File: linalg.texi

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (1982 lines) | stat: -rw-r--r-- 66,635 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
@c DO NOT EDIT!  Generated automatically by munge-texi.pl.

@c Copyright (C) 1996-2013 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c 
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
@c for more details.
@c 
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <http://www.gnu.org/licenses/>.

@node Linear Algebra
@chapter Linear Algebra
@cindex linear algebra

This chapter documents the linear algebra functions provided in Octave.
Reference material for many of these functions may be found in Golub and
Van Loan, @cite{Matrix Computations, 2nd Ed.}, Johns Hopkins, 1989, and
in the @cite{@sc{lapack} Users' Guide}, SIAM, 1992. The
@cite{@sc{lapack} Users' Guide} is available at:
@cite{http://www.netlib.org/lapack/lug/}

A common text for engineering courses is G. Strang, @cite{Linear Algebra
and Its Applications, 4th Edition}. It has become a widespread reference
for linear algebra. An alternative is P. Lax @cite{Linear Algebra and
Its Applications}, and also is a good choice. It claims to be suitable
for high school students with substantial mathematical interests as well
as first-year undergraduates.

@menu
* Techniques Used for Linear Algebra::
* Basic Matrix Functions::
* Matrix Factorizations::
* Functions of a Matrix::
* Specialized Solvers::
@end menu

@node Techniques Used for Linear Algebra
@section Techniques Used for Linear Algebra
@cindex linear algebra, techniques

Octave includes a polymorphic solver that selects an appropriate matrix
factorization depending on the properties of the matrix itself.
Generally, the cost of determining the matrix type is small relative to
the cost of factorizing the matrix itself. In any case the matrix type
is cached once it is calculated so that it is not re-determined each
time it is used in a linear equation.

The selection tree for how the linear equation is solved or a matrix
inverse is formed is given by:

@enumerate 1
@item If the matrix is upper or lower triangular sparse use a forward or
backward substitution using the @sc{lapack} xTRTRS function, and goto 4.

@c Permuted triangular matrices currently disabled in the code
@c
@c @item If the matrix is a upper triangular matrix with column permutations
@c or lower triangular matrix with row permutations, perform a forward or
@c backward substitution, and goto 5.

@item If the matrix is square, Hermitian with a real positive diagonal,
attempt Cholesky@tie{}factorization using the @sc{lapack} xPOTRF function.

@item If the Cholesky@tie{}factorization failed or the matrix is not
Hermitian with a real positive diagonal, and the matrix is square, factorize 
using the @sc{lapack} xGETRF function.

@item If the matrix is not square, or any of the previous solvers flags
a singular or near singular matrix, find a least squares solution using
the @sc{lapack} xGELSD function.
@end enumerate

The user can force the type of the matrix with the @code{matrix_type}
function.  This overcomes the cost of discovering the type of the matrix.
However, it should be noted that identifying the type of the matrix incorrectly
will lead to unpredictable results, and so @code{matrix_type} should be
used with care.

It should be noted that the test for whether a matrix is a candidate for
Cholesky@tie{}factorization, performed above, and by the @code{matrix_type}
function, does not make certain that the matrix is
Hermitian.  However, the attempt to factorize the matrix will quickly
detect a non-Hermitian matrix.

@node Basic Matrix Functions
@section Basic Matrix Functions
@cindex matrix functions, basic

@c balance libinterp/corefcn/balance.cc
@anchor{XREFbalance}
@deftypefn  {Built-in Function} {@var{AA} =} balance (@var{A})
@deftypefnx {Built-in Function} {@var{AA} =} balance (@var{A}, @var{opt})
@deftypefnx {Built-in Function} {[@var{DD}, @var{AA}] =} balance (@var{A}, @var{opt})
@deftypefnx {Built-in Function} {[@var{D}, @var{P}, @var{AA}] =} balance (@var{A}, @var{opt})
@deftypefnx {Built-in Function} {[@var{CC}, @var{DD}, @var{AA}, @var{BB}] =} balance (@var{A}, @var{B}, @var{opt})

Compute @code{@var{AA} = @var{DD} \ @var{A} * @var{DD}} in which @var{AA}
is a matrix whose row and column norms are roughly equal in magnitude, and
@code{@var{DD} = @var{P} * @var{D}}, in which @var{P} is a permutation
matrix and @var{D} is a diagonal matrix of powers of two.  This allows the
equilibration to be computed without round-off.  Results of eigenvalue
calculation are typically improved by balancing first.

If two output values are requested, @code{balance} returns
the diagonal @var{D} and the permutation @var{P} separately as vectors.
In this case, @code{@var{DD} = eye(n)(:,@var{P}) * diag (@var{D})}, where
@math{n} is the matrix size.

If four output values are requested, compute @code{@var{AA} =
@var{CC}*@var{A}*@var{DD}} and @code{@var{BB} = @var{CC}*@var{B}*@var{DD}},
in which @var{AA} and @var{BB} have non-zero elements of approximately the
same magnitude and @var{CC} and @var{DD} are permuted diagonal matrices as
in @var{DD} for the algebraic eigenvalue problem.

The eigenvalue balancing option @var{opt} may be one of:

@table @asis
@item @qcode{"noperm"}, @qcode{"S"}
Scale only; do not permute.

@item @qcode{"noscal"}, @qcode{"P"}
Permute only; do not scale.
@end table

Algebraic eigenvalue balancing uses standard @sc{lapack} routines.

Generalized eigenvalue problem balancing uses Ward's algorithm
(SIAM Journal on Scientific and Statistical Computing, 1981).
@end deftypefn


@c cond scripts/linear-algebra/cond.m
@anchor{XREFcond}
@deftypefn  {Function File} {} cond (@var{A})
@deftypefnx {Function File} {} cond (@var{A}, @var{p})
Compute the @var{p}-norm condition number of a matrix.

@code{cond (@var{A})} is defined as
@tex
$ {\parallel A \parallel_p * \parallel A^{-1} \parallel_p .} $
@end tex
@ifnottex
@code{norm (@var{A}, @var{p}) * norm (inv (@var{A}), @var{p})}.
@end ifnottex

By default, @code{@var{p} = 2} is used which implies a (relatively slow)
singular value decomposition.  Other possible selections are
@code{@var{p} = 1, Inf, "fro"} which are generally faster.  See
@code{norm} for a full discussion of possible @var{p} values.

The condition number of a matrix quantifies the sensitivity of the matrix
inversion operation when small changes are made to matrix elements.  Ideally
the condition number will be close to 1.  When the number is large this
indicates small changes (such as underflow or round-off error) will produce
large changes in the resulting output.  In such cases the solution results
from numerical computing are not likely to be accurate.
@seealso{@ref{XREFcondest,,condest}, @ref{XREFrcond,,rcond}, @ref{XREFnorm,,norm}, @ref{XREFsvd,,svd}}
@end deftypefn


@c det libinterp/corefcn/det.cc
@anchor{XREFdet}
@deftypefn  {Built-in Function} {} det (@var{A})
@deftypefnx {Built-in Function} {[@var{d}, @var{rcond}] =} det (@var{A})
Compute the determinant of @var{A}.

Return an estimate of the reciprocal condition number if requested.

Routines from @sc{lapack} are used for full matrices and code from
@sc{umfpack} is used for sparse matrices.

The determinant should not be used to check a matrix for singularity.
For that, use any of the condition number functions: @code{cond},
@code{condest}, @code{rcond}.
@seealso{@ref{XREFcond,,cond}, @ref{XREFcondest,,condest}, @ref{XREFrcond,,rcond}}
@end deftypefn


@c eig libinterp/corefcn/eig.cc
@anchor{XREFeig}
@deftypefn  {Built-in Function} {@var{lambda} =} eig (@var{A})
@deftypefnx {Built-in Function} {@var{lambda} =} eig (@var{A}, @var{B})
@deftypefnx {Built-in Function} {[@var{V}, @var{lambda}] =} eig (@var{A})
@deftypefnx {Built-in Function} {[@var{V}, @var{lambda}] =} eig (@var{A}, @var{B})
Compute the eigenvalues (and optionally the eigenvectors) of a matrix
or a pair of matrices

The algorithm used depends on whether there are one or two input
matrices, if they are real or complex and if they are symmetric
(Hermitian if complex) or non-symmetric.

The eigenvalues returned by @code{eig} are not ordered.
@seealso{@ref{XREFeigs,,eigs}, @ref{XREFsvd,,svd}}
@end deftypefn


@c givens libinterp/corefcn/givens.cc
@anchor{XREFgivens}
@deftypefn  {Built-in Function} {@var{g} =} givens (@var{x}, @var{y})
@deftypefnx {Built-in Function} {[@var{c}, @var{s}] =} givens (@var{x}, @var{y})
@tex
Return a $2\times 2$ orthogonal matrix
$$
 G = \left[\matrix{c & s\cr -s'& c\cr}\right]
$$
such that
$$
 G \left[\matrix{x\cr y}\right] = \left[\matrix{\ast\cr 0}\right]
$$
with $x$ and $y$ scalars.
@end tex
@ifnottex
Return a 2 by 2 orthogonal matrix
@code{@var{g} = [@var{c} @var{s}; -@var{s}' @var{c}]} such that
@code{@var{g} [@var{x}; @var{y}] = [*; 0]} with @var{x} and @var{y} scalars.
@end ifnottex

For example:

@example
@group
givens (1, 1)
   @result{}   0.70711   0.70711
       -0.70711   0.70711
@end group
@end example
@end deftypefn


@c planerot scripts/linear-algebra/planerot.m
@anchor{XREFplanerot}
@deftypefn {Function File} {[@var{g}, @var{y}] =} planerot (@var{x})
Given a two-element column vector, returns the
@tex
$2 \times 2$ orthogonal matrix
@end tex
@ifnottex
2 by 2 orthogonal matrix
@end ifnottex
@var{G} such that
@code{@var{y} = @var{g} * @var{x}} and @code{@var{y}(2) = 0}.
@seealso{@ref{XREFgivens,,givens}}
@end deftypefn


@c inv libinterp/corefcn/inv.cc
@anchor{XREFinv}
@deftypefn  {Built-in Function} {@var{x} =} inv (@var{A})
@deftypefnx {Built-in Function} {[@var{x}, @var{rcond}] =} inv (@var{A})
Compute the inverse of the square matrix @var{A}.  Return an estimate
of the reciprocal condition number if requested, otherwise warn of an
ill-conditioned matrix if the reciprocal condition number is small.

