1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 1996-2013 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
@c for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <http://www.gnu.org/licenses/>.
@node Matrix Manipulation
@chapter Matrix Manipulation
There are a number of functions available for checking to see if the
elements of a matrix meet some condition, and for rearranging the
elements of a matrix. For example, Octave can easily tell you if all
the elements of a matrix are finite, or are less than some specified
value. Octave can also rotate the elements, extract the upper- or
lower-triangular parts, or sort the columns of a matrix.
@menu
* Finding Elements and Checking Conditions::
* Rearranging Matrices::
* Special Utility Matrices::
* Famous Matrices::
@end menu
@node Finding Elements and Checking Conditions
@section Finding Elements and Checking Conditions
The functions @code{any} and @code{all} are useful for determining
whether any or all of the elements of a matrix satisfy some condition.
The @code{find} function is also useful in determining which elements of
a matrix meet a specified condition.
@c any libinterp/corefcn/data.cc
@anchor{XREFany}
@deftypefn {Built-in Function} {} any (@var{x})
@deftypefnx {Built-in Function} {} any (@var{x}, @var{dim})
For a vector argument, return true (logical 1) if any element of the vector
is non-zero.
For a matrix argument, return a row vector of logical ones and
zeros with each element indicating whether any of the elements of the
corresponding column of the matrix are non-zero. For example:
@example
@group
any (eye (2, 4))
@result{} [ 1, 1, 0, 0 ]
@end group
@end example
If the optional argument @var{dim} is supplied, work along dimension
@var{dim}. For example:
@example
@group
any (eye (2, 4), 2)
@result{} [ 1; 1 ]
@end group
@end example
@seealso{@ref{XREFall,,all}}
@end deftypefn
@c all libinterp/corefcn/data.cc
@anchor{XREFall}
@deftypefn {Built-in Function} {} all (@var{x})
@deftypefnx {Built-in Function} {} all (@var{x}, @var{dim})
For a vector argument, return true (logical 1) if all elements of the vector
are non-zero.
For a matrix argument, return a row vector of logical ones and
zeros with each element indicating whether all of the elements of the
corresponding column of the matrix are non-zero. For example:
@example
@group
all ([2, 3; 1, 0]))
@result{} [ 1, 0 ]
@end group
@end example
If the optional argument @var{dim} is supplied, work along dimension
@var{dim}.
@seealso{@ref{XREFany,,any}}
@end deftypefn
Since the comparison operators (@pxref{Comparison Ops}) return matrices
of ones and zeros, it is easy to test a matrix for many things, not just
whether the elements are nonzero. For example,
@example
@group
all (all (rand (5) < 0.9))
@result{} 0
@end group
@end example
@noindent
tests a random 5 by 5 matrix to see if all of its elements are less
than 0.9.
Note that in conditional contexts (like the test clause of @code{if} and
@code{while} statements) Octave treats the test as if you had typed
@code{all (all (condition))}.
@c xor scripts/miscellaneous/xor.m
@anchor{XREFxor}
@deftypefn {Mapping Function} {@var{z} =} xor (@var{x}, @var{y})
Return the @dfn{exclusive or} of the entries of @var{x} and @var{y}.
For boolean expressions @var{x} and @var{y},
@code{xor (@var{x}, @var{y})} is true if and only if one of @var{x} or
@var{y} is true. Otherwise, for @var{x} and @var{y} both true or both
false, @code{xor} returns false.
The truth table for the xor operation is
@multitable @columnfractions 0.44 .03 .05 .03 0.44
@item @tab @var{x} @tab @var{y} @tab @var{z} @tab
@item @tab 0 @tab 0 @tab 0 @tab
@item @tab 1 @tab 0 @tab 1 @tab
@item @tab 0 @tab 1 @tab 1 @tab
@item @tab 1 @tab 1 @tab 0 @tab
@end multitable
@seealso{@ref{XREFand,,and}, @ref{XREFor,,or}, @ref{XREFnot,,not}}
@end deftypefn
@c diff libinterp/corefcn/data.cc
@anchor{XREFdiff}
@deftypefn {Built-in Function} {} diff (@var{x})
@deftypefnx {Built-in Function} {} diff (@var{x}, @var{k})
@deftypefnx {Built-in Function} {} diff (@var{x}, @var{k}, @var{dim})
If @var{x} is a vector of length @math{n}, @code{diff (@var{x})} is the
vector of first differences
@tex
$x_2 - x_1, \ldots{}, x_n - x_{n-1}$.
@end tex
@ifnottex
@var{x}(2) - @var{x}(1), @dots{}, @var{x}(n) - @var{x}(n-1).
@end ifnottex
If @var{x} is a matrix, @code{diff (@var{x})} is the matrix of column
differences along the first non-singleton dimension.
The second argument is optional. If supplied, @code{diff (@var{x},
@var{k})}, where @var{k} is a non-negative integer, returns the
@var{k}-th differences. It is possible that @var{k} is larger than
the first non-singleton dimension of the matrix. In this case,
@code{diff} continues to take the differences along the next
non-singleton dimension.
The dimension along which to take the difference can be explicitly
stated with the optional variable @var{dim}. In this case the
@var{k}-th order differences are calculated along this dimension.
In the case where @var{k} exceeds @code{size (@var{x}, @var{dim})}
an empty matrix is returned.
@seealso{@ref{XREFsort,,sort}, @ref{XREFmerge,,merge}}
@end deftypefn
@c isinf libinterp/corefcn/mappers.cc
@anchor{XREFisinf}
@deftypefn {Mapping Function} {} isinf (@var{x})
Return a logical array which is true where the elements of @var{x} are
are infinite and false where they are not.
For example:
@example
@group
isinf ([13, Inf, NA, NaN])
@result{} [ 0, 1, 0, 0 ]
@end group
@end example
@seealso{@ref{XREFisfinite,,isfinite}, @ref{XREFisnan,,isnan}, @ref{XREFisna,,isna}}
@end deftypefn
@c isnan libinterp/corefcn/mappers.cc
@anchor{XREFisnan}
@deftypefn {Mapping Function} {} isnan (@var{x})
Return a logical array which is true where the elements of @var{x} are
NaN values and false where they are not.
NA values are also considered NaN values. For example:
@example
@group
isnan ([13, Inf, NA, NaN])
@result{} [ 0, 0, 1, 1 ]
@end group
@end example
@seealso{@ref{XREFisna,,isna}, @ref{XREFisinf,,isinf}, @ref{XREFisfinite,,isfinite}}
@end deftypefn
@c isfinite libinterp/corefcn/mappers.cc
@anchor{XREFisfinite}
@deftypefn {Mapping Function} {} isfinite (@var{x})
@deftypefnx {Mapping Function} {} finite (@var{x})
Return a logical array which is true where the elements of @var{x} are
finite values and false where they are not.
