+' has been overloaded in Octave to work with single,
double, uint8, int32, and many other arguments. The preferred way to overload
functions is through classes and object oriented programming
(@pxref{Function Overloading}). Occasionally, however, one needs to undo
user overloading and call the default function associated with a specific
type. The @code{builtin} function exists for this purpose.
@c builtin libinterp/parse-tree/oct-parse.cc
@anchor{XREFbuiltin}
@deftypefn {Built-in Function} {[@dots{}] =} builtin (@var{f}, @dots{})
Call the base function @var{f} even if @var{f} is overloaded to
another function for the given type signature.
This is normally useful when doing object-oriented programming and there
is a requirement to call one of Octave's base functions rather than
the overloaded one of a new class.
A trivial example which redefines the @code{sin} function to be the
@code{cos} function shows how @code{builtin} works.
@example
@group
sin (0)
@result{} 0
function y = sin (x), y = cos (x); endfunction
sin (0)
@result{} 1
builtin ("sin", 0)
@result{} 0
@end group
@end example
@end deftypefn
A single dynamically linked file might define several
functions. However, as Octave searches for functions based on the
functions filename, Octave needs a manner in which to find each of the
functions in the dynamically linked file. On operating systems that
support symbolic links, it is possible to create a symbolic link to the
original file for each of the functions which it contains.
However, there is at least one well known operating system that doesn't
support symbolic links. Making copies of the original file for each of
the functions is undesirable as it increases the
amount of disk space used by Octave. Instead Octave supplies the
@code{autoload} function, that permits the user to define in which
file a certain function will be found.
@c autoload libinterp/parse-tree/oct-parse.cc
@anchor{XREFautoload}
@deftypefn {Built-in Function} {@var{autoload_map} =} autoload ()
@deftypefnx {Built-in Function} {} autoload (@var{function}, @var{file})
@deftypefnx {Built-in Function} {} autoload (@dots{}, "remove")
Define @var{function} to autoload from @var{file}.
The second argument, @var{file}, should be an absolute file name or
a file name in the same directory as the function or script from which
the autoload command was run. @var{file} @emph{should not} depend on the
Octave load path.
Normally, calls to @code{autoload} appear in PKG_ADD script files that
are evaluated when a directory is added to Octave's load path. To
avoid having to hardcode directory names in @var{file}, if @var{file}
is in the same directory as the PKG_ADD script then
@example
autoload ("foo", "bar.oct");
@end example
@noindent
will load the function @code{foo} from the file @code{bar.oct}. The above
usage when @code{bar.oct} is not in the same directory, or usages such as
@example
autoload ("foo", file_in_loadpath ("bar.oct"))
@end example
@noindent
are strongly discouraged, as their behavior may be unpredictable.
With no arguments, return a structure containing the current autoload map.
If a third argument @qcode{"remove"} is given, the function is cleared and
not loaded anymore during the current Octave session.
@seealso{@ref{XREFPKG_ADD,,PKG_ADD}}
@end deftypefn
@node Function Locking
@subsection Function Locking
It is sometime desirable to lock a function into memory with the
@code{mlock} function. This is typically used for dynamically linked
functions in Oct-files or mex-files that contain some initialization,
and it is desirable that calling @code{clear} does not remove this
initialization.
As an example,
@example
@group
function my_function ()
mlock ();
@dots{}
@end group
@end example
@noindent
prevents @code{my_function} from being removed from memory after it is
called, even if @code{clear} is called. It is possible to determine if
a function is locked into memory with the @code{mislocked}, and to unlock
a function with @code{munlock}, which the following illustrates.
@example
@group
my_function ();
mislocked ("my_function")
@result{} ans = 1
munlock ("my_function");
mislocked ("my_function")
@result{} ans = 0
@end group
@end example
A common use of @code{mlock} is to prevent persistent variables from
being removed from memory, as the following example shows:
@example
@group
function count_calls ()
mlock ();
persistent calls = 0;
printf ("'count_calls' has been called %d times\n",
++calls);
endfunction
count_calls ();
@print{} 'count_calls' has been called 1 times
clear count_calls
count_calls ();
@print{} 'count_calls' has been called 2 times
@end group
@end example
@code{mlock} might equally be used to prevent changes to a function from having
effect in Octave, though a similar effect can be had with the
@code{ignore_function_time_stamp} function.