In general it is best to avoid calculating the inverse of a matrix
directly.  For example, it is both faster and more accurate to solve
systems of equations (@var{A}*@math{x} = @math{b}) with
@code{@var{y} = @var{A} \ @math{b}}, rather than
@code{@var{y} = inv (@var{A}) * @math{b}}.

If called with a sparse matrix, then in general @var{x} will be a full
matrix requiring significantly more storage.  Avoid forming the inverse
of a sparse matrix if possible.
@seealso{@ref{XREFldivide,,ldivide}, @ref{XREFrdivide,,rdivide}}
@end deftypefn


@c linsolve scripts/linear-algebra/linsolve.m
@anchor{XREFlinsolve}
@deftypefn  {Function File} {@var{x} =} linsolve (@var{A}, @var{b})
@deftypefnx {Function File} {@var{x} =} linsolve (@var{A}, @var{b}, @var{opts})
@deftypefnx {Function File} {[@var{x}, @var{R}] =} linsolve (@dots{})
Solve the linear system @code{A*x = b}.

With no options, this function is equivalent to the left division operator
@w{(@code{x = A \ b})} or the matrix-left-divide function
@w{(@code{x = mldivide (A, b)})}.

Octave ordinarily examines the properties of the matrix @var{A} and chooses
a solver that best matches the matrix.  By passing a structure @var{opts}
to @code{linsolve} you can inform Octave directly about the matrix @var{A}.
In this case Octave will skip the matrix examination and proceed directly
to solving the linear system.

@strong{Warning:} If the matrix @var{A} does not have the properties
listed in the @var{opts} structure then the result will not be accurate
AND no warning will be given.  When in doubt, let Octave examine the matrix
and choose the appropriate solver as this step takes little time and the
result is cached so that it is only done once per linear system.

Possible @var{opts} fields (set value to true/false):

@table @asis
@item LT
@var{A} is lower triangular

@item UT
@var{A} is upper triangular

@item UHESS
@var{A} is upper Hessenberg (currently makes no difference)

@item SYM
@var{A} is symmetric or complex Hermitian (currently makes no difference)

@item POSDEF
@var{A} is positive definite

@item RECT
@var{A} is general rectangular (currently makes no difference)

@item TRANSA
  Solve @code{A'*x = b} by @code{transpose (A) \ b}
@end table

The optional second output @var{R} is the inverse condition number of
@var{A} (zero if matrix is singular).
@seealso{@ref{XREFmldivide,,mldivide}, @ref{XREFmatrix_type,,matrix_type}, @ref{XREFrcond,,rcond}}
@end deftypefn


@c matrix_type libinterp/corefcn/matrix_type.cc
@anchor{XREFmatrix_type}
@deftypefn  {Built-in Function} {@var{type} =} matrix_type (@var{A})
@deftypefnx {Built-in Function} {@var{type} =} matrix_type (@var{A}, "nocompute")
@deftypefnx {Built-in Function} {@var{A} =} matrix_type (@var{A}, @var{type})
@deftypefnx {Built-in Function} {@var{A} =} matrix_type (@var{A}, "upper", @var{perm})
@deftypefnx {Built-in Function} {@var{A} =} matrix_type (@var{A}, "lower", @var{perm})
@deftypefnx {Built-in Function} {@var{A} =} matrix_type (@var{A}, "banded", @var{nl}, @var{nu})
Identify the matrix type or mark a matrix as a particular type.  This allows
more rapid solutions of linear equations involving @var{A} to be performed.
Called with a single argument, @code{matrix_type} returns the type of the
matrix and caches it for future use.  Called with more than one argument,
@code{matrix_type} allows the type of the matrix to be defined.

If the option @qcode{"nocompute"} is given, the function will not attempt
to guess the type if it is still unknown.  This is useful for debugging
purposes.

The possible matrix types depend on whether the matrix is full or sparse, and
can be one of the following

@table @asis
@item @qcode{"unknown"}
Remove any previously cached matrix type, and mark type as unknown.

@item @qcode{"full"}
Mark the matrix as full.

@item @qcode{"positive definite"}
Probable full positive definite matrix.

@item @qcode{"diagonal"}
Diagonal matrix.  (Sparse matrices only)

@item @qcode{"permuted diagonal"}
Permuted Diagonal matrix.  The permutation does not need to be specifically
indicated, as the structure of the matrix explicitly gives this.  (Sparse
matrices only)

@item @qcode{"upper"}
Upper triangular.  If the optional third argument @var{perm} is given, the
matrix is assumed to be a permuted upper triangular with the permutations
defined by the vector @var{perm}.

@item @qcode{"lower"}
Lower triangular.  If the optional third argument @var{perm} is given, the
matrix is assumed to be a permuted lower triangular with the permutations
defined by the vector @var{perm}.

@item  @qcode{"banded"}
@itemx @qcode{"banded positive definite"}
Banded matrix with the band size of @var{nl} below the diagonal and @var{nu}
above it.  If @var{nl} and @var{nu} are 1, then the matrix is tridiagonal and
treated with specialized code.  In addition the matrix can be marked as
probably a positive definite.  (Sparse matrices only)

@item @qcode{"singular"}
The matrix is assumed to be singular and will be treated with a minimum norm
solution.

@end table

Note that the matrix type will be discovered automatically on the first
attempt to solve a linear equation involving @var{A}.  Therefore
@code{matrix_type} is only useful to give Octave hints of the matrix type.
Incorrectly defining the matrix type will result in incorrect results from
solutions of linear equations; it is entirely @strong{the responsibility of
the user} to correctly identify the matrix type.

Also, the test for positive definiteness is a low-cost test for a Hermitian
matrix with a real positive diagonal.  This does not guarantee that the
matrix is positive definite, but only that it is a probable candidate.  When
such a matrix is factorized, a Cholesky@tie{}factorization is first
attempted, and if that fails the matrix is then treated with an
LU@tie{}factorization.  Once the matrix has been factorized,
@code{matrix_type} will return the correct classification of the matrix.
@end deftypefn


@c norm libinterp/corefcn/data.cc
@anchor{XREFnorm}
@deftypefn  {Built-in Function} {} norm (@var{A})
@deftypefnx {Built-in Function} {} norm (@var{A}, @var{p})
@deftypefnx {Built-in Function} {} norm (@var{A}, @var{p}, @var{opt})
Compute the p-norm of the matrix @var{A}.  If the second argument is
missing, @code{p = 2} is assumed.

If @var{A} is a matrix (or sparse matrix):

@table @asis
@item @var{p} = @code{1}
1-norm, the largest column sum of the absolute values of @var{A}.

@item @var{p} = @code{2}
Largest singular value of @var{A}.

@item @var{p} = @code{Inf} or @qcode{"inf"}
@cindex infinity norm
Infinity norm, the largest row sum of the absolute values of @var{A}.

@item @var{p} = @qcode{"fro"}
@cindex Frobenius norm
Frobenius norm of @var{A}, @code{sqrt (sum (diag (@var{A}' * @var{A})))}.

@item other @var{p}, @code{@var{p} > 1}
@cindex general p-norm
maximum @code{norm (A*x, p)} such that @code{norm (x, p) == 1}
@end table

If @var{A} is a vector or a scalar:

@table @asis
@item @var{p} = @code{Inf} or @qcode{"inf"}
@code{max (abs (@var{A}))}.

@item @var{p} = @code{-Inf}
@code{min (abs (@var{A}))}.

@item @var{p} = @qcode{"fro"}
Frobenius norm of @var{A}, @code{sqrt (sumsq (abs (A)))}.

@item @var{p} = 0
Hamming norm - the number of nonzero elements.

@item other @var{p}, @code{@var{p} > 1}
p-norm of @var{A}, @code{(sum (abs (@var{A}) .^ @var{p})) ^ (1/@var{p})}.

@item other @var{p} @code{@var{p} < 1}
the p-pseudonorm defined as above.
@end table

If @var{opt} is the value @qcode{"rows"}, treat each row as a vector and
compute its norm.  The result is returned as a column vector.
Similarly, if @var{opt} is @qcode{"columns"} or @qcode{"cols"} then
compute the norms of each column and return a row vector.
@seealso{@ref{XREFcond,,cond}, @ref{XREFsvd,,svd}}
@end deftypefn


@c null scripts/linear-algebra/null.m
@anchor{XREFnull}
@deftypefn  {Function File} {} null (@var{A})
@deftypefnx {Function File} {} null (@var{A}, @var{tol})
Return an orthonormal basis of the null space of @var{A}.