For example:
@example
@group
finite ([13, Inf, NA, NaN])
@result{} [ 1, 0, 0, 0 ]
@end group
@end example
@seealso{@ref{XREFisinf,,isinf}, @ref{XREFisnan,,isnan}, @ref{XREFisna,,isna}}
@end deftypefn
@c common_size scripts/general/common_size.m
@anchor{XREFcommon_size}
@deftypefn {Function File} {[@var{err}, @var{y1}, @dots{}] =} common_size (@var{x1}, @dots{})
Determine if all input arguments are either scalar or of common
size. If so, @var{err} is zero, and @var{yi} is a matrix of the
common size with all entries equal to @var{xi} if this is a scalar or
@var{xi} otherwise. If the inputs cannot be brought to a common size,
@var{err} is 1, and @var{yi} is @var{xi}. For example:
@example
@group
[errorcode, a, b] = common_size ([1 2; 3 4], 5)
@result{} errorcode = 0
@result{} a = [ 1, 2; 3, 4 ]
@result{} b = [ 5, 5; 5, 5 ]
@end group
@end example
@noindent
This is useful for implementing functions where arguments can either
be scalars or of common size.
@end deftypefn
@c find libinterp/corefcn/find.cc
@anchor{XREFfind}
@deftypefn {Built-in Function} {@var{idx} =} find (@var{x})
@deftypefnx {Built-in Function} {@var{idx} =} find (@var{x}, @var{n})
@deftypefnx {Built-in Function} {@var{idx} =} find (@var{x}, @var{n}, @var{direction})
@deftypefnx {Built-in Function} {[i, j] =} find (@dots{})
@deftypefnx {Built-in Function} {[i, j, v] =} find (@dots{})
Return a vector of indices of nonzero elements of a matrix, as a row if
@var{x} is a row vector or as a column otherwise. To obtain a single index
for each matrix element, Octave pretends that the columns of a matrix form
one long vector (like Fortran arrays are stored). For example:
@example
@group
find (eye (2))
@result{} [ 1; 4 ]
@end group
@end example
If two outputs are requested, @code{find} returns the row and column
indices of nonzero elements of a matrix. For example:
@example
@group
[i, j] = find (2 * eye (2))
@result{} i = [ 1; 2 ]
@result{} j = [ 1; 2 ]
@end group
@end example
If three outputs are requested, @code{find} also returns a vector
containing the nonzero values. For example:
@example
@group
[i, j, v] = find (3 * eye (2))
@result{} i = [ 1; 2 ]
@result{} j = [ 1; 2 ]
@result{} v = [ 3; 3 ]
@end group
@end example
If two inputs are given, @var{n} indicates the maximum number of
elements to find from the beginning of the matrix or vector.
If three inputs are given, @var{direction} should be one of
@qcode{"first"} or @qcode{"last"}, requesting only the first or last
@var{n} indices, respectively. However, the indices are always returned in
ascending order.
Note that this function is particularly useful for sparse matrices, as
it extracts the non-zero elements as vectors, which can then be used to
create the original matrix. For example:
@example
@group
sz = size (a);
[i, j, v] = find (a);
b = sparse (i, j, v, sz(1), sz(2));
@end group
@end example
@seealso{@ref{XREFnonzeros,,nonzeros}}
@end deftypefn
@c lookup libinterp/corefcn/lookup.cc
@anchor{XREFlookup}
@deftypefn {Built-in Function} {@var{idx} =} lookup (@var{table}, @var{y})
@deftypefnx {Built-in Function} {@var{idx} =} lookup (@var{table}, @var{y}, @var{opt})
Lookup values in a sorted table. Usually used as a prelude to
interpolation.
If table is increasing and @code{idx = lookup (table, y)}, then
@code{table(idx(i)) <= y(i) < table(idx(i+1))} for all @code{y(i)}
within the table. If @code{y(i) < table(1)} then
@code{idx(i)} is 0. If @code{y(i) >= table(end)} or @code{isnan (y(i))} then
@code{idx(i)} is @code{n}.
If the table is decreasing, then the tests are reversed.
For non-strictly monotonic tables, empty intervals are always skipped.
The result is undefined if @var{table} is not monotonic, or if
@var{table} contains a NaN.
The complexity of the lookup is O(M*log(N)) where N is the size of
@var{table} and M is the size of @var{y}. In the special case when @var{y}
is also sorted, the complexity is O(min(M*log(N),M+N)).
@var{table} and @var{y} can also be cell arrays of strings
(or @var{y} can be a single string). In this case, string lookup
is performed using lexicographical comparison.
If @var{opts} is specified, it must be a string with letters indicating
additional options.
@table @code
@item m
@code{table(idx(i)) == val(i)} if @code{val(i)}
occurs in table; otherwise, @code{idx(i)} is zero.
@item b
@code{idx(i)} is a logical 1 or 0, indicating whether
@code{val(i)} is contained in table or not.
@item l
For numeric lookups
the leftmost subinterval shall be extended to infinity (i.e., all indices
at least 1)
@item r
For numeric lookups
the rightmost subinterval shall be extended to infinity (i.e., all indices
at most n-1).
@end table
@end deftypefn
If you wish to check if a variable exists at all, instead of properties
its elements may have, consult @ref{Status of Variables}.
@node Rearranging Matrices
@section Rearranging Matrices
@c fliplr scripts/general/fliplr.m
@anchor{XREFfliplr}
@deftypefn {Function File} {} fliplr (@var{x})
Return a copy of @var{x} with the order of the columns reversed. In
other words, @var{x} is flipped left-to-right about a vertical axis. For
example:
@example
@group
fliplr ([1, 2; 3, 4])
@result{} 2 1
4 3
@end group
@end example
Note that @code{fliplr} only works with 2-D arrays. To flip N-D arrays
use @code{flipdim} instead.
@seealso{@ref{XREFflipud,,flipud}, @ref{XREFflipdim,,flipdim}, @ref{XREFrot90,,rot90}, @ref{XREFrotdim,,rotdim}}
@end deftypefn
@c flipud scripts/general/flipud.m
@anchor{XREFflipud}
@deftypefn {Function File} {} flipud (@var{x})
Return a copy of @var{x} with the order of the rows reversed. In
other words, @var{x} is flipped upside-down about a horizontal axis. For
example:
@example
@group
flipud ([1, 2; 3, 4])
@result{} 3 4
1 2
@end group
@end example
Note that @code{flipud} only works with 2-D arrays. To flip N-D arrays
use @code{flipdim} instead.
