1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 2007-2013 John W. Eaton and David Bateman
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
@c for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <http://www.gnu.org/licenses/>.
@node Geometry
@chapter Geometry
Much of the geometry code in Octave is based on the Qhull
library@footnote{Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T.,
@cite{The Quickhull Algorithm for Convex Hulls}, ACM Trans. on Mathematical
Software, 22(4):469--483, Dec 1996, @url{http://www.qhull.org}}.
Some of the documentation for Qhull, particularly for the options that
can be passed to @code{delaunay}, @code{voronoi} and @code{convhull},
etc., is relevant to Octave users.
@menu
* Delaunay Triangulation::
* Voronoi Diagrams::
* Convex Hull::
* Interpolation on Scattered Data::
@end menu
@node Delaunay Triangulation
@section Delaunay Triangulation
The Delaunay triangulation is constructed from a set of
circum-circles. These circum-circles are chosen so that there are at
least three of the points in the set to triangulation on the
circumference of the circum-circle. None of the points in the set of
points falls within any of the circum-circles.
In general there are only three points on the circumference of any
circum-circle. However, in some cases, and in particular for the
case of a regular grid, 4 or more points can be on a single
circum-circle. In this case the Delaunay triangulation is not unique.
@c delaunay scripts/geometry/delaunay.m
@anchor{XREFdelaunay}
@deftypefn {Function File} {} delaunay (@var{x}, @var{y})
@deftypefnx {Function File} {} delaunay (@var{x})
@deftypefnx {Function File} {} delaunay (@dots{}, @var{options})
@deftypefnx {Function File} {@var{tri} =} delaunay (@dots{})
Compute the Delaunay triangulation for a 2-D set of points.
The return value @var{tri} is a set of triangles which satisfies the
Delaunay circum-circle criterion, i.e., only a single data point from
[@var{x}, @var{y}] is within the circum-circle of the defining triangle.
The input @var{x} may also be a matrix with two columns where the first
column contains x-data and the second y-data.
The set of triangles @var{tri} is a matrix of size [n, 3]. Each
row defines a triangle and the three columns are the three vertices
of the triangle. The value of @code{@var{tri}(i,j)} is an index into
@var{x} and @var{y} for the location of the j-th vertex of the i-th
triangle.
The optional last argument, which must be a string or cell array of strings,
contains options passed to the underlying qhull command.
See the documentation for the Qhull library for details
@url{http://www.qhull.org/html/qh-quick.htm#options}.
The default options are @code{@{"Qt", "Qbb", "Qc", "Qz"@}}.
If @var{options} is not present or @code{[]} then the default arguments are
used. Otherwise, @var{options} replaces the default argument list.
To append user options to the defaults it is necessary to repeat the
default arguments in @var{options}. Use a null string to pass no arguments.
If no output argument is specified the resulting Delaunay triangulation
is plotted along with the original set of points.
@example
@group
x = rand (1, 10);
y = rand (1, 10);
T = delaunay (x, y);
VX = [ x(T(:,1)); x(T(:,2)); x(T(:,3)); x(T(:,1)) ];
VY = [ y(T(:,1)); y(T(:,2)); y(T(:,3)); y(T(:,1)) ];
axis ([0,1,0,1]);
plot (VX, VY, "b", x, y, "r*");
@end group
@end example
@seealso{@ref{XREFdelaunay3,,delaunay3}, @ref{XREFdelaunayn,,delaunayn}, @ref{XREFconvhull,,convhull}, @ref{XREFvoronoi,,voronoi}, @ref{XREFtriplot,,triplot}, @ref{XREFtrimesh,,trimesh}, @ref{XREFtrisurf,,trisurf}}
@end deftypefn
The 3- and N-dimensional extension of the Delaunay triangulation are
given by @code{delaunay3} and @code{delaunayn} respectively.
@code{delaunay3} returns a set of tetrahedra that satisfy the
Delaunay circum-circle criteria. Similarly, @code{delaunayn} returns the
N-dimensional simplex satisfying the Delaunay circum-circle criteria.
The N-dimensional extension of a triangulation is called a tessellation.
@c delaunay3 scripts/geometry/delaunay3.m
@anchor{XREFdelaunay3}
@deftypefn {Function File} {@var{tetr} =} delaunay3 (@var{x}, @var{y}, @var{z})
@deftypefnx {Function File} {@var{tetr} =} delaunay3 (@var{x}, @var{y}, @var{z}, @var{options})
Compute the Delaunay triangulation for a 3-D set of points.
The return value @var{tetr} is a set of tetrahedrons which satisfies the
Delaunay circum-circle criterion, i.e., only a single data point from
[@var{x}, @var{y}, @var{z}] is within the circum-circle of the defining
tetrahedron.
The set of tetrahedrons @var{tetr} is a matrix of size [n, 4]. Each
row defines a tetrahedron and the four columns are the four vertices
of the tetrahedron. The value of @code{@var{tetr}(i,j)} is an index into
@var{x}, @var{y}, @var{z} for the location of the j-th vertex of the i-th
tetrahedron.