@c mlock libinterp/corefcn/variables.cc
@anchor{XREFmlock}
@deftypefn {Built-in Function} {} mlock ()
Lock the current function into memory so that it can't be cleared.
@seealso{@ref{XREFmunlock,,munlock}, @ref{XREFmislocked,,mislocked}, @ref{XREFpersistent,,persistent}}
@end deftypefn
@c munlock libinterp/corefcn/variables.cc
@anchor{XREFmunlock}
@deftypefn {Built-in Function} {} munlock ()
@deftypefnx {Built-in Function} {} munlock (@var{fcn})
Unlock the named function @var{fcn}. If no function is named
then unlock the current function.
@seealso{@ref{XREFmlock,,mlock}, @ref{XREFmislocked,,mislocked}, @ref{XREFpersistent,,persistent}}
@end deftypefn
@c mislocked libinterp/corefcn/variables.cc
@anchor{XREFmislocked}
@deftypefn {Built-in Function} {} mislocked ()
@deftypefnx {Built-in Function} {} mislocked (@var{fcn})
Return true if the named function @var{fcn} is locked. If no function is
named then return true if the current function is locked.
@seealso{@ref{XREFmlock,,mlock}, @ref{XREFmunlock,,munlock}, @ref{XREFpersistent,,persistent}}
@end deftypefn
@node Function Precedence
@subsection Function Precedence
Given the numerous different ways that Octave can define a function, it
is possible and even likely that multiple versions of a function, might be
defined within a particular scope. The precedence of which function will be
used within a particular scope is given by
@enumerate 1
@item Subfunction
A subfunction with the required function name in the given scope.
@item Private function
A function defined within a private directory of the directory
which contains the current function.
@item Class constructor
A function that constuctors a user class as defined in chapter
@ref{Object Oriented Programming}.
@item Class method
An overloaded function of a class as in chapter
@ref{Object Oriented Programming}.
@item Command-line Function
A function that has been defined on the command-line.
@item Autoload function
A function that is marked as autoloaded with @xref{XREFautoload,,autoload}.
@item A Function on the Path
A function that can be found on the users load-path. There can also be
Oct-file, mex-file or m-file versions of this function and the precedence
between these versions are in that order.
@item Built-in function
A function that is a part of core Octave such as @code{numel}, @code{size},
etc.
@end enumerate
@node Script Files
@section Script Files
A script file is a file containing (almost) any sequence of Octave
commands. It is read and evaluated just as if you had typed each
command at the Octave prompt, and provides a convenient way to perform a
sequence of commands that do not logically belong inside a function.
Unlike a function file, a script file must @emph{not} begin with the
keyword @code{function}. If it does, Octave will assume that it is a
function file, and that it defines a single function that should be
evaluated as soon as it is defined.
A script file also differs from a function file in that the variables
named in a script file are not local variables, but are in the same
scope as the other variables that are visible on the command line.
Even though a script file may not begin with the @code{function}
keyword, it is possible to define more than one function in a single
script file and load (but not execute) all of them at once. To do
this, the first token in the file (ignoring comments and other white
space) must be something other than @code{function}. If you have no
other statements to evaluate, you can use a statement that has no
effect, like this:
@example
@group
# Prevent Octave from thinking that this
# is a function file:
1;
# Define function one:
function one ()
@dots{}
@end group
@end example
To have Octave read and compile these functions into an internal form,
you need to make sure that the file is in Octave's load path
(accessible through the @code{path} function), then simply type the
base name of the file that contains the commands. (Octave uses the
same rules to search for script files as it does to search for
function files.)
If the first token in a file (ignoring comments) is @code{function},
Octave will compile the function and try to execute it, printing a
message warning about any non-whitespace characters that appear after
the function definition.