@seealso{@ref{XREFfliplr,,fliplr}, @ref{XREFflipdim,,flipdim}, @ref{XREFrot90,,rot90}, @ref{XREFrotdim,,rotdim}}
@end deftypefn
@c flipdim scripts/general/flipdim.m
@anchor{XREFflipdim}
@deftypefn {Function File} {} flipdim (@var{x})
@deftypefnx {Function File} {} flipdim (@var{x}, @var{dim})
Return a copy of @var{x} flipped about the dimension @var{dim}.
@var{dim} defaults to the first non-singleton dimension.
For example:
@example
@group
flipdim ([1, 2; 3, 4], 2)
@result{} 2 1
4 3
@end group
@end example
@seealso{@ref{XREFfliplr,,fliplr}, @ref{XREFflipud,,flipud}, @ref{XREFrot90,,rot90}, @ref{XREFrotdim,,rotdim}}
@end deftypefn
@c rot90 scripts/general/rot90.m
@anchor{XREFrot90}
@deftypefn {Function File} {} rot90 (@var{A})
@deftypefnx {Function File} {} rot90 (@var{A}, @var{k})
Return a copy of @var{A} with the elements rotated counterclockwise in
90-degree increments. The second argument is optional, and specifies
how many 90-degree rotations are to be applied (the default value is 1).
Negative values of @var{k} rotate the matrix in a clockwise direction.
For example,
@example
@group
rot90 ([1, 2; 3, 4], -1)
@result{} 3 1
4 2
@end group
@end example
@noindent
rotates the given matrix clockwise by 90 degrees. The following are all
equivalent statements:
@example
@group
rot90 ([1, 2; 3, 4], -1)
rot90 ([1, 2; 3, 4], 3)
rot90 ([1, 2; 3, 4], 7)
@end group
@end example
Note that @code{rot90} only works with 2-D arrays. To rotate N-D arrays
use @code{rotdim} instead.
@seealso{@ref{XREFrotdim,,rotdim}, @ref{XREFflipud,,flipud}, @ref{XREFfliplr,,fliplr}, @ref{XREFflipdim,,flipdim}}
@end deftypefn
@c rotdim scripts/general/rotdim.m
@anchor{XREFrotdim}
@deftypefn {Function File} {} rotdim (@var{x})
@deftypefnx {Function File} {} rotdim (@var{x}, @var{n})
@deftypefnx {Function File} {} rotdim (@var{x}, @var{n}, @var{plane})
Return a copy of @var{x} with the elements rotated counterclockwise in
90-degree increments.
The second argument @var{n} is optional, and specifies how many 90-degree
rotations are to be applied (the default value is 1).
The third argument is also optional and defines the plane of the
rotation. If present, @var{plane} is a two element vector containing two
different valid dimensions of the matrix. When @var{plane} is not given
the first two non-singleton dimensions are used.
Negative values of @var{n} rotate the matrix in a clockwise direction.
For example,
@example
@group
rotdim ([1, 2; 3, 4], -1, [1, 2])
@result{} 3 1
4 2
@end group
@end example
@noindent
rotates the given matrix clockwise by 90 degrees. The following are all
equivalent statements:
@example
@group
rotdim ([1, 2; 3, 4], -1, [1, 2])
rotdim ([1, 2; 3, 4], 3, [1, 2])
rotdim ([1, 2; 3, 4], 7, [1, 2])
@end group
@end example
@seealso{@ref{XREFrot90,,rot90}, @ref{XREFflipud,,flipud}, @ref{XREFfliplr,,fliplr}, @ref{XREFflipdim,,flipdim}}
@end deftypefn
@c cat libinterp/corefcn/data.cc
@anchor{XREFcat}
@deftypefn {Built-in Function} {} cat (@var{dim}, @var{array1}, @var{array2}, @dots{}, @var{arrayN})
Return the concatenation of N-D array objects, @var{array1},
@var{array2}, @dots{}, @var{arrayN} along dimension @var{dim}.
@example
@group
A = ones (2, 2);
B = zeros (2, 2);
cat (2, A, B)
@result{} 1 1 0 0
1 1 0 0
@end group
@end example
Alternatively, we can concatenate @var{A} and @var{B} along the
second dimension in the following way:
@example
@group
[A, B]
@end group
@end example
@var{dim} can be larger than the dimensions of the N-D array objects
and the result will thus have @var{dim} dimensions as the
following example shows:
@example
@group
cat (4, ones (2, 2), zeros (2, 2))
@result{} ans(:,:,1,1) =
1 1
1 1
ans(:,:,1,2) =
0 0
0 0
@end group
@end example
@seealso{@ref{XREFhorzcat,,horzcat}, @ref{XREFvertcat,,vertcat}}
@end deftypefn
@c horzcat libinterp/corefcn/data.cc
@anchor{XREFhorzcat}
@deftypefn {Built-in Function} {} horzcat (@var{array1}, @var{array2}, @dots{}, @var{arrayN})
Return the horizontal concatenation of N-D array objects, @var{array1},
@var{array2}, @dots{}, @var{arrayN} along dimension 2.
Arrays may also be concatenated horizontally using the syntax for creating
new matrices. For example:
@example
@var{hcat} = [ @var{array1}, @var{array2}, @dots{} ]
@end example
@seealso{@ref{XREFcat,,cat}, @ref{XREFvertcat,,vertcat}}
@end deftypefn
@c vertcat libinterp/corefcn/data.cc
@anchor{XREFvertcat}
@deftypefn {Built-in Function} {} vertcat (@var{array1}, @var{array2}, @dots{}, @var{arrayN})
Return the vertical concatenation of N-D array objects, @var{array1},
@var{array2}, @dots{}, @var{arrayN} along dimension 1.
Arrays may also be concatenated vertically using the syntax for creating
new matrices. For example:
@example
@var{vcat} = [ @var{array1}; @var{array2}; @dots{} ]
@end example
@seealso{@ref{XREFcat,,cat}, @ref{XREFhorzcat,,horzcat}}
@end deftypefn
@c permute libinterp/corefcn/data.cc
@anchor{XREFpermute}
@deftypefn {Built-in Function} {} permute (@var{A}, @var{perm})
Return the generalized transpose for an N-D array object @var{A}.
The permutation vector @var{perm} must contain the elements
@code{1:ndims (A)} (in any order, but each element must appear only once).
@seealso{@ref{XREFipermute,,ipermute}}
@end deftypefn
@c ipermute libinterp/corefcn/data.cc
@anchor{XREFipermute}
@deftypefn {Built-in Function} {} ipermute (@var{A}, @var{iperm})
The inverse of the @code{permute} function. The expression
@example
ipermute (permute (A, perm), perm)
@end example
@noindent
returns the original array @var{A}.