An optional fourth argument, which must be a string or cell array of strings,
contains options passed to the underlying qhull command.
See the documentation for the Qhull library for details
@url{http://www.qhull.org/html/qh-quick.htm#options}.
The default options are @code{@{"Qt", "Qbb", "Qc", "Qz"@}}.
If @var{options} is not present or @code{[]} then the default arguments are
used. Otherwise, @var{options} replaces the default argument list.
To append user options to the defaults it is necessary to repeat the
default arguments in @var{options}. Use a null string to pass no arguments.
@seealso{@ref{XREFdelaunay,,delaunay}, @ref{XREFdelaunayn,,delaunayn}, @ref{XREFconvhull,,convhull}, @ref{XREFvoronoi,,voronoi}, @ref{XREFtetramesh,,tetramesh}}
@end deftypefn
@c delaunayn scripts/geometry/delaunayn.m
@anchor{XREFdelaunayn}
@deftypefn {Function File} {@var{T} =} delaunayn (@var{pts})
@deftypefnx {Function File} {@var{T} =} delaunayn (@var{pts}, @var{options})
Compute the Delaunay triangulation for an N-dimensional set of points.
The Delaunay triangulation is a tessellation of the convex hull of a set
of points such that no N-sphere defined by the N-triangles contains
any other points from the set.
The input matrix @var{pts} of size [n, dim] contains n points in a space of
dimension dim. The return matrix @var{T} has size [m, dim+1]. Each row
of @var{T} contains a set of indices back into the original set of points
@var{pts} which describes a simplex of dimension dim. For example, a 2-D
simplex is a triangle and 3-D simplex is a tetrahedron.
An optional second argument, which must be a string or cell array of strings,
contains options passed to the underlying qhull command.
See the documentation for the Qhull library for details
@url{http://www.qhull.org/html/qh-quick.htm#options}.
The default options depend on the dimension of the input:
@itemize
@item 2-D and 3-D: @var{options} = @code{@{"Qt", "Qbb", "Qc", "Qz"@}}
@item 4-D and higher: @var{options} = @code{@{"Qt", "Qbb", "Qc", "Qx"@}}
@end itemize
If @var{options} is not present or @code{[]} then the default arguments are
used. Otherwise, @var{options} replaces the default argument list.
To append user options to the defaults it is necessary to repeat the
default arguments in @var{options}. Use a null string to pass no arguments.
@seealso{@ref{XREFdelaunay,,delaunay}, @ref{XREFdelaunay3,,delaunay3}, @ref{XREFconvhulln,,convhulln}, @ref{XREFvoronoin,,voronoin}, @ref{XREFtrimesh,,trimesh}, @ref{XREFtetramesh,,tetramesh}}
@end deftypefn
An example of a Delaunay triangulation of a set of points is
@example
@group
rand ("state", 2);
x = rand (10, 1);
y = rand (10, 1);
T = delaunay (x, y);
X = [ x(T(:,1)); x(T(:,2)); x(T(:,3)); x(T(:,1)) ];
Y = [ y(T(:,1)); y(T(:,2)); y(T(:,3)); y(T(:,1)) ];
axis ([0, 1, 0, 1]);
plot (X, Y, "b", x, y, "r*");
@end group
@end example
@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:delaunay}.
@float Figure,fig:delaunay
@center @image{delaunay,4in}
@caption{Delaunay triangulation of a random set of points}
@end float
@end ifnotinfo
@menu
* Plotting the Triangulation::
* Identifying Points in Triangulation::
@end menu
@node Plotting the Triangulation
@subsection Plotting the Triangulation
Octave has the functions @code{triplot}, @code{trimesh}, and @code{trisurf}
to plot the Delaunay triangulation of a 2-dimensional set of points.
@code{tetramesh} will plot the triangulation of a 3-dimensional set of points.
@c triplot scripts/plot/draw/triplot.m
@anchor{XREFtriplot}
@deftypefn {Function File} {} triplot (@var{tri}, @var{x}, @var{y})
@deftypefnx {Function File} {} triplot (@var{tri}, @var{x}, @var{y}, @var{linespec})
@deftypefnx {Function File} {@var{h} =} triplot (@dots{})
Plot a 2-D triangular mesh.
@var{tri} is typically the output of a Delaunay triangulation over the
grid of @var{x}, @var{y}. Every row of @var{tri} represents one triangle
and contains three indices into [@var{x}, @var{y}] which are the
vertices of the triangles in the x-y plane.
The linestyle to use for the plot can be defined with the argument
@var{linespec} of the same format as the @code{plot} command.
The optional return value @var{h} is a graphics handle to the created
patch object.