The dimension of the null space is taken as the number of singular
values of @var{A} not greater than @var{tol}.  If the argument @var{tol}
is missing, it is computed as

@example
max (size (@var{A})) * max (svd (@var{A})) * eps
@end example
@seealso{@ref{XREForth,,orth}}
@end deftypefn


@c orth scripts/linear-algebra/orth.m
@anchor{XREForth}
@deftypefn  {Function File} {} orth (@var{A})
@deftypefnx {Function File} {} orth (@var{A}, @var{tol})
Return an orthonormal basis of the range space of @var{A}.

The dimension of the range space is taken as the number of singular
values of @var{A} greater than @var{tol}.  If the argument @var{tol} is
missing, it is computed as

@example
max (size (@var{A})) * max (svd (@var{A})) * eps
@end example
@seealso{@ref{XREFnull,,null}}
@end deftypefn


@c mgorth libinterp/corefcn/mgorth.cc
@anchor{XREFmgorth}
@deftypefn {Built-in Function} {[@var{y}, @var{h}] =} mgorth (@var{x}, @var{v})
Orthogonalize a given column vector @var{x} with respect to a set of
orthonormal vectors comprising the columns of @var{v}
using the modified Gram-Schmidt method.
On exit, @var{y} is a unit vector such that:

@example
@group
  norm (@var{y}) = 1
  @var{v}' * @var{y} = 0
  @var{x} = [@var{v}, @var{y}]*@var{h}'
@end group
@end example

@end deftypefn


@c pinv libinterp/corefcn/pinv.cc
@anchor{XREFpinv}
@deftypefn  {Built-in Function} {} pinv (@var{x})
@deftypefnx {Built-in Function} {} pinv (@var{x}, @var{tol})
Return the pseudoinverse of @var{x}.  Singular values less than
@var{tol} are ignored.

If the second argument is omitted, it is taken to be

@example
tol = max (size (@var{x})) * sigma_max (@var{x}) * eps,
@end example

@noindent
where @code{sigma_max (@var{x})} is the maximal singular value of @var{x}.
@end deftypefn

@cindex pseudoinverse

@c rank scripts/linear-algebra/rank.m
@anchor{XREFrank}
@deftypefn  {Function File} {} rank (@var{A})
@deftypefnx {Function File} {} rank (@var{A}, @var{tol})
Compute the rank of matrix @var{A}, using the singular value decomposition.

The rank is taken to be the number of singular values of @var{A} that
are greater than the specified tolerance @var{tol}.  If the second
argument is omitted, it is taken to be

@example
tol = max (size (@var{A})) * sigma(1) * eps;
@end example

@noindent
where @code{eps} is machine precision and @code{sigma(1)} is the largest
singular value of @var{A}.

The rank of a matrix is the number of linearly independent rows or
columns and determines how many particular solutions exist to a system
of equations.  Use @code{null} for finding the remaining homogenous
solutions.

Example:

@example
@group
x = [1 2 3
     4 5 6
     7 8 9];
rank (x)
  @result{} 2
@end group
@end example

@noindent
The number of linearly independent rows is only 2 because the final row
is a linear combination of -1*row1 + 2*row2.

@seealso{@ref{XREFnull,,null}, @ref{XREFsprank,,sprank}, @ref{XREFsvd,,svd}}
@end deftypefn


@c rcond libinterp/corefcn/rcond.cc
@anchor{XREFrcond}
@deftypefn {Built-in Function} {@var{c} =} rcond (@var{A})
Compute the 1-norm estimate of the reciprocal condition number as returned
by @sc{lapack}.  If the matrix is well-conditioned then @var{c} will be near
1 and if the matrix is poorly conditioned it will be close to zero.

The matrix @var{A} must not be sparse.  If the matrix is sparse then
@code{condest (@var{A})} or @code{rcond (full (@var{A}))} should be used
instead.
@seealso{@ref{XREFcond,,cond}, @ref{XREFcondest,,condest}}
@end deftypefn


@c trace scripts/linear-algebra/trace.m
@anchor{XREFtrace}
@deftypefn {Function File} {} trace (@var{A})
Compute the trace of @var{A}, the sum of the elements along the main
diagonal.

The implementation is straightforward: @code{sum (diag (@var{A}))}.
@seealso{@ref{XREFeig,,eig}}
@end deftypefn


@c rref scripts/linear-algebra/rref.m
@anchor{XREFrref}
@deftypefn  {Function File} {} rref (@var{A})
@deftypefnx {Function File} {} rref (@var{A}, @var{tol})
@deftypefnx {Function File} {[@var{r}, @var{k}] =} rref (@dots{})
Return the reduced row echelon form of @var{A}.  @var{tol} defaults
to @code{eps * max (size (@var{A})) * norm (@var{A}, inf)}.

Called with two return arguments, @var{k} returns the vector of
"bound variables", which are those columns on which elimination
has been performed.

@end deftypefn


@node Matrix Factorizations
@section Matrix Factorizations
@cindex matrix factorizations

@c chol libinterp/dldfcn/chol.cc
@anchor{XREFchol}
@deftypefn  {Loadable Function} {@var{R} =} chol (@var{A})
@deftypefnx {Loadable Function} {[@var{R}, @var{p}] =} chol (@var{A})
@deftypefnx {Loadable Function} {[@var{R}, @var{p}, @var{Q}] =} chol (@var{S})
@deftypefnx {Loadable Function} {[@var{R}, @var{p}, @var{Q}] =} chol (@var{S}, "vector")
@deftypefnx {Loadable Function} {[@var{L}, @dots{}] =} chol (@dots{}, "lower")
@deftypefnx {Loadable Function} {[@var{L}, @dots{}] =} chol (@dots{}, "upper")
@cindex Cholesky factorization
Compute the Cholesky@tie{}factor, @var{R}, of the symmetric positive definite
matrix @var{A}, where
@tex
$ R^T R = A $.
@end tex
@ifnottex

@example
@var{R}' * @var{R} = @var{A}.
@end example

@end ifnottex

Called with one output argument @code{chol} fails if @var{A} or @var{S} is
not positive definite.  With two or more output arguments @var{p} flags
whether the matrix was positive definite and @code{chol} does not fail.  A
zero value indicated that the matrix was positive definite and the @var{R}
gives the factorization, and @var{p} will have a positive value otherwise.

If called with 3 outputs then a sparsity preserving row/column permutation
is applied to @var{A} prior to the factorization.  That is @var{R}
is the factorization of @code{@var{A}(@var{Q},@var{Q})} such that
@tex
$ R^T R = Q^T A Q$.
@end tex
@ifnottex

@example
@var{R}' * @var{R} = @var{Q}' * @var{A} * @var{Q}.
@end example

@end ifnottex

The sparsity preserving permutation is generally returned as a matrix.
However, given the flag @qcode{"vector"}, @var{Q} will be returned as a
vector such that
@tex
$ R^T R = A (Q, Q)$.
@end tex
@ifnottex

@example
@var{R}' * @var{R} = @var{A}(@var{Q}, @var{Q}).
@end example

@end ifnottex

Called with either a sparse or full matrix and using the @qcode{"lower"}
flag, @code{chol} returns the lower triangular factorization such that
@tex
$ L L^T = A $.
@end tex
@ifnottex

@example
@var{L} * @var{L}' = @var{A}.
@end example

@end ifnottex

For full matrices, if the @qcode{"lower"} flag is set only the lower
triangular part of the matrix is used for the factorization, otherwise the
upper triangular part is used.

In general the lower triangular factorization is significantly faster for
sparse matrices.
@seealso{@ref{XREFhess,,hess}, @ref{XREFlu,,lu}, @ref{XREFqr,,qr}, @ref{XREFqz,,qz}, @ref{XREFschur,,schur}, @ref{XREFsvd,,svd}, @ref{XREFcholinv,,cholinv}, @ref{XREFchol2inv,,chol2inv}, @ref{XREFcholupdate,,cholupdate}, @ref{XREFcholinsert,,cholinsert}, @ref{XREFcholdelete,,choldelete}, @ref{XREFcholshift,,cholshift}}
@end deftypefn


@c cholinv libinterp/dldfcn/chol.cc
@anchor{XREFcholinv}
@deftypefn {Loadable Function} {} cholinv (@var{A})
Use the Cholesky@tie{}factorization to compute the inverse of the
symmetric positive definite matrix @var{A}.
@seealso{@ref{XREFchol,,chol}, @ref{XREFchol2inv,,chol2inv}, @ref{XREFinv,,inv}}
@end deftypefn


@c chol2inv libinterp/dldfcn/chol.cc
@anchor{XREFchol2inv}
@deftypefn {Loadable Function} {} chol2inv (@var{U})
Invert a symmetric, positive definite square matrix from its Cholesky
decomposition, @var{U}.  Note that @var{U} should be an upper-triangular
matrix with positive diagonal elements.  @code{chol2inv (@var{U})}
provides @code{inv (@var{U}'*@var{U})} but it is much faster than
using @code{inv}.
@seealso{@ref{XREFchol,,chol}, @ref{XREFcholinv,,cholinv}, @ref{XREFinv,,inv}}
@end deftypefn


@c cholupdate libinterp/dldfcn/chol.cc
@anchor{XREFcholupdate}
@deftypefn {Loadable Function} {[@var{R1}, @var{info}] =} cholupdate (@var{R}, @var{u}, @var{op})
Update or downdate a Cholesky@tie{}factorization.  Given an upper triangular
matrix @var{R} and a column vector @var{u}, attempt to determine another
upper triangular matrix @var{R1} such that

@itemize @bullet
@item
@var{R1}'*@var{R1} = @var{R}'*@var{R} + @var{u}*@var{u}'
if @var{op} is @qcode{"+"}

@item
@var{R1}'*@var{R1} = @var{R}'*@var{R} - @var{u}*@var{u}'
if @var{op} is @qcode{"-"}
@end itemize