@seealso{@ref{XREFpermute,,permute}}
@end deftypefn
@c reshape libinterp/corefcn/data.cc
@anchor{XREFreshape}
@deftypefn {Built-in Function} {} reshape (@var{A}, @var{m}, @var{n}, @dots{})
@deftypefnx {Built-in Function} {} reshape (@var{A}, [@var{m} @var{n} @dots{}])
@deftypefnx {Built-in Function} {} reshape (@var{A}, @dots{}, [], @dots{})
@deftypefnx {Built-in Function} {} reshape (@var{A}, @var{size})
Return a matrix with the specified dimensions (@var{m}, @var{n}, @dots{})
whose elements are taken from the matrix @var{A}. The elements of the
matrix are accessed in column-major order (like Fortran arrays are stored).
The following code demonstrates reshaping a 1x4 row vector into a 2x2 square
matrix.
@example
@group
reshape ([1, 2, 3, 4], 2, 2)
@result{} 1 3
2 4
@end group
@end example
@noindent
Note that the total number of elements in the original
matrix (@code{prod (size (@var{A}))}) must match the total number of elements
in the new matrix (@code{prod ([@var{m} @var{n} @dots{}])}).
A single dimension of the return matrix may be left unspecified and Octave
will determine its size automatically. An empty matrix ([]) is used to flag
the unspecified dimension.
@seealso{@ref{XREFresize,,resize}, @ref{XREFvec,,vec}, @ref{XREFpostpad,,postpad}, @ref{XREFcat,,cat}, @ref{XREFsqueeze,,squeeze}}
@end deftypefn
@c resize libinterp/corefcn/data.cc
@anchor{XREFresize}
@deftypefn {Built-in Function} {} resize (@var{x}, @var{m})
@deftypefnx {Built-in Function} {} resize (@var{x}, @var{m}, @var{n}, @dots{})
@deftypefnx {Built-in Function} {} resize (@var{x}, [@var{m} @var{n} @dots{}])
Resize @var{x} cutting off elements as necessary.
In the result, element with certain indices is equal to the corresponding
element of @var{x} if the indices are within the bounds of @var{x};
otherwise, the element is set to zero.
In other words, the statement
@example
y = resize (x, dv)
@end example
@noindent
is equivalent to the following code:
@example
@group
y = zeros (dv, class (x));
sz = min (dv, size (x));
for i = 1:length (sz)
idx@{i@} = 1:sz(i);
endfor
y(idx@{:@}) = x(idx@{:@});
@end group
@end example
@noindent
but is performed more efficiently.
If only @var{m} is supplied, and it is a scalar, the dimension of the
result is @var{m}-by-@var{m}.
If @var{m}, @var{n}, @dots{} are all scalars, then the dimensions of
the result are @var{m}-by-@var{n}-by-@dots{}.
If given a vector as input, then the
dimensions of the result are given by the elements of that vector.
An object can be resized to more dimensions than it has;
in such case the missing dimensions are assumed to be 1.
Resizing an object to fewer dimensions is not possible.
@seealso{@ref{XREFreshape,,reshape}, @ref{XREFpostpad,,postpad}, @ref{XREFprepad,,prepad}, @ref{XREFcat,,cat}}
@end deftypefn
@c circshift scripts/general/circshift.m
@anchor{XREFcircshift}
@deftypefn {Function File} {@var{y} =} circshift (@var{x}, @var{n})
Circularly shift the values of the array @var{x}. @var{n} must be
a vector of integers no longer than the number of dimensions in
@var{x}. The values of @var{n} can be either positive or negative,
which determines the direction in which the values or @var{x} are
shifted. If an element of @var{n} is zero, then the corresponding
dimension of @var{x} will not be shifted. For example:
@example
@group
x = [1, 2, 3; 4, 5, 6; 7, 8, 9];
circshift (x, 1)
@result{} 7, 8, 9
1, 2, 3
4, 5, 6
circshift (x, -2)
@result{} 7, 8, 9
1, 2, 3
4, 5, 6
circshift (x, [0,1])
@result{} 3, 1, 2
6, 4, 5
9, 7, 8
@end group
@end example
@seealso {permute, ipermute, shiftdim}
@end deftypefn
@c shift scripts/general/shift.m
@anchor{XREFshift}
@deftypefn {Function File} {} shift (@var{x}, @var{b})
@deftypefnx {Function File} {} shift (@var{x}, @var{b}, @var{dim})
If @var{x} is a vector, perform a circular shift of length @var{b} of
the elements of @var{x}.
If @var{x} is a matrix, do the same for each column of @var{x}.
If the optional @var{dim} argument is given, operate along this
dimension.
@end deftypefn
@c shiftdim scripts/general/shiftdim.m
@anchor{XREFshiftdim}
@deftypefn {Function File} {@var{y} =} shiftdim (@var{x}, @var{n})
@deftypefnx {Function File} {[@var{y}, @var{ns}] =} shiftdim (@var{x})
Shift the dimensions of @var{x} by @var{n}, where @var{n} must be
an integer scalar. When @var{n} is positive, the dimensions of
@var{x} are shifted to the left, with the leading dimensions
circulated to the end. If @var{n} is negative, then the dimensions
of @var{x} are shifted to the right, with @var{n} leading singleton
dimensions added.
Called with a single argument, @code{shiftdim}, removes the leading
singleton dimensions, returning the number of dimensions removed
in the second output argument @var{ns}.
For example:
@example
@group
x = ones (1, 2, 3);
size (shiftdim (x, -1))
@result{} [1, 1, 2, 3]
size (shiftdim (x, 1))
@result{} [2, 3]
[b, ns] = shiftdim (x)
@result{} b = [1, 1, 1; 1, 1, 1]
@result{} ns = 1
@end group
@end example
@seealso {reshape, permute, ipermute, circshift, squeeze}
@end deftypefn
@c sort libinterp/corefcn/data.cc
@anchor{XREFsort}
@deftypefn {Built-in Function} {[@var{s}, @var{i}] =} sort (@var{x})
@deftypefnx {Built-in Function} {[@var{s}, @var{i}] =} sort (@var{x}, @var{dim})
@deftypefnx {Built-in Function} {[@var{s}, @var{i}] =} sort (@var{x}, @var{mode})
@deftypefnx {Built-in Function} {[@var{s}, @var{i}] =} sort (@var{x}, @var{dim}, @var{mode})
Return a copy of @var{x} with the elements arranged in increasing
order. For matrices, @code{sort} orders the elements within columns
For example:
@example
@group
sort ([1, 2; 2, 3; 3, 1])
@result{} 1 1
2 2
3 3
@end group
@end example
If the optional argument @var{dim} is given, then the matrix is sorted
along the dimension defined by @var{dim}. The optional argument @code{mode}
defines the order in which the values will be sorted. Valid values of
@code{mode} are @qcode{"ascend"} or @qcode{"descend"}.