@seealso{@ref{XREFplot,,plot}, @ref{XREFtrimesh,,trimesh}, @ref{XREFtrisurf,,trisurf}, @ref{XREFdelaunay,,delaunay}}
@end deftypefn
@c trimesh scripts/plot/draw/trimesh.m
@anchor{XREFtrimesh}
@deftypefn {Function File} {} trimesh (@var{tri}, @var{x}, @var{y}, @var{z}, @var{c})
@deftypefnx {Function File} {} trimesh (@var{tri}, @var{x}, @var{y}, @var{z})
@deftypefnx {Function File} {} trimesh (@var{tri}, @var{x}, @var{y})
@deftypefnx {Function File} {} trimesh (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {Function File} {@var{h} =} trimesh (@dots{})
Plot a 3-D triangular wireframe mesh.
In contrast to @code{mesh}, which plots a mesh using rectangles,
@code{trimesh} plots the mesh using triangles.
@var{tri} is typically the output of a Delaunay triangulation over the
grid of @var{x}, @var{y}. Every row of @var{tri} represents one triangle
and contains three indices into [@var{x}, @var{y}] which are the
vertices of the triangles in the x-y plane. @var{z} determines the
height above the plane of each vertex. If no @var{z} input is given then
the triangles are plotted as a 2-D figure.
The color of the trimesh is computed by linearly scaling the @var{z} values
to fit the range of the current colormap. Use @code{caxis} and/or
change the colormap to control the appearance.
Optionally, the color of the mesh can be specified independently of @var{z}
by supplying a color matrix, @var{c}. If @var{z} has N elements, then
@var{c} should be an Nx1 vector for colormap data or an Nx3 matrix for
RGB data.
Any property/value pairs are passed directly to the underlying patch object.
The optional return value @var{h} is a graphics handle to the created patch
object.
@seealso{@ref{XREFmesh,,mesh}, @ref{XREFtetramesh,,tetramesh}, @ref{XREFtriplot,,triplot}, @ref{XREFtrisurf,,trisurf}, @ref{XREFdelaunay,,delaunay}, @ref{XREFpatch,,patch}, @ref{XREFhidden,,hidden}}
@end deftypefn
@c trisurf scripts/plot/draw/trisurf.m
@anchor{XREFtrisurf}
@deftypefn {Function File} {} trisurf (@var{tri}, @var{x}, @var{y}, @var{z}, @var{c})
@deftypefnx {Function File} {} trisurf (@var{tri}, @var{x}, @var{y}, @var{z})
@deftypefnx {Function File} {} trisurf (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {Function File} {@var{h} =} trisurf (@dots{})
Plot a 3-D triangular surface.
In contrast to @code{surf}, which plots a surface mesh using rectangles,
@code{trisurf} plots the mesh using triangles.
@var{tri} is typically the output of a Delaunay triangulation over the
grid of @var{x}, @var{y}. Every row of @var{tri} represents one triangle
and contains three indices into [@var{x}, @var{y}] which are the
vertices of the triangles in the x-y plane. @var{z} determines the
height above the plane of each vertex.
The color of the trimesh is computed by linearly scaling the @var{z} values
to fit the range of the current colormap. Use @code{caxis} and/or
change the colormap to control the appearance.
Optionally, the color of the mesh can be specified independently of @var{z}
by supplying a color matrix, @var{c}. If @var{z} has N elements, then
@var{c} should be an Nx1 vector for colormap data or an Nx3 matrix for
RGB data.
Any property/value pairs are passed directly to the underlying patch object.
The optional return value @var{h} is a graphics handle to the created patch
object.
@seealso{@ref{XREFsurf,,surf}, @ref{XREFtriplot,,triplot}, @ref{XREFtrimesh,,trimesh}, @ref{XREFdelaunay,,delaunay}, @ref{XREFpatch,,patch}, @ref{XREFshading,,shading}}
@end deftypefn
@c tetramesh scripts/plot/draw/tetramesh.m
@anchor{XREFtetramesh}
@deftypefn {Function File} {} tetramesh (@var{T}, @var{X})
@deftypefnx {Function File} {} tetramesh (@var{T}, @var{X}, @var{C})
@deftypefnx {Function File} {} tetramesh (@dots{}, @var{property}, @var{val}, @dots{})
@deftypefnx {Function File} {@var{h} =} tetramesh (@dots{})
Display the tetrahedrons defined in the m-by-4 matrix @var{T} as 3-D patches.
@var{T} is typically the output of a Delaunay triangulation
of a 3-D set of points. Every row of @var{T} contains four indices into
the n-by-3 matrix @var{X} of the vertices of a tetrahedron. Every row in
@var{X} represents one point in 3-D space.
The vector @var{C} specifies the color of each tetrahedron as an index
into the current colormap. The default value is 1:m where m is the number
of tetrahedrons; the indices are scaled to map to the full range of the
colormap. If there are more tetrahedrons than colors in the colormap then
the values in @var{C} are cyclically repeated.