If @var{op} is @qcode{"-"}, @var{info} is set to

@itemize
@item 0 if the downdate was successful,

@item 1 if @var{R}'*@var{R} - @var{u}*@var{u}' is not positive definite,

@item 2 if @var{R} is singular.
@end itemize

If @var{info} is not present, an error message is printed in cases 1 and 2.
@seealso{@ref{XREFchol,,chol}, @ref{XREFcholinsert,,cholinsert}, @ref{XREFcholdelete,,choldelete}, @ref{XREFcholshift,,cholshift}}
@end deftypefn


@c cholinsert libinterp/dldfcn/chol.cc
@anchor{XREFcholinsert}
@deftypefn  {Loadable Function} {@var{R1} =} cholinsert (@var{R}, @var{j}, @var{u})
@deftypefnx {Loadable Function} {[@var{R1}, @var{info}] =} cholinsert (@var{R}, @var{j}, @var{u})
Given a Cholesky@tie{}factorization of a real symmetric or complex Hermitian
positive definite matrix @w{@var{A} = @var{R}'*@var{R}}, @var{R}@tie{}upper
triangular, return the Cholesky@tie{}factorization of
@var{A1}, where @w{A1(p,p) = A}, @w{A1(:,j) = A1(j,:)' = u} and
@w{p = [1:j-1,j+1:n+1]}.  @w{u(j)} should be positive.
On return, @var{info} is set to

@itemize
@item 0 if the insertion was successful,

@item 1 if @var{A1} is not positive definite,

@item 2 if @var{R} is singular.
@end itemize

If @var{info} is not present, an error message is printed in cases 1 and 2.
@seealso{@ref{XREFchol,,chol}, @ref{XREFcholupdate,,cholupdate}, @ref{XREFcholdelete,,choldelete}, @ref{XREFcholshift,,cholshift}}
@end deftypefn


@c choldelete libinterp/dldfcn/chol.cc
@anchor{XREFcholdelete}
@deftypefn {Loadable Function} {@var{R1} =} choldelete (@var{R}, @var{j})
Given a Cholesky@tie{}factorization of a real symmetric or complex Hermitian
positive definite matrix @w{@var{A} = @var{R}'*@var{R}}, @var{R}@tie{}upper
triangular, return the Cholesky@tie{}factorization of @w{A(p,p)}, where
@w{p = [1:j-1,j+1:n+1]}.
@seealso{@ref{XREFchol,,chol}, @ref{XREFcholupdate,,cholupdate}, @ref{XREFcholinsert,,cholinsert}, @ref{XREFcholshift,,cholshift}}
@end deftypefn


@c cholshift libinterp/dldfcn/chol.cc
@anchor{XREFcholshift}
@deftypefn {Loadable Function} {@var{R1} =} cholshift (@var{R}, @var{i}, @var{j})
Given a Cholesky@tie{}factorization of a real symmetric or complex Hermitian
positive definite matrix @w{@var{A} = @var{R}'*@var{R}}, @var{R}@tie{}upper
triangular, return the Cholesky@tie{}factorization of
@w{@var{A}(p,p)}, where @w{p} is the permutation @*
@code{p = [1:i-1, shift(i:j, 1), j+1:n]} if @w{@var{i} < @var{j}} @*
 or @*
@code{p = [1:j-1, shift(j:i,-1), i+1:n]} if @w{@var{j} < @var{i}}.  @*

@seealso{@ref{XREFchol,,chol}, @ref{XREFcholupdate,,cholupdate}, @ref{XREFcholinsert,,cholinsert}, @ref{XREFcholdelete,,choldelete}}
@end deftypefn


@c hess libinterp/corefcn/hess.cc
@anchor{XREFhess}
@deftypefn  {Built-in Function} {@var{H} =} hess (@var{A})
@deftypefnx {Built-in Function} {[@var{P}, @var{H}] =} hess (@var{A})
@cindex Hessenberg decomposition
Compute the Hessenberg decomposition of the matrix @var{A}.

The Hessenberg decomposition is
@tex
$$
A = PHP^T
$$
where $P$ is a square unitary matrix ($P^TP = I$), and $H$
is upper Hessenberg ($H_{i,j} = 0, \forall i \ge j+1$).
@end tex
@ifnottex
@code{@var{P} * @var{H} * @var{P}' = @var{A}} where @var{P} is a square
unitary matrix (@code{@var{P}' * @var{P} = I}, using complex-conjugate
transposition) and @var{H} is upper Hessenberg
(@code{@var{H}(i, j) = 0 forall i >= j+1)}.
@end ifnottex

The Hessenberg decomposition is usually used as the first step in an
eigenvalue computation, but has other applications as well (see Golub,
Nash, and Van Loan, IEEE Transactions on Automatic Control, 1979).
@seealso{@ref{XREFeig,,eig}, @ref{XREFchol,,chol}, @ref{XREFlu,,lu}, @ref{XREFqr,,qr}, @ref{XREFqz,,qz}, @ref{XREFschur,,schur}, @ref{XREFsvd,,svd}}
@end deftypefn


@c lu libinterp/corefcn/lu.cc
@anchor{XREFlu}
@deftypefn  {Built-in Function} {[@var{L}, @var{U}] =} lu (@var{A})
@deftypefnx {Built-in Function} {[@var{L}, @var{U}, @var{P}] =} lu (@var{A})
@deftypefnx {Built-in Function} {[@var{L}, @var{U}, @var{P}, @var{Q}] =} lu (@var{S})
@deftypefnx {Built-in Function} {[@var{L}, @var{U}, @var{P}, @var{Q}, @var{R}] =} lu (@var{S})
@deftypefnx {Built-in Function} {[@dots{}] =} lu (@var{S}, @var{thres})
@deftypefnx {Built-in Function} {@var{y} =} lu (@dots{})
@deftypefnx {Built-in Function} {[@dots{}] =} lu (@dots{}, "vector")
@cindex LU decomposition
Compute the LU@tie{}decomposition of @var{A}.  If @var{A} is full
subroutines from
@sc{lapack} are used and if @var{A} is sparse then @sc{umfpack} is used.  The
result is returned in a permuted form, according to the optional return
value @var{P}.  For example, given the matrix @code{a = [1, 2; 3, 4]},

@example
[l, u, p] = lu (@var{a})
@end example

@noindent
returns

@example
@group
l =

  1.00000  0.00000
  0.33333  1.00000

u =

  3.00000  4.00000
  0.00000  0.66667

p =

  0  1
  1  0
@end group
@end example

The matrix is not required to be square.

When called with two or three output arguments and a spare input matrix,
@code{lu} does not attempt to perform sparsity preserving column
permutations.  Called with a fourth output argument, the sparsity
preserving column transformation @var{Q} is returned, such that
@code{@var{P} * @var{A} * @var{Q} = @var{L} * @var{U}}.

Called with a fifth output argument and a sparse input matrix,
@code{lu} attempts to use a scaling factor @var{R} on the input matrix
such that
@code{@var{P} * (@var{R} \ @var{A}) * @var{Q} = @var{L} * @var{U}}.
This typically leads to a sparser and more stable factorization.

An additional input argument @var{thres}, that defines the pivoting
threshold can be given.  @var{thres} can be a scalar, in which case
it defines the @sc{umfpack} pivoting tolerance for both symmetric and
unsymmetric cases.  If @var{thres} is a 2-element vector, then the first
element defines the pivoting tolerance for the unsymmetric @sc{umfpack}
pivoting strategy and the second for the symmetric strategy.  By default,
the values defined by @code{spparms} are used ([0.1, 0.001]).

Given the string argument @qcode{"vector"}, @code{lu} returns the values
of @var{P} and @var{Q} as vector values, such that for full matrix,
@code{@var{A} (@var{P},:) = @var{L} * @var{U}}, and @code{@var{R}(@var{P},:)
* @var{A} (:, @var{Q}) = @var{L} * @var{U}}.

With two output arguments, returns the permuted forms of the upper and
lower triangular matrices, such that @code{@var{A} = @var{L} * @var{U}}.
With one output argument @var{y}, then the matrix returned by the @sc{lapack}
routines is returned.  If the input matrix is sparse then the matrix @var{L}
is embedded into @var{U} to give a return value similar to the full case.
For both full and sparse matrices, @code{lu} loses the permutation
information.
@seealso{@ref{XREFluupdate,,luupdate}, @ref{XREFchol,,chol}, @ref{XREFhess,,hess}, @ref{XREFqr,,qr}, @ref{XREFqz,,qz}, @ref{XREFschur,,schur}, @ref{XREFsvd,,svd}}
@end deftypefn


@c luupdate libinterp/corefcn/lu.cc
@anchor{XREFluupdate}
@deftypefn  {Built-in Function} {[@var{L}, @var{U}] =} luupdate (@var{L}, @var{U}, @var{x}, @var{y})
@deftypefnx {Built-in Function} {[@var{L}, @var{U}, @var{P}] =} luupdate (@var{L}, @var{U}, @var{P}, @var{x}, @var{y})
Given an LU@tie{}factorization of a real or complex matrix
@w{@var{A} = @var{L}*@var{U}}, @var{L}@tie{}lower unit trapezoidal and
@var{U}@tie{}upper trapezoidal, return the LU@tie{}factorization
of @w{@var{A} + @var{x}*@var{y}.'}, where @var{x} and @var{y} are
column vectors (rank-1 update) or matrices with equal number of columns
(rank-k update).
Optionally, row-pivoted updating can be used by supplying
a row permutation (pivoting) matrix @var{P};
in that case, an updated permutation matrix is returned.
Note that if @var{L}, @var{U}, @var{P} is a pivoted LU@tie{}factorization
as obtained by @code{lu}:

@example
[@var{L}, @var{U}, @var{P}] = lu (@var{A});
@end example

@noindent
then a factorization of @tcode{@var{A}+@var{x}*@var{y}.'} can be obtained
either as

@example
[@var{L1}, @var{U1}] = lu (@var{L}, @var{U}, @var{P}*@var{x}, @var{y})
@end example

@noindent
or

@example
[@var{L1}, @var{U1}, @var{P1}] = lu (@var{L}, @var{U}, @var{P}, @var{x}, @var{y})
@end example

The first form uses the unpivoted algorithm, which is faster, but less
stable.  The second form uses a slower pivoted algorithm, which is more
stable.