The @code{sort} function may also be used to produce a matrix
containing the original row indices of the elements in the sorted
matrix. For example:
@example
@group
[s, i] = sort ([1, 2; 2, 3; 3, 1])
@result{} s = 1 1
2 2
3 3
@result{} i = 1 3
2 1
3 2
@end group
@end example
For equal elements, the indices are such that equal elements are listed
in the order in which they appeared in the original list.
Sorting of complex entries is done first by magnitude (@code{abs (@var{z})})
and for any ties by phase angle (@code{angle (z)}). For example:
@example
@group
sort ([1+i; 1; 1-i])
@result{} 1 + 0i
1 - 1i
1 + 1i
@end group
@end example
NaN values are treated as being greater than any other value and are sorted
to the end of the list.
The @code{sort} function may also be used to sort strings and cell arrays
of strings, in which case ASCII dictionary order (uppercase 'A' precedes
lowercase 'a') of the strings is used.
The algorithm used in @code{sort} is optimized for the sorting of partially
ordered lists.
@seealso{@ref{XREFsortrows,,sortrows}, @ref{XREFissorted,,issorted}}
@end deftypefn
@c sortrows scripts/general/sortrows.m
@anchor{XREFsortrows}
@deftypefn {Function File} {[@var{s}, @var{i}] =} sortrows (@var{A})
@deftypefnx {Function File} {[@var{s}, @var{i}] =} sortrows (@var{A}, @var{c})
Sort the rows of the matrix @var{A} according to the order of the
columns specified in @var{c}. If @var{c} is omitted, a
lexicographical sort is used. By default ascending order is used
however if elements of @var{c} are negative then the corresponding
column is sorted in descending order.
@seealso{@ref{XREFsort,,sort}}
@end deftypefn
@c issorted libinterp/corefcn/data.cc
@anchor{XREFissorted}
@deftypefn {Built-in Function} {} issorted (@var{a})
@deftypefnx {Built-in Function} {} issorted (@var{a}, @var{mode})
@deftypefnx {Built-in Function} {} issorted (@var{a}, "rows", @var{mode})
Return true if the array is sorted according to @var{mode}, which
may be either @qcode{"ascending"}, @qcode{"descending"}, or
@qcode{"either"}. By default, @var{mode} is @qcode{"ascending"}. NaNs
are treated in the same manner as @code{sort}.
If the optional argument @qcode{"rows"} is supplied, check whether
the array is sorted by rows as output by the function @code{sortrows}
(with no options).
This function does not support sparse matrices.
@seealso{@ref{XREFsort,,sort}, @ref{XREFsortrows,,sortrows}}
@end deftypefn
@c nth_element libinterp/corefcn/data.cc
@anchor{XREFnth_element}
@deftypefn {Built-in Function} {} nth_element (@var{x}, @var{n})
@deftypefnx {Built-in Function} {} nth_element (@var{x}, @var{n}, @var{dim})
Select the n-th smallest element of a vector, using the ordering defined by
@code{sort}. In other words, the result is equivalent to
@code{sort(@var{x})(@var{n})}.
@var{n} can also be a contiguous range, either ascending @code{l:u}
or descending @code{u:-1:l}, in which case a range of elements is returned.
If @var{x} is an array, @code{nth_element} operates along the dimension
defined by @var{dim}, or the first non-singleton dimension if @var{dim} is
not given.
nth_element encapsulates the C++ standard library algorithms nth_element and
partial_sort. On average, the complexity of the operation is O(M*log(K)),
where @w{@code{M = size (@var{x}, @var{dim})}} and
@w{@code{K = length (@var{n})}}.
This function is intended for cases where the ratio K/M is small; otherwise,
it may be better to use @code{sort}.
@seealso{@ref{XREFsort,,sort}, @ref{XREFmin,,min}, @ref{XREFmax,,max}}
@end deftypefn
@anchor{XREFtriu}
@c tril libinterp/corefcn/tril.cc
@anchor{XREFtril}
@deftypefn {Function File} {} tril (@var{A})
@deftypefnx {Function File} {} tril (@var{A}, @var{k})
@deftypefnx {Function File} {} tril (@var{A}, @var{k}, @var{pack})
@deftypefnx {Function File} {} triu (@var{A})
@deftypefnx {Function File} {} triu (@var{A}, @var{k})
@deftypefnx {Function File} {} triu (@var{A}, @var{k}, @var{pack})
Return a new matrix formed by extracting the lower (@code{tril})
or upper (@code{triu}) triangular part of the matrix @var{A}, and
setting all other elements to zero. The second argument is optional,
and specifies how many diagonals above or below the main diagonal should
also be set to zero.
The default value of @var{k} is zero, so that @code{triu} and
@code{tril} normally include the main diagonal as part of the result.
If the value of @var{k} is nonzero integer, the selection of elements
starts at an offset of @var{k} diagonals above or below the main
diagonal; above for positive @var{k} and below for negative @var{k}.
The absolute value of @var{k} must not be greater than the number of
sub-diagonals or super-diagonals.
For example:
@example
@group
tril (ones (3), -1)
@result{} 0 0 0
1 0 0
1 1 0
@end group
@end example
@noindent
and
@example
@group
tril (ones (3), 1)
@result{} 1 1 0
1 1 1
1 1 1
@end group
@end example
If the option @qcode{"pack"} is given as third argument, the extracted
elements are not inserted into a matrix, but rather stacked column-wise one
above other.
@seealso{@ref{XREFdiag,,diag}}
@end deftypefn
@c vec libinterp/corefcn/data.cc
@anchor{XREFvec}
@deftypefn {Built-in Function} {@var{v} =} vec (@var{x})
@deftypefnx {Built-in Function} {@var{v} =} vec (@var{x}, @var{dim})
Return the vector obtained by stacking the columns of the matrix @var{x}
one above the other. Without @var{dim} this is equivalent to
@code{@var{x}(:)}. If @var{dim} is supplied, the dimensions of @var{v}
are set to @var{dim} with all elements along the last dimension.
This is equivalent to @code{shiftdim (@var{x}(:), 1-@var{dim})}.
@seealso{@ref{XREFvech,,vech}, @ref{XREFresize,,resize}, @ref{XREFcat,,cat}}
@end deftypefn
@c vech scripts/linear-algebra/vech.m
@anchor{XREFvech}
@deftypefn {Function File} {} vech (@var{x})
Return the vector obtained by eliminating all supradiagonal elements of
the square matrix @var{x} and stacking the result one column above the
other. This has uses in matrix calculus where the underlying matrix
is symmetric and it would be pointless to keep values above the main
diagonal.