Calling @code{tetramesh (@dots{}, "property", "value", @dots{})} passes all
property/value pairs directly to the patch function as additional arguments.
The optional return value @var{h} is a vector of patch handles where each
handle represents one tetrahedron in the order given by @var{T}.
A typical use case for @var{h} is to turn the respective patch
@qcode{"visible"} property @qcode{"on"} or @qcode{"off"}.
Type @code{demo tetramesh} to see examples on using @code{tetramesh}.
@seealso{@ref{XREFtrimesh,,trimesh}, @ref{XREFdelaunay3,,delaunay3}, @ref{XREFdelaunayn,,delaunayn}, @ref{XREFpatch,,patch}}
@end deftypefn
The difference between @code{triplot}, and @code{trimesh} or @code{triplot},
is that the former only plots the 2-dimensional triangulation itself, whereas
the second two plot the value of a function @code{f (@var{x}, @var{y})}. An
example of the use of the @code{triplot} function is
@example
@group
rand ("state", 2)
x = rand (20, 1);
y = rand (20, 1);
tri = delaunay (x, y);
triplot (tri, x, y);
@end group
@end example
@noindent
which plots the Delaunay triangulation of a set of random points in
2-dimensions.
@ifnotinfo
The output of the above can be seen in @ref{fig:triplot}.
@float Figure,fig:triplot
@center @image{triplot,4in}
@caption{Delaunay triangulation of a random set of points}
@end float
@end ifnotinfo
@node Identifying Points in Triangulation
@subsection Identifying Points in Triangulation
It is often necessary to identify whether a particular point in the
N-dimensional space is within the Delaunay tessellation of a set of
points in this N-dimensional space, and if so which N-simplex contains
the point and which point in the tessellation is closest to the desired
point. The functions @code{tsearch} and @code{dsearch} perform this
function in a triangulation, and @code{tsearchn} and @code{dsearchn} in
an N-dimensional tessellation.
To identify whether a particular point represented by a vector @var{p}
falls within one of the simplices of an N-simplex, we can write the
Cartesian coordinates of the point in a parametric form with respect to
the N-simplex. This parametric form is called the Barycentric
Coordinates of the point. If the points defining the N-simplex are given
by @code{@var{N} + 1} vectors @var{t}(@var{i},:), then the Barycentric
coordinates defining the point @var{p} are given by
@example
@var{p} = sum (@var{beta}(1:@var{N}+1) * @var{t}(1:@var{N}+1),:)
@end example
@noindent
where there are @code{@var{N} + 1} values @code{@var{beta}(@var{i})}
that together as a vector represent the Barycentric coordinates of the
point @var{p}. To ensure a unique solution for the values of
@code{@var{beta}(@var{i})} an additional criteria of
@example
sum (@var{beta}(1:@var{N}+1)) == 1
@end example
@noindent
is imposed, and we can therefore write the above as
@example
@group
@var{p} - @var{t}(end, :) = @var{beta}(1:end-1) * (@var{t}(1:end-1, :)
- ones (@var{N}, 1) * @var{t}(end, :)
@end group
@end example
@noindent
Solving for @var{beta} we can then write
@example
@group
@var{beta}(1:end-1) = (@var{p} - @var{t}(end, :)) / (@var{t}(1:end-1, :)
- ones (@var{N}, 1) * @var{t}(end, :))
@var{beta}(end) = sum (@var{beta}(1:end-1))
@end group
@end example
@noindent
which gives the formula for the conversion of the Cartesian coordinates
of the point @var{p} to the Barycentric coordinates @var{beta}. An
important property of the Barycentric coordinates is that for all points
in the N-simplex
@example
0 <= @var{beta}(@var{i}) <= 1
@end example
@noindent
Therefore, the test in @code{tsearch} and @code{tsearchn} essentially
only needs to express each point in terms of the Barycentric coordinates
of each of the simplices of the N-simplex and test the values of
@var{beta}. This is exactly the implementation used in
@code{tsearchn}. @code{tsearch} is optimized for 2-dimensions and the
Barycentric coordinates are not explicitly formed.
@c tsearch libinterp/dldfcn/tsearch.cc
@anchor{XREFtsearch}
@deftypefn {Loadable Function} {@var{idx} =} tsearch (@var{x}, @var{y}, @var{t}, @var{xi}, @var{yi})
Search for the enclosing Delaunay convex hull. For @code{@var{t} =
delaunay (@var{x}, @var{y})}, finds the index in @var{t} containing the
points @code{(@var{xi}, @var{yi})}. For points outside the convex hull,
@var{idx} is NaN.
@seealso{@ref{XREFdelaunay,,delaunay}, @ref{XREFdelaunayn,,delaunayn}}
@end deftypefn
@c tsearchn scripts/geometry/tsearchn.m
@anchor{XREFtsearchn}
@deftypefn {Function File} {[@var{idx}, @var{p}] =} tsearchn (@var{x}, @var{t}, @var{xi})
Search for the enclosing Delaunay convex hull. For @code{@var{t} =
delaunayn (@var{x})}, finds the index in @var{t} containing the
points @var{xi}. For points outside the convex hull, @var{idx} is NaN.