The matrix case is done as a sequence of rank-1 updates;
thus, for large enough k, it will be both faster and more accurate to
recompute the factorization from scratch.
@seealso{@ref{XREFlu,,lu}, @ref{XREFcholupdate,,cholupdate}, @ref{XREFqrupdate,,qrupdate}}
@end deftypefn


@c qr libinterp/dldfcn/qr.cc
@anchor{XREFqr}
@deftypefn  {Loadable Function} {[@var{Q}, @var{R}, @var{P}] =} qr (@var{A})
@deftypefnx {Loadable Function} {[@var{Q}, @var{R}, @var{P}] =} qr (@var{A}, '0')
@deftypefnx {Loadable Function} {[@var{C}, @var{R}] =} qr (@var{A}, @var{B})
@deftypefnx {Loadable Function} {[@var{C}, @var{R}] =} qr (@var{A}, @var{B}, '0')
@cindex QR factorization
Compute the QR@tie{}factorization of @var{A}, using standard @sc{lapack}
subroutines.  For example, given the matrix @code{@var{A} = [1, 2; 3, 4]},

@example
[@var{Q}, @var{R}] = qr (@var{A})
@end example

@noindent
returns

@example
@group
@var{Q} =

  -0.31623  -0.94868
  -0.94868   0.31623

@var{R} =

  -3.16228  -4.42719
   0.00000  -0.63246
@end group
@end example

The @code{qr} factorization has applications in the solution of least
squares problems
@tex
$$
\min_x \left\Vert A x - b \right\Vert_2
$$
@end tex
@ifnottex

@example
min norm(A x - b)
@end example

@end ifnottex
for overdetermined systems of equations (i.e.,
@tex
$A$
@end tex
@ifnottex
@var{A}
@end ifnottex
 is a tall, thin matrix).  The QR@tie{}factorization is
@tex
$QR = A$ where $Q$ is an orthogonal matrix and $R$ is upper triangular.
@end tex
@ifnottex
@code{@var{Q} * @var{R} = @var{A}} where @var{Q} is an orthogonal matrix and
@var{R} is upper triangular.
@end ifnottex

If given a second argument of @qcode{'0'}, @code{qr} returns an economy-sized
QR@tie{}factorization, omitting zero rows of @var{R} and the corresponding
columns of @var{Q}.

If the matrix @var{A} is full, the permuted QR@tie{}factorization
@code{[@var{Q}, @var{R}, @var{P}] = qr (@var{A})} forms the
QR@tie{}factorization such that the diagonal entries of @var{R} are
decreasing in magnitude order.  For example, given the matrix @code{a = [1,
2; 3, 4]},

@example
[@var{Q}, @var{R}, @var{P}] = qr (@var{A})
@end example

@noindent
returns

@example
@group
@var{Q} =

  -0.44721  -0.89443
  -0.89443   0.44721

@var{R} =

  -4.47214  -3.13050
   0.00000   0.44721

@var{P} =

   0  1
   1  0
@end group
@end example

The permuted @code{qr} factorization @code{[@var{Q}, @var{R}, @var{P}] = qr
(@var{A})} factorization allows the construction of an orthogonal basis of
@code{span (A)}.

If the matrix @var{A} is sparse, then compute the sparse
QR@tie{}factorization of @var{A}, using @sc{CSparse}.  As the matrix @var{Q}
is in general a full matrix, this function returns the @var{Q}-less
factorization @var{R} of @var{A}, such that @code{@var{R} = chol (@var{A}' *
@var{A})}.

If the final argument is the scalar @code{0} and the number of rows is
larger than the number of columns, then an economy factorization is
returned.  That is @var{R} will have only @code{size (@var{A},1)} rows.

If an additional matrix @var{B} is supplied, then @code{qr} returns
@var{C}, where @code{@var{C} = @var{Q}' * @var{B}}.  This allows the
least squares approximation of @code{@var{A} \ @var{B}} to be calculated
as

@example
@group
[@var{C}, @var{R}] = qr (@var{A}, @var{B})
x = @var{R} \ @var{C}
@end group
@end example
@seealso{@ref{XREFchol,,chol}, @ref{XREFhess,,hess}, @ref{XREFlu,,lu}, @ref{XREFqz,,qz}, @ref{XREFschur,,schur}, @ref{XREFsvd,,svd}, @ref{XREFqrupdate,,qrupdate}, @ref{XREFqrinsert,,qrinsert}, @ref{XREFqrdelete,,qrdelete}, @ref{XREFqrshift,,qrshift}}
@end deftypefn


@c qrupdate libinterp/dldfcn/qr.cc
@anchor{XREFqrupdate}
@deftypefn {Loadable Function} {[@var{Q1}, @var{R1}] =} qrupdate (@var{Q}, @var{R}, @var{u}, @var{v})
Given a QR@tie{}factorization of a real or complex matrix
@w{@var{A} = @var{Q}*@var{R}}, @var{Q}@tie{}unitary and
@var{R}@tie{}upper trapezoidal, return the QR@tie{}factorization
of @w{@var{A} + @var{u}*@var{v}'}, where @var{u} and @var{v} are
column vectors (rank-1 update) or matrices with equal number of columns
(rank-k update).  Notice that the latter case is done as a sequence of rank-1
updates; thus, for k large enough, it will be both faster and more accurate
to recompute the factorization from scratch.

The QR@tie{}factorization supplied may be either full
(Q is square) or economized (R is square).

@seealso{@ref{XREFqr,,qr}, @ref{XREFqrinsert,,qrinsert}, @ref{XREFqrdelete,,qrdelete}, @ref{XREFqrshift,,qrshift}}
@end deftypefn


@c qrinsert libinterp/dldfcn/qr.cc
@anchor{XREFqrinsert}
@deftypefn {Loadable Function} {[@var{Q1}, @var{R1}] =} qrinsert (@var{Q}, @var{R}, @var{j}, @var{x}, @var{orient})
Given a QR@tie{}factorization of a real or complex matrix
@w{@var{A} = @var{Q}*@var{R}}, @var{Q}@tie{}unitary and
@var{R}@tie{}upper trapezoidal, return the QR@tie{}factorization of
@w{[A(:,1:j-1) x A(:,j:n)]}, where @var{u} is a column vector to be
inserted into @var{A} (if @var{orient} is @qcode{"col"}), or the
QR@tie{}factorization of @w{[A(1:j-1,:);x;A(:,j:n)]}, where @var{x}
is a row vector to be inserted into @var{A} (if @var{orient} is
@qcode{"row"}).

The default value of @var{orient} is @qcode{"col"}.
If @var{orient} is @qcode{"col"},
@var{u} may be a matrix and @var{j} an index vector
resulting in the QR@tie{}factorization of a matrix @var{B} such that
@w{B(:,@var{j})} gives @var{u} and @w{B(:,@var{j}) = []} gives @var{A}.
Notice that the latter case is done as a sequence of k insertions;
thus, for k large enough, it will be both faster and more accurate to
recompute the factorization from scratch.

If @var{orient} is @qcode{"col"},
the QR@tie{}factorization supplied may be either full
(Q is square) or economized (R is square).

If @var{orient} is @qcode{"row"}, full factorization is needed.
@seealso{@ref{XREFqr,,qr}, @ref{XREFqrupdate,,qrupdate}, @ref{XREFqrdelete,,qrdelete}, @ref{XREFqrshift,,qrshift}}
@end deftypefn


@c qrdelete libinterp/dldfcn/qr.cc
@anchor{XREFqrdelete}
@deftypefn {Loadable Function} {[@var{Q1}, @var{R1}] =} qrdelete (@var{Q}, @var{R}, @var{j}, @var{orient})
Given a QR@tie{}factorization of a real or complex matrix
@w{@var{A} = @var{Q}*@var{R}}, @var{Q}@tie{}unitary and
@var{R}@tie{}upper trapezoidal, return the QR@tie{}factorization of
@w{[A(:,1:j-1) A(:,j+1:n)]}, i.e., @var{A} with one column deleted
(if @var{orient} is @qcode{"col"}), or the QR@tie{}factorization of
@w{[A(1:j-1,:);A(j+1:n,:)]}, i.e., @var{A} with one row deleted (if
@var{orient} is @qcode{"row"}).

The default value of @var{orient} is @qcode{"col"}.

If @var{orient} is @qcode{"col"},
@var{j} may be an index vector
resulting in the QR@tie{}factorization of a matrix @var{B} such that
@w{A(:,@var{j}) = []} gives @var{B}.
Notice that the latter case is done as a sequence of k deletions;
thus, for k large enough, it will be both faster and more accurate to
recompute the factorization from scratch.

If @var{orient} is @qcode{"col"},
the QR@tie{}factorization supplied may be either full
(Q is square) or economized (R is square).