@seealso{@ref{XREFvec,,vec}}
@end deftypefn
@c prepad scripts/general/prepad.m
@anchor{XREFprepad}
@deftypefn {Function File} {} prepad (@var{x}, @var{l})
@deftypefnx {Function File} {} prepad (@var{x}, @var{l}, @var{c})
@deftypefnx {Function File} {} prepad (@var{x}, @var{l}, @var{c}, @var{dim})
Prepend the scalar value @var{c} to the vector @var{x} until it is of length
@var{l}. If @var{c} is not given, a value of 0 is used.
If @code{length (@var{x}) > @var{l}}, elements from the beginning of
@var{x} are removed until a vector of length @var{l} is obtained.
If @var{x} is a matrix, elements are prepended or removed from each row.
If the optional argument @var{dim} is given, operate along this
dimension.
@seealso{@ref{XREFpostpad,,postpad}, @ref{XREFcat,,cat}, @ref{XREFresize,,resize}}
@end deftypefn
@c postpad scripts/general/postpad.m
@anchor{XREFpostpad}
@deftypefn {Function File} {} postpad (@var{x}, @var{l})
@deftypefnx {Function File} {} postpad (@var{x}, @var{l}, @var{c})
@deftypefnx {Function File} {} postpad (@var{x}, @var{l}, @var{c}, @var{dim})
Append the scalar value @var{c} to the vector @var{x} until it is of length
@var{l}. If @var{c} is not given, a value of 0 is used.
If @code{length (@var{x}) > @var{l}}, elements from the end of
@var{x} are removed until a vector of length @var{l} is obtained.
If @var{x} is a matrix, elements are appended or removed from each row.
If the optional argument @var{dim} is given, operate along this
dimension.
@seealso{@ref{XREFprepad,,prepad}, @ref{XREFcat,,cat}, @ref{XREFresize,,resize}}
@end deftypefn
@c diag libinterp/corefcn/data.cc
@anchor{XREFdiag}
@deftypefn {Built-in Function} {@var{M} =} diag (@var{v})
@deftypefnx {Built-in Function} {@var{M} =} diag (@var{v}, @var{k})
@deftypefnx {Built-in Function} {@var{M} =} diag (@var{v}, @var{m}, @var{n})
@deftypefnx {Built-in Function} {@var{v} =} diag (@var{M})
@deftypefnx {Built-in Function} {@var{v} =} diag (@var{M}, @var{k})
Return a diagonal matrix with vector @var{v} on diagonal @var{k}. The
second argument is optional. If it is positive, the vector is placed on
the @var{k}-th super-diagonal. If it is negative, it is placed on the
@var{-k}-th sub-diagonal. The default value of @var{k} is 0, and the
vector is placed on the main diagonal. For example:
@example
@group
diag ([1, 2, 3], 1)
@result{} 0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0
@end group
@end example
@noindent
The 3-input form returns a diagonal matrix with vector @var{v} on the main
diagonal and the resulting matrix being of size @var{m} rows x @var{n}
columns.
Given a matrix argument, instead of a vector, @code{diag} extracts the
@var{k}-th diagonal of the matrix.
@end deftypefn
@c blkdiag scripts/general/blkdiag.m
@anchor{XREFblkdiag}
@deftypefn {Function File} {} blkdiag (@var{A}, @var{B}, @var{C}, @dots{})
Build a block diagonal matrix from @var{A}, @var{B}, @var{C}, @dots{}
All the arguments must be numeric and are two-dimensional matrices or
scalars. If any argument is of type sparse, the output will also be
sparse.
@seealso{@ref{XREFdiag,,diag}, @ref{XREFhorzcat,,horzcat}, @ref{XREFvertcat,,vertcat}, @ref{XREFsparse,,sparse}}
@end deftypefn
@node Special Utility Matrices
@section Special Utility Matrices
@c eye libinterp/corefcn/data.cc
@anchor{XREFeye}
@deftypefn {Built-in Function} {} eye (@var{n})
@deftypefnx {Built-in Function} {} eye (@var{m}, @var{n})
@deftypefnx {Built-in Function} {} eye ([@var{m} @var{n}])
@deftypefnx {Built-in Function} {} eye (@dots{}, @var{class})
Return an identity matrix. If invoked with a single scalar argument @var{n},
return a square @nospell{NxN} identity matrix. If
supplied two scalar arguments (@var{m}, @var{n}), @code{eye} takes them to be
the number of rows and columns. If given a vector with two elements,
@code{eye} uses the values of the elements as the number of rows and columns,
respectively. For example:
@example
@group
eye (3)
@result{} 1 0 0
0 1 0
0 0 1
@end group
@end example
The following expressions all produce the same result:
@example
@group
eye (2)
@equiv{}
eye (2, 2)
@equiv{}
eye (size ([1, 2; 3, 4])
@end group
@end example
The optional argument @var{class}, allows @code{eye} to return an array of
the specified type, like
@example
val = zeros (n,m, "uint8")
@end example
Calling @code{eye} with no arguments is equivalent to calling it
with an argument of 1. Any negative dimensions are treated as zero.
These odd definitions are for compatibility with @sc{matlab}.
@seealso{@ref{XREFspeye,,speye}, @ref{XREFones,,ones}, @ref{XREFzeros,,zeros}}
@end deftypefn
@c ones libinterp/corefcn/data.cc
@anchor{XREFones}
@deftypefn {Built-in Function} {} ones (@var{n})
@deftypefnx {Built-in Function} {} ones (@var{m}, @var{n})
@deftypefnx {Built-in Function} {} ones (@var{m}, @var{n}, @var{k}, @dots{})
@deftypefnx {Built-in Function} {} ones ([@var{m} @var{n} @dots{}])
@deftypefnx {Built-in Function} {} ones (@dots{}, @var{class})
Return a matrix or N-dimensional array whose elements are all 1.
If invoked with a single scalar integer argument @var{n}, return a square
@nospell{NxN} matrix. If invoked with two or more scalar
integer arguments, or a vector of integer values, return an array with
the given dimensions.