If requested @code{tsearchn} also returns the Barycentric coordinates @var{p}
of the enclosing triangles.
@seealso{@ref{XREFdelaunay,,delaunay}, @ref{XREFdelaunayn,,delaunayn}}
@end deftypefn
An example of the use of @code{tsearch} can be seen with the simple
triangulation
@example
@group
@var{x} = [-1; -1; 1; 1];
@var{y} = [-1; 1; -1; 1];
@var{tri} = [1, 2, 3; 2, 3, 1];
@end group
@end example
@noindent
consisting of two triangles defined by @var{tri}. We can then identify
which triangle a point falls in like
@example
@group
tsearch (@var{x}, @var{y}, @var{tri}, -0.5, -0.5)
@result{} 1
tsearch (@var{x}, @var{y}, @var{tri}, 0.5, 0.5)
@result{} 2
@end group
@end example
@noindent
and we can confirm that a point doesn't lie within one of the triangles like
@example
@group
tsearch (@var{x}, @var{y}, @var{tri}, 2, 2)
@result{} NaN
@end group
@end example
The @code{dsearch} and @code{dsearchn} find the closest point in a
tessellation to the desired point. The desired point does not
necessarily have to be in the tessellation, and even if it the returned
point of the tessellation does not have to be one of the vertexes of the
N-simplex within which the desired point is found.
@c dsearch scripts/geometry/dsearch.m
@anchor{XREFdsearch}
@deftypefn {Function File} {@var{idx} =} dsearch (@var{x}, @var{y}, @var{tri}, @var{xi}, @var{yi})
@deftypefnx {Function File} {@var{idx} =} dsearch (@var{x}, @var{y}, @var{tri}, @var{xi}, @var{yi}, @var{s})
Return the index @var{idx} or the closest point in @code{@var{x}, @var{y}}
to the elements @code{[@var{xi}(:), @var{yi}(:)]}. The variable @var{s} is
accepted for compatibility but is ignored.
@seealso{@ref{XREFdsearchn,,dsearchn}, @ref{XREFtsearch,,tsearch}}
@end deftypefn
@c dsearchn scripts/geometry/dsearchn.m
@anchor{XREFdsearchn}
@deftypefn {Function File} {@var{idx} =} dsearchn (@var{x}, @var{tri}, @var{xi})
@deftypefnx {Function File} {@var{idx} =} dsearchn (@var{x}, @var{tri}, @var{xi}, @var{outval})
@deftypefnx {Function File} {@var{idx} =} dsearchn (@var{x}, @var{xi})
@deftypefnx {Function File} {[@var{idx}, @var{d}] =} dsearchn (@dots{})
Return the index @var{idx} or the closest point in @var{x} to the elements
@var{xi}. If @var{outval} is supplied, then the values of @var{xi} that are
not contained within one of the simplices @var{tri} are set to
@var{outval}. Generally, @var{tri} is returned from @code{delaunayn
(@var{x})}.
@seealso{@ref{XREFdsearch,,dsearch}, @ref{XREFtsearch,,tsearch}}
@end deftypefn
An example of the use of @code{dsearch}, using the above values of
@var{x}, @var{y} and @var{tri} is
@example
@group
dsearch (@var{x}, @var{y}, @var{tri}, -2, -2)
@result{} 1
@end group
@end example
If you wish the points that are outside the tessellation to be flagged,
then @code{dsearchn} can be used as
@example
@group
dsearchn ([@var{x}, @var{y}], @var{tri}, [-2, -2], NaN)
@result{} NaN
dsearchn ([@var{x}, @var{y}], @var{tri}, [-0.5, -0.5], NaN)
@result{} 1
@end group
@end example
@noindent
where the point outside the tessellation are then flagged with @code{NaN}.
@node Voronoi Diagrams
@section Voronoi Diagrams
A Voronoi diagram or Voronoi tessellation of a set of points @var{s} in
an N-dimensional space, is the tessellation of the N-dimensional space
such that all points in @code{@var{v}(@var{p})}, a partitions of the
tessellation where @var{p} is a member of @var{s}, are closer to @var{p}
than any other point in @var{s}. The Voronoi diagram is related to the
Delaunay triangulation of a set of points, in that the vertexes of the
Voronoi tessellation are the centers of the circum-circles of the
simplices of the Delaunay tessellation.
@c voronoi scripts/geometry/voronoi.m
@anchor{XREFvoronoi}
@deftypefn {Function File} {} voronoi (@var{x}, @var{y})
@deftypefnx {Function File} {} voronoi (@var{x}, @var{y}, @var{options})
@deftypefnx {Function File} {} voronoi (@dots{}, "linespec")
@deftypefnx {Function File} {} voronoi (@var{hax}, @dots{})
@deftypefnx {Function File} {@var{h} =} voronoi (@dots{})
@deftypefnx {Function File} {[@var{vx}, @var{vy}] =} voronoi (@dots{})
Plot the Voronoi diagram of points @code{(@var{x}, @var{y})}.