If @var{orient} is @qcode{"row"}, full factorization is needed.
@seealso{@ref{XREFqr,,qr}, @ref{XREFqrupdate,,qrupdate}, @ref{XREFqrinsert,,qrinsert}, @ref{XREFqrshift,,qrshift}}
@end deftypefn


@c qrshift libinterp/dldfcn/qr.cc
@anchor{XREFqrshift}
@deftypefn {Loadable Function} {[@var{Q1}, @var{R1}] =} qrshift (@var{Q}, @var{R}, @var{i}, @var{j})
Given a QR@tie{}factorization of a real or complex matrix
@w{@var{A} = @var{Q}*@var{R}}, @var{Q}@tie{}unitary and
@var{R}@tie{}upper trapezoidal, return the QR@tie{}factorization
of @w{@var{A}(:,p)}, where @w{p} is the permutation @*
@code{p = [1:i-1, shift(i:j, 1), j+1:n]} if @w{@var{i} < @var{j}} @*
 or @*
@code{p = [1:j-1, shift(j:i,-1), i+1:n]} if @w{@var{j} < @var{i}}.  @*

@seealso{@ref{XREFqr,,qr}, @ref{XREFqrupdate,,qrupdate}, @ref{XREFqrinsert,,qrinsert}, @ref{XREFqrdelete,,qrdelete}}
@end deftypefn


@c qz libinterp/corefcn/qz.cc
@anchor{XREFqz}
@deftypefn  {Built-in Function} {@var{lambda} =} qz (@var{A}, @var{B})
@deftypefnx {Built-in Function} {@var{lambda} =} qz (@var{A}, @var{B}, @var{opt})
QZ@tie{}decomposition of the generalized eigenvalue problem
(@math{A x = s B x}).  There are three ways to call this function:
@enumerate
@item @code{@var{lambda} = qz (@var{A}, @var{B})}

Computes the generalized eigenvalues
@tex
$\lambda$
@end tex
@ifnottex
@var{lambda}
@end ifnottex
of @math{(A - s B)}.

@item @code{[AA, BB, Q, Z, V, W, @var{lambda}] = qz (@var{A}, @var{B})}

Computes QZ@tie{}decomposition, generalized eigenvectors, and
generalized eigenvalues of @math{(A - s B)}
@tex
$$ AV = BV{ \rm diag }(\lambda) $$
$$ W^T A = { \rm diag }(\lambda)W^T B $$
$$ AA = Q^T AZ, BB = Q^T BZ $$
@end tex
@ifnottex

@example
@group

A * V = B * V * diag (@var{lambda})
W' * A = diag (@var{lambda}) * W' * B
AA = Q * A * Z, BB = Q * B * Z

@end group
@end example

@end ifnottex
with @var{Q} and @var{Z} orthogonal (unitary)= @var{I}

@item @code{[AA,BB,Z@{, @var{lambda}@}] = qz (@var{A}, @var{B}, @var{opt})}

As in form [2], but allows ordering of generalized eigenpairs
for (e.g.) solution of discrete time algebraic Riccati equations.
Form 3 is not available for complex matrices, and does not compute
the generalized eigenvectors @var{V}, @var{W}, nor the orthogonal matrix
@var{Q}.

@table @var
@item opt
for ordering eigenvalues of the @nospell{GEP} pencil.  The leading block
of the revised pencil contains all eigenvalues that satisfy:

@table @asis
@item @qcode{"N"}
= unordered (default)

@item @qcode{"S"}
= small: leading block has all |lambda| @leq{} 1

@item @qcode{"B"}
= big: leading block has all |lambda| @geq{} 1

@item @qcode{"-"}
= negative real part: leading block has all eigenvalues
in the open left half-plane

@item @qcode{"+"}
= non-negative real part: leading block has all eigenvalues
in the closed right half-plane
@end table
@end table
@end enumerate

Note: @code{qz} performs permutation balancing, but not scaling
(@pxref{XREFbalance}).  The order of output arguments was selected for
compatibility with @sc{matlab}.
@seealso{@ref{XREFeig,,eig}, @ref{XREFbalance,,balance}, @ref{XREFlu,,lu}, @ref{XREFchol,,chol}, @ref{XREFhess,,hess}, @ref{XREFqr,,qr}, @ref{XREFqzhess,,qzhess}, @ref{XREFschur,,schur}, @ref{XREFsvd,,svd}}
@end deftypefn


@c qzhess scripts/linear-algebra/qzhess.m
@anchor{XREFqzhess}
@deftypefn {Function File} {[@var{aa}, @var{bb}, @var{q}, @var{z}] =} qzhess (@var{A}, @var{B})
Compute the Hessenberg-triangular decomposition of the matrix pencil
@code{(@var{A}, @var{B})}, returning
@code{@var{aa} = @var{q} * @var{A} * @var{z}},
@code{@var{bb} = @var{q} * @var{B} * @var{z}}, with @var{q} and @var{z}
orthogonal.  For example:

@example
@group
[aa, bb, q, z] = qzhess ([1, 2; 3, 4], [5, 6; 7, 8])
     @result{} aa = [ -3.02244, -4.41741;  0.92998,  0.69749 ]
     @result{} bb = [ -8.60233, -9.99730;  0.00000, -0.23250 ]
     @result{}  q = [ -0.58124, -0.81373; -0.81373,  0.58124 ]
     @result{}  z = [ 1, 0; 0, 1 ]
@end group
@end example

The Hessenberg-triangular decomposition is the first step in
Moler and Stewart's QZ@tie{}decomposition algorithm.

Algorithm taken from Golub and Van Loan,
@cite{Matrix Computations, 2nd edition}.

@seealso{@ref{XREFlu,,lu}, @ref{XREFchol,,chol}, @ref{XREFhess,,hess}, @ref{XREFqr,,qr}, @ref{XREFqz,,qz}, @ref{XREFschur,,schur}, @ref{XREFsvd,,svd}}
@end deftypefn


@c schur libinterp/corefcn/schur.cc
@anchor{XREFschur}
@deftypefn  {Built-in Function} {@var{S} =} schur (@var{A})
@deftypefnx {Built-in Function} {@var{S} =} schur (@var{A}, "real")
@deftypefnx {Built-in Function} {@var{S} =} schur (@var{A}, "complex")
@deftypefnx {Built-in Function} {@var{S} =} schur (@var{A}, @var{opt})
@deftypefnx {Built-in Function} {[@var{U}, @var{S}] =} schur (@var{A}, @dots{})
@cindex Schur decomposition
Compute the Schur@tie{}decomposition of @var{A}
@tex
$$
 S = U^T A U
$$
@end tex
@ifnottex

@example
@code{@var{S} = @var{U}' * @var{A} * @var{U}}
@end example

@end ifnottex
where @var{U} is a unitary matrix
@tex
($U^T U$ is identity)
@end tex
@ifnottex
(@code{@var{U}'* @var{U}} is identity)
@end ifnottex
and @var{S} is upper triangular.  The eigenvalues of @var{A} (and @var{S})
are the diagonal elements of @var{S}.  If the matrix @var{A}
is real, then the real Schur@tie{}decomposition is computed, in which the
matrix @var{U} is orthogonal and @var{S} is block upper triangular
with blocks of size at most
@tex
$2 \times 2$
@end tex
@ifnottex
@code{2 x 2}
@end ifnottex
along the diagonal.  The diagonal elements of @var{S}
(or the eigenvalues of the
@tex
$2 \times 2$
@end tex
@ifnottex
@code{2 x 2}
@end ifnottex
blocks, when appropriate) are the eigenvalues of @var{A} and @var{S}.

The default for real matrices is a real Schur@tie{}decomposition.
A complex decomposition may be forced by passing the flag
@qcode{"complex"}.

The eigenvalues are optionally ordered along the diagonal according to
the value of @var{opt}.  @code{@var{opt} = "a"} indicates that all
eigenvalues with negative real parts should be moved to the leading
block of @var{S}
(used in @code{are}), @code{@var{opt} = "d"} indicates that all eigenvalues
with magnitude less than one should be moved to the leading block of @var{S}
(used in @code{dare}), and @code{@var{opt} = "u"}, the default, indicates
that no ordering of eigenvalues should occur.  The leading @var{k}
columns of @var{U} always span the @var{A}-invariant
subspace corresponding to the @var{k} leading eigenvalues of @var{S}.

The Schur@tie{}decomposition is used to compute eigenvalues of a
square matrix, and has applications in the solution of algebraic
Riccati equations in control (see @code{are} and @code{dare}).
@seealso{@ref{XREFrsf2csf,,rsf2csf}, @ref{XREFlu,,lu}, @ref{XREFchol,,chol}, @ref{XREFhess,,hess}, @ref{XREFqr,,qr}, @ref{XREFqz,,qz}, @ref{XREFsvd,,svd}}
@end deftypefn


@c rsf2csf libinterp/corefcn/schur.cc
@anchor{XREFrsf2csf}
@deftypefn {Function File} {[@var{U}, @var{T}] =} rsf2csf (@var{UR}, @var{TR})
Convert a real, upper quasi-triangular Schur@tie{}form @var{TR} to a complex,
upper triangular Schur@tie{}form @var{T}.