If you need to create a matrix whose values are all the same, you should
use an expression like
@example
val_matrix = val * ones (m, n)
@end example
The optional argument @var{class} specifies the class of the return array
and defaults to double. For example:
@example
val = ones (m,n, "uint8")
@end example
@seealso{@ref{XREFzeros,,zeros}}
@end deftypefn
@c zeros libinterp/corefcn/data.cc
@anchor{XREFzeros}
@deftypefn {Built-in Function} {} zeros (@var{n})
@deftypefnx {Built-in Function} {} zeros (@var{m}, @var{n})
@deftypefnx {Built-in Function} {} zeros (@var{m}, @var{n}, @var{k}, @dots{})
@deftypefnx {Built-in Function} {} zeros ([@var{m} @var{n} @dots{}])
@deftypefnx {Built-in Function} {} zeros (@dots{}, @var{class})
Return a matrix or N-dimensional array whose elements are all 0.
If invoked with a single scalar integer argument, return a square
@nospell{NxN} matrix. If invoked with two or more scalar
integer arguments, or a vector of integer values, return an array with
the given dimensions.
The optional argument @var{class} specifies the class of the return array
and defaults to double. For example:
@example
val = zeros (m,n, "uint8")
@end example
@seealso{@ref{XREFones,,ones}}
@end deftypefn
@c repmat scripts/general/repmat.m
@anchor{XREFrepmat}
@deftypefn {Function File} {} repmat (@var{A}, @var{m})
@deftypefnx {Function File} {} repmat (@var{A}, @var{m}, @var{n})
@deftypefnx {Function File} {} repmat (@var{A}, [@var{m} @var{n}])
@deftypefnx {Function File} {} repmat (@var{A}, [@var{m} @var{n} @var{p} @dots{}])
Form a block matrix of size @var{m} by @var{n}, with a copy of matrix
@var{A} as each element. If @var{n} is not specified, form an
@var{m} by @var{m} block matrix. For copying along more than two
dimensions, specify the number of times to copy across each dimension
@var{m}, @var{n}, @var{p}, @dots{}, in a vector in the second argument.
@seealso{@ref{XREFrepelems,,repelems}}
@end deftypefn
@c repelems libinterp/corefcn/data.cc
@anchor{XREFrepelems}
@deftypefn {Built-in Function} {} repelems (@var{x}, @var{r})
Construct a vector of repeated elements from @var{x}. @var{r}
is a 2x@var{N} integer matrix specifying which elements to repeat and
how often to repeat each element.
Entries in the first row, @var{r}(1,j), select an element to repeat.
The corresponding entry in the second row, @var{r}(2,j), specifies
the repeat count. If @var{x} is a matrix then the columns of @var{x} are
imagined to be stacked on top of each other for purposes of the selection
index. A row vector is always returned.
Conceptually the result is calculated as follows:
@example
@group
y = [];
for i = 1:columns (@var{r})
y = [y, @var{x}(@var{r}(1,i)*ones(1, @var{r}(2,i)))];
endfor
@end group
@end example
@seealso{@ref{XREFrepmat,,repmat}, @ref{XREFcat,,cat}}
@end deftypefn
The functions @code{linspace} and @code{logspace} make it very easy to
create vectors with evenly or logarithmically spaced elements.
@xref{Ranges}.
@c linspace libinterp/corefcn/data.cc
@anchor{XREFlinspace}
@deftypefn {Built-in Function} {} linspace (@var{base}, @var{limit})
@deftypefnx {Built-in Function} {} linspace (@var{base}, @var{limit}, @var{n})
Return a row vector with @var{n} linearly spaced elements between
@var{base} and @var{limit}. If the number of elements is greater than one,
then the endpoints @var{base} and @var{limit} are always included in
the range. If @var{base} is greater than @var{limit}, the elements are
stored in decreasing order. If the number of points is not specified, a
value of 100 is used.
The @code{linspace} function always returns a row vector if both
@var{base} and @var{limit} are scalars. If one, or both, of them are column
vectors, @code{linspace} returns a matrix.
For compatibility with @sc{matlab}, return the second argument (@var{limit})
if fewer than two values are requested.
@seealso{@ref{XREFlogspace,,logspace}}
@end deftypefn
@c logspace scripts/general/logspace.m
@anchor{XREFlogspace}
@deftypefn {Function File} {} logspace (@var{a}, @var{b})
@deftypefnx {Function File} {} logspace (@var{a}, @var{b}, @var{n})
@deftypefnx {Function File} {} logspace (@var{a}, pi, @var{n})
Return a row vector with @var{n} elements logarithmically spaced from
@tex
$10^{a}$ to $10^{b}$.
@end tex
@ifnottex
10^@var{a} to 10^@var{b}.
@end ifnottex
If @var{n} is unspecified it defaults to 50.
If @var{b} is equal to
@tex
$\pi$,
@end tex
@ifnottex
pi,
@end ifnottex
the points are between
@tex
$10^{a}$ and $\pi$,
@end tex
@ifnottex
10^@var{a} and pi,
@end ifnottex
@emph{not}
@tex
$10^{a}$ and $10^{\pi}$,
@end tex
@ifnottex
10^@var{a} and 10^pi,
@end ifnottex
in order to be compatible with the corresponding @sc{matlab} function.
Also for compatibility with @sc{matlab}, return the second argument @var{b}
if fewer than two values are requested.
@seealso{@ref{XREFlinspace,,linspace}}
@end deftypefn
@c rand libinterp/corefcn/rand.cc
@anchor{XREFrand}
@deftypefn {Built-in Function} {} rand (@var{n})
@deftypefnx {Built-in Function} {} rand (@var{m}, @var{n}, @dots{})
@deftypefnx {Built-in Function} {} rand ([@var{m} @var{n} @dots{}])
@deftypefnx {Built-in Function} {@var{v} =} rand ("state")
@deftypefnx {Built-in Function} {} rand ("state", @var{v})
@deftypefnx {Built-in Function} {} rand ("state", "reset")
@deftypefnx {Built-in Function} {@var{v} =} rand ("seed")
@deftypefnx {Built-in Function} {} rand ("seed", @var{v})
@deftypefnx {Built-in Function} {} rand ("seed", "reset")
@deftypefnx {Built-in Function} {} rand (@dots{}, "single")
@deftypefnx {Built-in Function} {} rand (@dots{}, "double")
Return a matrix with random elements uniformly distributed on the
interval (0, 1). The arguments are handled the same as the arguments
for @code{eye}.
You can query the state of the random number generator using the
form
@example
v = rand ("state")
@end example
This returns a column vector @var{v} of length 625. Later, you can
restore the random number generator to the state @var{v}
using the form
@example
rand ("state", v)
@end example
@noindent
You may also initialize the state vector from an arbitrary vector of
length @leq{} 625 for @var{v}. This new state will be a hash based on the
value of @var{v}, not @var{v} itself.
By default, the generator is initialized from @code{/dev/urandom} if it is
available, otherwise from CPU time, wall clock time, and the current
fraction of a second. Note that this differs from @sc{matlab}, which
always initializes the state to the same state at startup. To obtain
behavior comparable to @sc{matlab}, initialize with a deterministic state
vector in Octave's startup files (@pxref{Startup Files}).