The Voronoi facets with points at infinity are not drawn.
If @qcode{"linespec"} is given it is used to set the color and line style
of the plot. If an axis graphics handle @var{hax} is supplied then the
Voronoi diagram is drawn on the specified axis rather than in a new
figure.
The @var{options} argument, which must be a string or cell array of strings,
contains options passed to the underlying qhull command.
See the documentation for the Qhull library for details
@url{http://www.qhull.org/html/qh-quick.htm#options}.
If a single output argument is requested then the Voronoi diagram will be
plotted and a graphics handle @var{h} to the plot is returned.
[@var{vx}, @var{vy}] = voronoi (@dots{}) returns the Voronoi vertices
instead of plotting the diagram.
@example
@group
x = rand (10, 1);
y = rand (size (x));
h = convhull (x, y);
[vx, vy] = voronoi (x, y);
plot (vx, vy, "-b", x, y, "o", x(h), y(h), "-g");
legend ("", "points", "hull");
@end group
@end example
@seealso{@ref{XREFvoronoin,,voronoin}, @ref{XREFdelaunay,,delaunay}, @ref{XREFconvhull,,convhull}}
@end deftypefn
@c voronoin scripts/geometry/voronoin.m
@anchor{XREFvoronoin}
@deftypefn {Function File} {[@var{C}, @var{F}] =} voronoin (@var{pts})
@deftypefnx {Function File} {[@var{C}, @var{F}] =} voronoin (@var{pts}, @var{options})
Compute N-dimensional Voronoi facets. The input matrix @var{pts}
of size [n, dim] contains n points in a space of dimension dim.
@var{C} contains the points of the Voronoi facets. The list @var{F}
contains, for each facet, the indices of the Voronoi points.
An optional second argument, which must be a string or cell array of strings,
contains options passed to the underlying qhull command.
See the documentation for the Qhull library for details
@url{http://www.qhull.org/html/qh-quick.htm#options}.
The default options depend on the dimension of the input:
@itemize
@item 2-D and 3-D: @var{options} = @code{@{"Qbb"@}}
@item 4-D and higher: @var{options} = @code{@{"Qbb", "Qx"@}}
@end itemize
If @var{options} is not present or @code{[]} then the default arguments are
used. Otherwise, @var{options} replaces the default argument list.
To append user options to the defaults it is necessary to repeat the
default arguments in @var{options}. Use a null string to pass no arguments.
@seealso{@ref{XREFvoronoi,,voronoi}, @ref{XREFconvhulln,,convhulln}, @ref{XREFdelaunayn,,delaunayn}}
@end deftypefn
An example of the use of @code{voronoi} is
@example
@group
rand ("state",9);
x = rand (10,1);
y = rand (10,1);
tri = delaunay (x, y);
[vx, vy] = voronoi (x, y, tri);
triplot (tri, x, y, "b");
hold on;
plot (vx, vy, "r");
@end group
@end example
@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:voronoi}. Note that the
circum-circle of one of the triangles has been added to this figure, to
make the relationship between the Delaunay tessellation and the Voronoi
diagram clearer.
@float Figure,fig:voronoi
@center @image{voronoi,4in}
@caption{Delaunay triangulation and Voronoi diagram of a random set of points}
@end float
@end ifnotinfo
Additional information about the size of the facets of a Voronoi
diagram, and which points of a set of points is in a polygon can be had
with the @code{polyarea} and @code{inpolygon} functions respectively.
@c polyarea scripts/general/polyarea.m
@anchor{XREFpolyarea}
@deftypefn {Function File} {} polyarea (@var{x}, @var{y})
@deftypefnx {Function File} {} polyarea (@var{x}, @var{y}, @var{dim})
Determine area of a polygon by triangle method. The variables
@var{x} and @var{y} define the vertex pairs, and must therefore have
the same shape. They can be either vectors or arrays. If they are
arrays then the columns of @var{x} and @var{y} are treated separately
and an area returned for each.
If the optional @var{dim} argument is given, then @code{polyarea}
works along this dimension of the arrays @var{x} and @var{y}.
@end deftypefn
An example of the use of @code{polyarea} might be
@example
@group
rand ("state", 2);
x = rand (10, 1);
y = rand (10, 1);
[c, f] = voronoin ([x, y]);
af = zeros (size (f));
for i = 1 : length (f)
af(i) = polyarea (c (f @{i, :@}, 1), c (f @{i, :@}, 2));
endfor
@end group
@end example
Facets of the Voronoi diagram with a vertex at infinity have infinity
area. A simplified version of @code{polyarea} for rectangles is
available with @code{rectint}
@c rectint scripts/geometry/rectint.m
@anchor{XREFrectint}
@deftypefn {Function File} {@var{area} =} rectint (@var{a}, @var{b})
Compute the area of intersection of rectangles in @var{a} and
rectangles in @var{b}. Rectangles are defined as [x y width height]
where x and y are the minimum values of the two orthogonal
dimensions.