Note that Octave does not try to look up the definition of any identifier
until it needs to evaluate it. This means that Octave will compile the
following statements if they appear in a script file, or are typed at
the command line,
@example
@group
# not a function file:
1;
function foo ()
do_something ();
endfunction
function do_something ()
do_something_else ();
endfunction
@end group
@end example
@noindent
even though the function @code{do_something} is not defined before it is
referenced in the function @code{foo}. This is not an error because
Octave does not need to resolve all symbols that are referenced by a
function until the function is actually evaluated.
Since Octave doesn't look for definitions until they are needed, the
following code will always print @samp{bar = 3} whether it is typed
directly on the command line, read from a script file, or is part of a
function body, even if there is a function or script file called
@file{bar.m} in Octave's path.
@example
@group
eval ("bar = 3");
bar
@end group
@end example
Code like this appearing within a function body could fool Octave if
definitions were resolved as the function was being compiled. It would
be virtually impossible to make Octave clever enough to evaluate this
code in a consistent fashion. The parser would have to be able to
perform the call to @code{eval} at compile time, and that would be
impossible unless all the references in the string to be evaluated could
also be resolved, and requiring that would be too restrictive (the
string might come from user input, or depend on things that are not
known until the function is evaluated).
Although Octave normally executes commands from script files that have
the name @file{@var{file}.m}, you can use the function @code{source} to
execute commands from any file.
@c source libinterp/parse-tree/oct-parse.cc
@anchor{XREFsource}
@deftypefn {Built-in Function} {} source (@var{file})
Parse and execute the contents of @var{file}.
This is equivalent to executing commands from a script file, but without
requiring the file to be named @file{@var{file}.m}.
@seealso{@ref{XREFrun,,run}}
@end deftypefn
@node Function Handles Anonymous Functions Inline Functions
@section Function Handles, Anonymous Functions, Inline Functions
@cindex handle, function handles
@cindex anonymous functions
@cindex inline, inline functions
It can be very convenient store a function in a variable so that it
can be passed to a different function. For example, a function that
performs numerical minimization needs access to the function that
should be minimized.
@menu
* Function Handles::
* Anonymous Functions::
* Inline Functions::
@end menu
@node Function Handles
@subsection Function Handles
A function handle is a pointer to another function and is defined with
the syntax
@example
@@@var{function-name}
@end example
@noindent
For example,
@example
f = @@sin;
@end example
@noindent
creates a function handle called @code{f} that refers to the
function @code{sin}.
Function handles are used to call other functions indirectly, or to pass
a function as an argument to another function like @code{quad} or
@code{fsolve}. For example:
@example
@group
f = @@sin;
quad (f, 0, pi)
@result{} 2
@end group
@end example
You may use @code{feval} to call a function using function handle, or
simply write the name of the function handle followed by an argument
list. If there are no arguments, you must use an empty argument list
@samp{()}. For example:
@example
@group
f = @@sin;
feval (f, pi/4)
@result{} 0.70711
f (pi/4)
@result{} 0.70711
@end group
@end example
@c is_function_handle libinterp/octave-value/ov-fcn-handle.cc
@anchor{XREFis_function_handle}
@deftypefn {Built-in Function} {} is_function_handle (@var{x})
Return true if @var{x} is a function handle.
@seealso{@ref{XREFisa,,isa}, @ref{XREFtypeinfo,,typeinfo}, @ref{XREFclass,,class}, @ref{XREFfunctions,,functions}}
@end deftypefn
@c functions libinterp/octave-value/ov-fcn-handle.cc
@anchor{XREFfunctions}
@deftypefn {Built-in Function} {@var{s} =} functions (@var{fcn_handle})
Return a structure containing information about the function handle
@var{fcn_handle}.
The structure @var{s} always contains these 3 fields:
@table @asis
@item function
The function name. For an anonymous function (no name) this will be the
actual function definition.
@item type
Type of the function.
@table @asis
@item anonymous
The function is anonymous.
@item private
The function is private.
@item overloaded
The function overloads an existing function.
@item simple
The function is a built-in or m-file function.
@item subfunction
The function is a subfunction within an m-file.
@end table
@item file
The m-file that will be called to perform the function. This field is empty
for anonymous and built-in functions.
@end table
In addition, some function types may return more information in additional
fields.
@strong{Warning:} @code{functions} is provided for debugging purposes only.