Note that the following relations hold:

@tex
$UR \cdot TR \cdot {UR}^T = U T U^{\dagger}$ and
$U^{\dagger} U$ is the identity matrix I.
@end tex
@ifnottex
@tcode{@var{UR} * @var{TR} * @var{UR}' = @var{U} * @var{T} * @var{U}'} and
@code{@var{U}' * @var{U}} is the identity matrix I.
@end ifnottex

Note also that @var{U} and @var{T} are not unique.
@seealso{@ref{XREFschur,,schur}}
@end deftypefn


@c subspace scripts/linear-algebra/subspace.m
@anchor{XREFsubspace}
@deftypefn {Function File} {@var{angle} =} subspace (@var{A}, @var{B})
Determine the largest principal angle between two subspaces
spanned by the columns of matrices @var{A} and @var{B}.
@end deftypefn


@c svd libinterp/corefcn/svd.cc
@anchor{XREFsvd}
@deftypefn  {Built-in Function} {@var{s} =} svd (@var{A})
@deftypefnx {Built-in Function} {[@var{U}, @var{S}, @var{V}] =} svd (@var{A})
@deftypefnx {Built-in Function} {[@var{U}, @var{S}, @var{V}] =} svd (@var{A}, @var{econ})
@cindex singular value decomposition
Compute the singular value decomposition of @var{A}
@tex
$$
 A = U S V^{\dagger}
$$
@end tex
@ifnottex

@example
A = U*S*V'
@end example

@end ifnottex

The function @code{svd} normally returns only the vector of singular values.
When called with three return values, it computes
@tex
$U$, $S$, and $V$.
@end tex
@ifnottex
@var{U}, @var{S}, and @var{V}.
@end ifnottex
For example,

@example
svd (hilb (3))
@end example

@noindent
returns

@example
@group
ans =

  1.4083189
  0.1223271
  0.0026873
@end group
@end example

@noindent
and

@example
[u, s, v] = svd (hilb (3))
@end example

@noindent
returns

@example
@group
u =

  -0.82704   0.54745   0.12766
  -0.45986  -0.52829  -0.71375
  -0.32330  -0.64901   0.68867

s =

  1.40832  0.00000  0.00000
  0.00000  0.12233  0.00000
  0.00000  0.00000  0.00269

v =

  -0.82704   0.54745   0.12766
  -0.45986  -0.52829  -0.71375
  -0.32330  -0.64901   0.68867
@end group
@end example

If given a second argument, @code{svd} returns an economy-sized
decomposition, eliminating the unnecessary rows or columns of @var{U} or
@var{V}.
@seealso{@ref{XREFsvd_driver,,svd_driver}, @ref{XREFsvds,,svds}, @ref{XREFeig,,eig}, @ref{XREFlu,,lu}, @ref{XREFchol,,chol}, @ref{XREFhess,,hess}, @ref{XREFqr,,qr}, @ref{XREFqz,,qz}}
@end deftypefn


@c svd_driver libinterp/corefcn/svd.cc
@anchor{XREFsvd_driver}
@deftypefn  {Built-in Function} {@var{val} =} svd_driver ()
@deftypefnx {Built-in Function} {@var{old_val} =} svd_driver (@var{new_val})
@deftypefnx {Built-in Function} {} svd_driver (@var{new_val}, "local")
Query or set the underlying @sc{lapack} driver used by @code{svd}.
Currently recognized values are @qcode{"gesvd"} and @qcode{"gesdd"}.  
The default is @qcode{"gesvd"}.

When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.  
The original variable value is restored when exiting the function.
@seealso{@ref{XREFsvd,,svd}}
@end deftypefn


@c FIXME -- should there be a new section here?

@c housh scripts/linear-algebra/housh.m
@anchor{XREFhoush}
@deftypefn {Function File} {[@var{housv}, @var{beta}, @var{zer}] =} housh (@var{x}, @var{j}, @var{z})
Compute Householder reflection vector @var{housv} to reflect @var{x}
to be the j-th column of identity, i.e.,

@example
@group
(I - beta*housv*housv')x =  norm (x)*e(j) if x(j) < 0,
(I - beta*housv*housv')x = -norm (x)*e(j) if x(j) >= 0
@end group
@end example

@noindent
Inputs

@table @var
@item x
vector

@item j
index into vector

@item z
threshold for zero  (usually should be the number 0)
@end table

@noindent
Outputs (see Golub and Van Loan):

@table @var
@item beta
If beta = 0, then no reflection need be applied (@nospell{zer} set to 0)

@item housv
householder vector
@end table
@end deftypefn


@c krylov scripts/linear-algebra/krylov.m
@anchor{XREFkrylov}
@deftypefn {Function File} {[@var{u}, @var{h}, @var{nu}] =} krylov (@var{A}, @var{V}, @var{k}, @var{eps1}, @var{pflg})
Construct an orthogonal basis @var{u} of block Krylov subspace

@example
[v a*v a^2*v @dots{} a^(k+1)*v]
@end example

@noindent
Using Householder reflections to guard against loss of orthogonality.

If @var{V} is a vector, then @var{h} contains the Hessenberg matrix
such that @nospell{@tcode{a*u == u*h+rk*ek'}}, in which @code{rk =
a*u(:,k)-u*h(:,k)}, and @nospell{@tcode{ek'}} is the vector
@code{[0, 0, @dots{}, 1]} of length @code{k}.  Otherwise, @var{h} is
meaningless.

If @var{V} is a vector and @var{k} is greater than
@code{length (A) - 1}, then @var{h} contains the Hessenberg matrix such
that @code{a*u == u*h}.

The value of @var{nu} is the dimension of the span of the Krylov
subspace (based on @var{eps1}).

If @var{b} is a vector and @var{k} is greater than @var{m-1}, then
@var{h} contains the Hessenberg decomposition of @var{A}.

The optional parameter @var{eps1} is the threshold for zero.  The
default value is 1e-12.

If the optional parameter @var{pflg} is nonzero, row pivoting is used
to improve numerical behavior.  The default value is 0.

Reference: A. Hodel, P. Misra, @cite{Partial Pivoting in the Computation of
Krylov Subspaces of Large Sparse Systems}, Proceedings of the 42nd IEEE
Conference on Decision and Control, December 2003.
@end deftypefn


@node Functions of a Matrix
@section Functions of a Matrix
@cindex matrix, functions of

@c expm scripts/linear-algebra/expm.m
@anchor{XREFexpm}
@deftypefn {Function File} {} expm (@var{A})
Return the exponential of a matrix, defined as the infinite Taylor
series
@tex
$$
 \exp (A) = I + A + {A^2 \over 2!} + {A^3 \over 3!} + \cdots
$$
@end tex
@ifnottex

@example
expm (A) = I + A + A^2/2! + A^3/3! + @dots{}
@end example

@end ifnottex
The Taylor series is @emph{not} the way to compute the matrix
exponential; see Moler and Van Loan, @cite{Nineteen Dubious Ways to
Compute the Exponential of a Matrix}, SIAM Review, 1978.  This routine
uses Ward's diagonal Pad@'e approximation method with three step
preconditioning (SIAM Journal on Numerical Analysis, 1977).  Diagonal
Pad@'e approximations are rational polynomials of matrices
@tex
$D_q(A)^{-1}N_q(A)$
@end tex
@ifnottex

@example
@group
     -1
D (A)   N (A)
@end group
@end example

@end ifnottex
whose Taylor series matches the first
@tex
$2 q + 1 $
@end tex
@ifnottex
@code{2q+1}
@end ifnottex
terms of the Taylor series above; direct evaluation of the Taylor series
(with the same preconditioning steps) may be desirable in lieu of the
Pad@'e approximation when
@tex
$D_q(A)$
@end tex
@ifnottex
@code{Dq(A)}
@end ifnottex
is ill-conditioned.
@seealso{@ref{XREFlogm,,logm}, @ref{XREFsqrtm,,sqrtm}}
@end deftypefn


@c logm scripts/linear-algebra/logm.m
@anchor{XREFlogm}
@deftypefn  {Function File} {@var{s} =} logm (@var{A})
@deftypefnx {Function File} {@var{s} =} logm (@var{A}, @var{opt_iters})
@deftypefnx {Function File} {[@var{s}, @var{iters}] =} logm (@dots{})
Compute the matrix logarithm of the square matrix @var{A}.  The
implementation utilizes a Pad@'e approximant and the identity

@example
logm (@var{A}) = 2^k * logm (@var{A}^(1 / 2^k))
@end example

The optional argument @var{opt_iters} is the maximum number of square roots
to compute and defaults to 100.  The optional output @var{iters} is the
number of square roots actually computed.
@seealso{@ref{XREFexpm,,expm}, @ref{XREFsqrtm,,sqrtm}}
@end deftypefn


@c sqrtm libinterp/corefcn/sqrtm.cc
@anchor{XREFsqrtm}
@deftypefn  {Built-in Function} {@var{s} =} sqrtm (@var{A})
@deftypefnx {Built-in Function} {[@var{s}, @var{error_estimate}] =} sqrtm (@var{A})
Compute the matrix square root of the square matrix @var{A}.