If @var{a} or @var{b} are matrices, then the output, @var{area}, is a
matrix where the i-th row corresponds to the i-th row of a and the j-th
column corresponds to the j-th row of b.
@seealso{@ref{XREFpolyarea,,polyarea}}
@end deftypefn
@c inpolygon scripts/geometry/inpolygon.m
@anchor{XREFinpolygon}
@deftypefn {Function File} {[@var{in}, @var{on}] =} inpolygon (@var{x}, @var{y}, @var{xv}, @var{yv})
For a polygon defined by vertex points @code{(@var{xv}, @var{yv})}, determine
if the points @code{(@var{x}, @var{y})} are inside or outside the polygon.
The variables @var{x}, @var{y}, must have the same dimension. The optional
output @var{on} gives the points that are on the polygon.
@end deftypefn
An example of the use of @code{inpolygon} might be
@example
@group
randn ("state", 2);
x = randn (100, 1);
y = randn (100, 1);
vx = cos (pi * [-1 : 0.1: 1]);
vy = sin (pi * [-1 : 0.1 : 1]);
in = inpolygon (x, y, vx, vy);
plot (vx, vy, x(in), y(in), "r+", x(!in), y(!in), "bo");
axis ([-2, 2, -2, 2]);
@end group
@end example
@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:inpolygon}.
@float Figure,fig:inpolygon
@center @image{inpolygon,4in}
@caption{Demonstration of the @code{inpolygon} function to determine the
points inside a polygon}
@end float
@end ifnotinfo
@node Convex Hull
@section Convex Hull
The convex hull of a set of points is the minimum convex envelope
containing all of the points. Octave has the functions @code{convhull}
and @code{convhulln} to calculate the convex hull of 2-dimensional and
N-dimensional sets of points.
@c convhull scripts/geometry/convhull.m
@anchor{XREFconvhull}
@deftypefn {Function File} {@var{H} =} convhull (@var{x}, @var{y})
@deftypefnx {Function File} {@var{H} =} convhull (@var{x}, @var{y}, @var{options})
Compute the convex hull of the set of points defined by the
arrays @var{x} and @var{y}. The hull @var{H} is an index vector into
the set of points and specifies which points form the enclosing hull.
An optional third argument, which must be a string or cell array of strings,
contains options passed to the underlying qhull command.
See the documentation for the Qhull library for details
@url{http://www.qhull.org/html/qh-quick.htm#options}.
The default option is @code{@{"Qt"@}}.
If @var{options} is not present or @code{[]} then the default arguments are
used. Otherwise, @var{options} replaces the default argument list.
To append user options to the defaults it is necessary to repeat the
default arguments in @var{options}. Use a null string to pass no arguments.
@seealso{@ref{XREFconvhulln,,convhulln}, @ref{XREFdelaunay,,delaunay}, @ref{XREFvoronoi,,voronoi}}
@end deftypefn
@c convhulln libinterp/dldfcn/convhulln.cc
@anchor{XREFconvhulln}
@deftypefn {Loadable Function} {@var{h} =} convhulln (@var{pts})
@deftypefnx {Loadable Function} {@var{h} =} convhulln (@var{pts}, @var{options})
@deftypefnx {Loadable Function} {[@var{h}, @var{v}] =} convhulln (@dots{})
Compute the convex hull of the set of points @var{pts} which is a matrix
of size [n, dim] containing n points in a space of dimension dim.
The hull @var{h} is an index vector into the set of points and specifies
which points form the enclosing hull.
An optional second argument, which must be a string or cell array of strings,
contains options passed to the underlying qhull command.
See the documentation for the Qhull library for details
@url{http://www.qhull.org/html/qh-quick.htm#options}.
The default options depend on the dimension of the input:
@itemize
@item 2D, 3D, 4D: @var{options} = @code{@{"Qt"@}}
@item 5D and higher: @var{options} = @code{@{"Qt", "Qx"@}}
@end itemize
If @var{options} is not present or @code{[]} then the default arguments are
used. Otherwise, @var{options} replaces the default argument list.
To append user options to the defaults it is necessary to repeat the
default arguments in @var{options}. Use a null string to pass no arguments.
If the second output @var{v} is requested the volume of the enclosing
convex hull is calculated.
@seealso{@ref{XREFconvhull,,convhull}, @ref{XREFdelaunayn,,delaunayn}, @ref{XREFvoronoin,,voronoin}}
@end deftypefn
An example of the use of @code{convhull} is
@example
@group
x = -3:0.05:3;
y = abs (sin (x));
k = convhull (x, y);
plot (x(k), y(k), "r-", x, y, "b+");
axis ([-3.05, 3.05, -0.05, 1.05]);
@end group
@end example
@ifnotinfo
@noindent
The output of the above can be seen in @ref{fig:convhull}.