It's behavior may change in the future and programs should not depend on a
particular output.
@end deftypefn
@c func2str libinterp/octave-value/ov-fcn-handle.cc
@anchor{XREFfunc2str}
@deftypefn {Built-in Function} {} func2str (@var{fcn_handle})
Return a string containing the name of the function referenced by
the function handle @var{fcn_handle}.
@seealso{@ref{XREFstr2func,,str2func}, @ref{XREFfunctions,,functions}}
@end deftypefn
@c str2func libinterp/octave-value/ov-fcn-handle.cc
@anchor{XREFstr2func}
@deftypefn {Built-in Function} {} str2func (@var{fcn_name})
@deftypefnx {Built-in Function} {} str2func (@var{fcn_name}, "global")
Return a function handle constructed from the string @var{fcn_name}.
If the optional @qcode{"global"} argument is passed, locally visible
functions are ignored in the lookup.
@seealso{@ref{XREFfunc2str,,func2str}, @ref{XREFinline,,inline}}
@end deftypefn
@node Anonymous Functions
@subsection Anonymous Functions
Anonymous functions are defined using the syntax
@example
@@(@var{argument-list}) @var{expression}
@end example
@noindent
Any variables that are not found in the argument list are inherited from
the enclosing scope. Anonymous functions are useful for creating simple
unnamed functions from expressions or for wrapping calls to other
functions to adapt them for use by functions like @code{quad}. For
example,
@example
@group
f = @@(x) x.^2;
quad (f, 0, 10)
@result{} 333.33
@end group
@end example
@noindent
creates a simple unnamed function from the expression @code{x.^2} and
passes it to @code{quad},
@example
@group
quad (@@(x) sin (x), 0, pi)
@result{} 2
@end group
@end example
@noindent
wraps another function, and
@example
@group
a = 1;
b = 2;
quad (@@(x) betainc (x, a, b), 0, 0.4)
@result{} 0.13867
@end group
@end example
@noindent
adapts a function with several parameters to the form required by
@code{quad}. In this example, the values of @var{a} and @var{b} that
are passed to @code{betainc} are inherited from the current
environment.
@node Inline Functions
@subsection Inline Functions
An inline function is created from a string containing the function
body using the @code{inline} function. The following code defines the
function @math{f(x) = x^2 + 2}.
@example
f = inline ("x^2 + 2");
@end example
@noindent
After this it is possible to evaluate @math{f} at any @math{x} by
writing @code{f(x)}.
@c inline libinterp/octave-value/ov-fcn-inline.cc
@anchor{XREFinline}
@deftypefn {Built-in Function} {} inline (@var{str})
@deftypefnx {Built-in Function} {} inline (@var{str}, @var{arg1}, @dots{})
@deftypefnx {Built-in Function} {} inline (@var{str}, @var{n})
Create an inline function from the character string @var{str}.
If called with a single argument, the arguments of the generated
function are extracted from the function itself. The generated
function arguments will then be in alphabetical order. It should
be noted that i, and j are ignored as arguments due to the
ambiguity between their use as a variable or their use as an inbuilt
constant. All arguments followed by a parenthesis are considered
to be functions. If no arguments are found, a function taking a single
argument named @code{x} will be created.
If the second and subsequent arguments are character strings,
they are the names of the arguments of the function.
If the second argument is an integer @var{n}, the arguments are
@qcode{"x"}, @qcode{"P1"}, @dots{}, @qcode{"P@var{N}"}.
Programming Note: The use of @code{inline} is discouraged and it may be
removed from a future version of Octave. The preferred way to create
functions from strings is through the use of anonymous functions
(@pxref{Anonymous Functions}) or @code{str2func}.
@seealso{@ref{XREFargnames,,argnames}, @ref{XREFformula,,formula}, @ref{XREFvectorize,,vectorize}, @ref{XREFstr2func,,str2func}}
@end deftypefn
@c argnames libinterp/octave-value/ov-fcn-inline.cc
@anchor{XREFargnames}
@deftypefn {Built-in Function} {} argnames (@var{fun})
Return a cell array of character strings containing the names of
the arguments of the inline function @var{fun}.