Ref: N.J. Higham.  @cite{A New sqrtm for @sc{matlab}}.  Numerical
Analysis Report No. 336, Manchester @nospell{Centre} for Computational
Mathematics, Manchester, England, January 1999.
@seealso{@ref{XREFexpm,,expm}, @ref{XREFlogm,,logm}}
@end deftypefn


@c kron libinterp/corefcn/kron.cc
@anchor{XREFkron}
@deftypefn  {Built-in Function} {} kron (@var{A}, @var{B})
@deftypefnx {Built-in Function} {} kron (@var{A1}, @var{A2}, @dots{})
Form the Kronecker product of two or more matrices, defined block by 
block as

@example
x = [ a(i,j)*b ]
@end example

For example:

@example
@group
kron (1:4, ones (3, 1))
     @result{}  1  2  3  4
         1  2  3  4
         1  2  3  4
@end group
@end example

If there are more than two input arguments @var{A1}, @var{A2}, @dots{}, 
@var{An} the Kronecker product is computed as

@example
kron (kron (@var{A1}, @var{A2}), @dots{}, @var{An})
@end example

@noindent
Since the Kronecker product is associative, this is well-defined.
@end deftypefn


@c blkmm libinterp/corefcn/dot.cc
@anchor{XREFblkmm}
@deftypefn {Built-in Function} {} blkmm (@var{A}, @var{B})
Compute products of matrix blocks.  The blocks are given as
2-dimensional subarrays of the arrays @var{A}, @var{B}.
The size of @var{A} must have the form @code{[m,k,@dots{}]} and
size of @var{B} must be @code{[k,n,@dots{}]}.  The result is
then of size @code{[m,n,@dots{}]} and is computed as follows:

@example
@group
for i = 1:prod (size (@var{A})(3:end))
  @var{C}(:,:,i) = @var{A}(:,:,i) * @var{B}(:,:,i)
endfor
@end group
@end example
@end deftypefn


@c syl libinterp/corefcn/syl.cc
@anchor{XREFsyl}
@deftypefn {Built-in Function} {@var{x} =} syl (@var{A}, @var{B}, @var{C})
Solve the Sylvester equation
@tex
$$
 A X + X B + C = 0
$$
@end tex
@ifnottex

@example
A X + X B + C = 0
@end example

@end ifnottex
using standard @sc{lapack} subroutines.  For example:

@example
@group
syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])
   @result{} [ -0.50000, -0.66667; -0.66667, -0.50000 ]
@end group
@end example
@end deftypefn


@node Specialized Solvers
@section Specialized Solvers
@cindex matrix, specialized solvers

@c bicg scripts/sparse/bicg.m
@anchor{XREFbicg}
@deftypefn  {Function File} {@var{x} =} bicg (@var{A}, @var{b}, @var{rtol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0})
@deftypefnx {Function File} {@var{x} =} bicg (@var{A}, @var{b}, @var{rtol}, @var{maxit}, @var{P})
@deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} bicg (@var{A}, @var{b}, @dots{})
Solve @code{A x = b} using the Bi-conjugate gradient iterative method.

@itemize @minus
@item @var{rtol} is the relative tolerance, if not given
or set to [] the default value 1e-6 is used.

@item @var{maxit} the maximum number of outer iterations,
if not given or set to [] the default value
@code{min (20, numel (b))} is used.

@item @var{x0} the initial guess, if not given or set to []
the default value @code{zeros (size (b))} is used.
@end itemize

@var{A} can be passed as a matrix or as a function handle or
inline function @code{f} such that @code{f(x, "notransp") = A*x}
and @code{f(x, "transp") = A'*x}.

The preconditioner @var{P} is given as @code{P = M1 * M2}.
Both @var{M1} and @var{M2} can be passed as a matrix or as
a function handle or inline function @code{g} such that
@code{g(x, "notransp") = M1 \ x} or @code{g(x, "notransp") = M2 \ x} and
@code{g(x, "transp") = M1' \ x} or @code{g(x, "transp") = M2' \ x}.

If called with more than one output parameter

@itemize @minus
@item @var{flag} indicates the exit status:

@itemize @minus
@item 0: iteration converged to the within the chosen tolerance

@item 1: the maximum number of iterations was reached before convergence

@item 3: the algorithm reached stagnation
@end itemize

(the value 2 is unused but skipped for compatibility).

@item @var{relres} is the final value of the relative residual.

@item @var{iter} is the number of iterations performed.

@item @var{resvec} is a vector containing the relative residual at each iteration.
@end itemize

@seealso{@ref{XREFbicgstab,,bicgstab}, @ref{XREFcgs,,cgs}, @ref{XREFgmres,,gmres}, @ref{XREFpcg,,pcg}}

@end deftypefn


@c bicgstab scripts/sparse/bicgstab.m
@anchor{XREFbicgstab}
@deftypefn  {Function File} {@var{x} =} bicgstab (@var{A}, @var{b}, @var{rtol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0})
@deftypefnx {Function File} {@var{x} =} bicgstab (@var{A}, @var{b}, @var{rtol}, @var{maxit}, @var{P})
@deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} bicgstab (@var{A}, @var{b}, @dots{})
Solve @code{A x = b} using the stabilizied Bi-conjugate gradient iterative
method.

@itemize @minus
@item @var{rtol} is the relative tolerance, if not given or set to
[] the default value 1e-6 is used.

@item @var{maxit} the maximum number of outer iterations, if not
given or set to [] the default value @code{min (20, numel (b))} is
used.

@item @var{x0} the initial guess, if not given or set to [] the
default value @code{zeros (size (b))} is used.
@end itemize

@var{A} can be passed as a matrix or as a function handle or
inline function @code{f} such that @code{f(x) = A*x}.

The preconditioner @var{P} is given as @code{P = M1 * M2}.
Both @var{M1} and @var{M2} can be passed as a matrix or as a function
handle or inline function @code{g} such that @code{g(x) = M1 \ x} or
@code{g(x) = M2 \ x}.

If called with more than one output parameter

@itemize @minus
@item @var{flag} indicates the exit status:

@itemize @minus
@item 0: iteration converged to the within the chosen tolerance

@item 1: the maximum number of iterations was reached before convergence

@item 3: the algorithm reached stagnation
@end itemize

(the value 2 is unused but skipped for compatibility).

@item @var{relres} is the final value of the relative residual.

@item @var{iter} is the number of iterations performed.

@item @var{resvec} is a vector containing the relative residual at each iteration.
@end itemize

@seealso{@ref{XREFbicg,,bicg}, @ref{XREFcgs,,cgs}, @ref{XREFgmres,,gmres}, @ref{XREFpcg,,pcg}}

@end deftypefn


@c cgs scripts/sparse/cgs.m
@anchor{XREFcgs}
@deftypefn  {Function File} {@var{x} =} cgs (@var{A}, @var{b}, @var{rtol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0})
@deftypefnx {Function File} {@var{x} =} cgs (@var{A}, @var{b}, @var{rtol}, @var{maxit}, @var{P})
@deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} cgs (@var{A}, @var{b}, @dots{})
Solve @code{A x = b}, where @var{A} is a square matrix, using the
Conjugate Gradients Squared method.

@itemize @minus
@item @var{rtol} is the relative tolerance, if not given or set to []
the default value 1e-6 is used.

@item @var{maxit} the maximum number of outer iterations, if not
given or set to [] the default value @code{min (20, numel (b))} is
used.

@item @var{x0} the initial guess, if not given or set to [] the
default value @code{zeros (size (b))} is used.
@end itemize

@var{A} can be passed as a matrix or as a function handle or
inline function @code{f} such that @code{f(x) = A*x}.

The preconditioner @var{P} is given as @code{P = M1 * M2}.
Both @var{M1} and @var{M2} can be passed as a matrix or as a function
handle or inline function @code{g} such that @code{g(x) = M1 \ x} or
@code{g(x) = M2 \ x}.

If called with more than one output parameter

@itemize @minus
@item @var{flag} indicates the exit status:

@itemize @minus
@item 0: iteration converged to the within the chosen tolerance

@item 1: the maximum number of iterations was reached before convergence

@item 3: the algorithm reached stagnation
@end itemize

(the value 2 is unused but skipped for compatibility).

@item @var{relres} is the final value of the relative residual.

@item @var{iter} is the number of iterations performed.

@item @var{resvec} is a vector containing the relative residual at
each iteration.
@end itemize

@seealso{@ref{XREFpcg,,pcg}, @ref{XREFbicgstab,,bicgstab}, @ref{XREFbicg,,bicg}, @ref{XREFgmres,,gmres}}
@end deftypefn


@c gmres scripts/sparse/gmres.m
@anchor{XREFgmres}
@deftypefn  {Function File} {@var{x} =} gmres (@var{A}, @var{b}, @var{m}, @var{rtol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0})
@deftypefnx {Function File} {@var{x} =} gmres (@var{A}, @var{b}, @var{m}, @var{rtol}, @var{maxit}, @var{P})
@deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} gmres (@dots{})
Solve @code{A x = b} using the Preconditioned GMRES iterative method
with restart, a.k.a. PGMRES(m).

@itemize @minus
@item @var{rtol} is the relative tolerance,
if not given or set to [] the default value 1e-6 is used.

@item @var{maxit} is the maximum number of outer iterations,
if not given or set to [] the default value
@code{min (10, numel (b) / restart)} is used.

@item @var{x0} is the initial guess,
if not given or set to [] the default value @code{zeros (size (b))} is used.

@item @var{m} is the restart parameter,
if not given or set to [] the default value @code{numel (b)} is used.
@end itemize

Argument @var{A} can be passed as a matrix, function handle, or
inline function @code{f} such that @code{f(x) = A*x}.

The preconditioner @var{P} is given as @code{P = M1 * M2}.
Both @var{M1} and @var{M2} can be passed as a matrix, function handle, or
inline function @code{g} such that @code{g(x) = M1\x} or @code{g(x) = M2\x}.

Besides the vector @var{x}, additional outputs are:

@itemize @minus
@item @var{flag} indicates the exit status:

@table @asis
@item 0 : iteration converged to within the specified tolerance

@item 1 : maximum number of iterations exceeded

@item 2 : unused, but skipped for compatibility

@item 3 : algorithm reached stagnation (no change between iterations)
@end table

@item @var{relres} is the final value of the relative residual.

@item @var{iter} is a vector containing the number of outer iterations and
total iterations performed.

@item @var{resvec} is a vector containing the relative residual at each
iteration.
@end itemize

@seealso{@ref{XREFbicg,,bicg}, @ref{XREFbicgstab,,bicgstab}, @ref{XREFcgs,,cgs}, @ref{XREFpcg,,pcg}}
@end deftypefn