@float Figure,fig:convhull
@center @image{convhull,4in}
@caption{The convex hull of a simple set of points}
@end float
@end ifnotinfo
@node Interpolation on Scattered Data
@section Interpolation on Scattered Data
An important use of the Delaunay tessellation is that it can be used to
interpolate from scattered data to an arbitrary set of points. To do
this the N-simplex of the known set of points is calculated with
@code{delaunay}, @code{delaunay3} or @code{delaunayn}. Then the
simplices in to which the desired points are found are
identified. Finally the vertices of the simplices are used to
interpolate to the desired points. The functions that perform this
interpolation are @code{griddata}, @code{griddata3} and
@code{griddatan}.
@c griddata scripts/geometry/griddata.m
@anchor{XREFgriddata}
@deftypefn {Function File} {@var{zi} =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi})
@deftypefnx {Function File} {@var{zi} =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}, @var{method})
@deftypefnx {Function File} {[@var{xi}, @var{yi}, @var{zi}] =} griddata (@dots{})
Generate a regular mesh from irregular data using interpolation.
The function is defined by @code{@var{z} = f (@var{x}, @var{y})}.
Inputs @code{@var{x}, @var{y}, @var{z}} are vectors of the same length
or @code{@var{x}, @var{y}} are vectors and @code{@var{z}} is matrix.
The interpolation points are all @code{(@var{xi}, @var{yi})}. If
@var{xi}, @var{yi} are vectors then they are made into a 2-D mesh.
The interpolation method can be @qcode{"nearest"}, @qcode{"cubic"} or
@qcode{"linear"}. If method is omitted it defaults to @qcode{"linear"}.
@seealso{@ref{XREFgriddata3,,griddata3}, @ref{XREFgriddatan,,griddatan}, @ref{XREFdelaunay,,delaunay}}
@end deftypefn
@c griddata3 scripts/geometry/griddata3.m
@anchor{XREFgriddata3}
@deftypefn {Function File} {@var{vi} =} griddata3 (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi})
@deftypefnx {Function File} {@var{vi} =} griddata3 (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi}, @var{method})
@deftypefnx {Function File} {@var{vi} =} griddata3 (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi}, @var{method}, @var{options})
Generate a regular mesh from irregular data using interpolation.
The function is defined by @code{@var{v} = f (@var{x}, @var{y}, @var{z})}.
The interpolation points are specified by @var{xi}, @var{yi}, @var{zi}.
The interpolation method can be @qcode{"nearest"} or @qcode{"linear"}.
If method is omitted it defaults to @qcode{"linear"}.
The optional argument @var{options} is passed directly to Qhull when
computing the Delaunay triangulation used for interpolation. See
@code{delaunayn} for information on the defaults and how to pass different
values.
@seealso{@ref{XREFgriddata,,griddata}, @ref{XREFgriddatan,,griddatan}, @ref{XREFdelaunayn,,delaunayn}}
@end deftypefn
@c griddatan scripts/geometry/griddatan.m
@anchor{XREFgriddatan}
@deftypefn {Function File} {@var{yi} =} griddatan (@var{x}, @var{y}, @var{xi})
@deftypefnx {Function File} {@var{yi} =} griddatan (@var{x}, @var{y}, @var{xi}, @var{method})
@deftypefnx {Function File} {@var{yi} =} griddatan (@var{x}, @var{y}, @var{xi}, @var{method}, @var{options})
Generate a regular mesh from irregular data using interpolation.
The function is defined by @code{@var{y} = f (@var{x})}.
The interpolation points are all @var{xi}.
The interpolation method can be @qcode{"nearest"} or @qcode{"linear"}.
If method is omitted it defaults to @qcode{"linear"}.
The optional argument @var{options} is passed directly to Qhull when
computing the Delaunay triangulation used for interpolation. See
@code{delaunayn} for information on the defaults and how to pass different
values.
@seealso{@ref{XREFgriddata,,griddata}, @ref{XREFgriddata3,,griddata3}, @ref{XREFdelaunayn,,delaunayn}}
@end deftypefn
An example of the use of the @code{griddata} function is
@example
@group
rand ("state", 1);
x = 2*rand (1000,1) - 1;
y = 2*rand (size (x)) - 1;
z = sin (2*(x.^2+y.^2));
[xx,yy] = meshgrid (linspace (-1,1,32));
griddata (x,y,z,xx,yy);
@end group
@end example
@noindent
that interpolates from a random scattering of points, to a uniform
grid.
@ifnotinfo
The output of the above can be seen in @ref{fig:griddata}.
@float Figure,fig:griddata
@center @image{griddata,4in}
@caption{Interpolation from a scattered data to a regular grid}
@end float
@end ifnotinfo
|