@seealso{@ref{XREFinline,,inline}, @ref{XREFformula,,formula}, @ref{XREFvectorize,,vectorize}}
@end deftypefn
@c formula libinterp/octave-value/ov-fcn-inline.cc
@anchor{XREFformula}
@deftypefn {Built-in Function} {} formula (@var{fun})
Return a character string representing the inline function @var{fun}.
Note that @code{char (@var{fun})} is equivalent to
@code{formula (@var{fun})}.
@seealso{@ref{XREFargnames,,argnames}, @ref{XREFinline,,inline}, @ref{XREFvectorize,,vectorize}}
@end deftypefn
@c symvar scripts/miscellaneous/symvar.m
@anchor{XREFsymvar}
@deftypefn {Function File} {} symvar (@var{s})
Identify the argument names in the function defined by a string.
Common constant names such as @code{pi}, @code{NaN}, @code{Inf},
@code{eps}, @code{i} or @code{j} are ignored. The arguments that are
found are returned in a cell array of strings. If no variables are
found then the returned cell array is empty.
@end deftypefn
@node Commands
@section Commands
Commands are a special class of functions that only accept string
input arguments. A command can be called as an ordinary function, but
it can also be called without the parentheses. For example,
@example
my_command hello world
@end example
@noindent
is equivalent to
@example
my_command ("hello", "world")
@end example
@noindent
The general form of a command call is
@example
@var{cmdname} @var{arg1} @var{arg2} @dots{}
@end example
@noindent
which translates directly to
@example
@var{cmdname} ("@var{arg1}", "@var{arg2}", @dots{})
@end example
Any regular function can be used as a command if it accepts string input
arguments. For example:
@example
@group
toupper lower_case_arg
@result{} ans = LOWER_CASE_ARG
@end group
@end example
One difficulty of commands occurs when one of the string input arguments
is stored in a variable. Because Octave can't tell the difference between
a variable name and an ordinary string, it is not possible to pass a
variable as input to a command. In such a situation a command must be
called as a function. For example:
@example
@group
strvar = "hello world";
toupper strvar
@result{} ans = STRVAR
toupper (strvar)
@result{} ans = HELLO WORLD
@end group
@end example
@node Organization of Functions
@section Organization of Functions Distributed with Octave
Many of Octave's standard functions are distributed as function files.
They are loosely organized by topic, in subdirectories of
@file{@var{octave-home}/lib/octave/@var{version}/m}, to make it easier
to find them.
The following is a list of all the function file subdirectories, and the
types of functions you will find there.
@table @file
@item audio
Functions for playing and recording sounds.
@item deprecated
Out-of-date functions which will eventually be removed from Octave.
@item elfun
Elementary functions, principally trigonometric.
@item @@ftp
Class functions for the FTP object.
@item general
Miscellaneous matrix manipulations, like @code{flipud}, @code{rot90},
and @code{triu}, as well as other basic functions, like
@code{ismatrix}, @code{nargchk}, etc.
@item geometry
Functions related to Delaunay triangulation.
@item help
Functions for Octave's built-in help system.
@item image
Image processing tools. These functions require the X Window System.
@item io
Input-output functions.
@item linear-algebra
Functions for linear algebra.
@item miscellaneous
Functions that don't really belong anywhere else.
@item optimization
Functions related to minimization, optimization, and root finding.
@item path
Functions to manage the directory path Octave uses to find functions.
@item pkg
Package manager for installing external packages of functions in Octave.
@item plot
Functions for displaying and printing two- and three-dimensional graphs.
@item polynomial
Functions for manipulating polynomials.
@item prefs
Functions implementing user-defined preferences.
@item set
Functions for creating and manipulating sets of unique values.
@item signal
Functions for signal processing applications.
@item sparse
Functions for handling sparse matrices.
@item specfun
Special functions such as @code{bessel} or @code{factor}.
@item special-matrix
Functions that create special matrix forms such as Hilbert or Vandermonde
matrices.
@item startup
Octave's system-wide startup file.
@item statistics
Statistical functions.
@item strings
Miscellaneous string-handling functions.
@item testfun
Functions for performing unit tests on other functions.
@item time
Functions related to time and date processing.
@end table
|