To compute the pseudo-random sequence, @code{rand} uses the Mersenne
Twister with a period of @math{2^{19937}-1} (See M. Matsumoto and
T. Nishimura,
@cite{Mersenne Twister: A 623-dimensionally equidistributed uniform
pseudorandom number generator}, ACM Trans. on
Modeling and Computer Simulation Vol. 8, No. 1, pp. 3-30, January 1998,
@url{http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html}).
Do @strong{not} use for cryptography without securely hashing
several returned values together, otherwise the generator state
can be learned after reading 624 consecutive values.
Older versions of Octave used a different random number generator.
The new generator is used by default
as it is significantly faster than the old generator, and produces
random numbers with a significantly longer cycle time. However, in
some circumstances it might be desirable to obtain the same random
sequences as used by the old generators. To do this the keyword
@qcode{"seed"} is used to specify that the old generators should be use,
as in
@example
rand ("seed", val)
@end example
@noindent
which sets the seed of the generator to @var{val}. The seed of the
generator can be queried with
@example
s = rand ("seed")
@end example
However, it should be noted that querying the seed will not cause
@code{rand} to use the old generators, only setting the seed will.
To cause @code{rand} to once again use the new generators, the
keyword @qcode{"state"} should be used to reset the state of the
@code{rand}.
The state or seed of the generator can be reset to a new random value
using the @qcode{"reset"} keyword.
The class of the value returned can be controlled by a trailing
@qcode{"double"} or @qcode{"single"} argument. These are the only valid
classes.
@seealso{@ref{XREFrandn,,randn}, @ref{XREFrande,,rande}, @ref{XREFrandg,,randg}, @ref{XREFrandp,,randp}}
@end deftypefn
@c randi scripts/general/randi.m
@anchor{XREFrandi}
@deftypefn {Function File} {} randi (@var{imax})
@deftypefnx {Function File} {} randi (@var{imax}, @var{n})
@deftypefnx {Function File} {} randi (@var{imax}, @var{m}, @var{n}, @dots{})
@deftypefnx {Function File} {} randi ([@var{imin} @var{imax}], @dots{})
@deftypefnx {Function File} {} randi (@dots{}, "@var{class}")
Return random integers in the range 1:@var{imax}.
Additional arguments determine the shape of the return matrix. When no
arguments are specified a single random integer is returned. If one
argument @var{n} is specified then a square matrix @w{(@var{n} x @var{n})} is
returned. Two or more arguments will return a multi-dimensional
matrix @w{(@var{m} x @var{n} x @dots{})}.
The integer range may optionally be described by a two element matrix
with a lower and upper bound in which case the returned integers will be
on the interval @w{[@var{imin}, @var{imax}]}.
The optional argument @var{class} will return a matrix of the requested
type. The default is @qcode{"double"}.
The following example returns 150 integers in the range 1-10.
@example
ri = randi (10, 150, 1)
@end example
Implementation Note: @code{randi} relies internally on @code{rand} which
uses class @qcode{"double"} to represent numbers. This limits the maximum
integer (@var{imax}) and range (@var{imax} - @var{imin}) to the value
returned by the @code{bitmax} function. For IEEE floating point numbers
this value is @w{@math{2^{53} - 1}}.
@seealso{@ref{XREFrand,,rand}}
@end deftypefn
@c randn libinterp/corefcn/rand.cc
@anchor{XREFrandn}
@deftypefn {Built-in Function} {} randn (@var{n})
@deftypefnx {Built-in Function} {} randn (@var{m}, @var{n}, @dots{})
@deftypefnx {Built-in Function} {} randn ([@var{m} @var{n} @dots{}])
@deftypefnx {Built-in Function} {@var{v} =} randn ("state")
@deftypefnx {Built-in Function} {} randn ("state", @var{v})
@deftypefnx {Built-in Function} {} randn ("state", "reset")
@deftypefnx {Built-in Function} {@var{v} =} randn ("seed")
@deftypefnx {Built-in Function} {} randn ("seed", @var{v})
@deftypefnx {Built-in Function} {} randn ("seed", "reset")
@deftypefnx {Built-in Function} {} randn (@dots{}, "single")
@deftypefnx {Built-in Function} {} randn (@dots{}, "double")
Return a matrix with normally distributed random
elements having zero mean and variance one. The arguments are
handled the same as the arguments for @code{rand}.
By default, @code{randn} uses the Marsaglia and Tsang ``Ziggurat technique''
to transform from a uniform to a normal distribution.
The class of the value returned can be controlled by a trailing
@qcode{"double"} or @qcode{"single"} argument. These are the only valid
classes.
Reference: G. Marsaglia and W.W. Tsang,
@cite{Ziggurat Method for Generating Random Variables},
J. Statistical Software, vol 5, 2000,
@url{http://www.jstatsoft.org/v05/i08/})
@seealso{@ref{XREFrand,,rand}, @ref{XREFrande,,rande}, @ref{XREFrandg,,randg}, @ref{XREFrandp,,randp}}
@end deftypefn
@c rande libinterp/corefcn/rand.cc
@anchor{XREFrande}
@deftypefn {Built-in Function} {} rande (@var{n})
@deftypefnx {Built-in Function} {} rande (@var{m}, @var{n}, @dots{})
@deftypefnx {Built-in Function} {} rande ([@var{m} @var{n} @dots{}])
@deftypefnx {Built-in Function} {@var{v} =} rande ("state")
@deftypefnx {Built-in Function} {} rande ("state", @var{v})
@deftypefnx {Built-in Function} {} rande ("state", "reset")
@deftypefnx {Built-in Function} {@var{v} =} rande ("seed")
@deftypefnx {Built-in Function} {} rande ("seed", @var{v})
@deftypefnx {Built-in Function} {} rande ("seed", "reset")
@deftypefnx {Built-in Function} {} rande (@dots{}, "single")
@deftypefnx {Built-in Function} {} rande (@dots{}, "double")
Return a matrix with exponentially distributed random elements. The
arguments are handled the same as the arguments for @code{rand}.
By default, @code{randn} uses the Marsaglia and Tsang ``Ziggurat technique''
to transform from a uniform to an exponential distribution.
The class of the value returned can be controlled by a trailing
@qcode{"double"} or @qcode{"single"} argument. These are the only valid
classes.
Reference: G. Marsaglia and W.W. Tsang,
@cite{Ziggurat Method for Generating Random Variables},
J. Statistical Software, vol 5, 2000,
@url{http://www.jstatsoft.org/v05/i08/})
@seealso{@ref{XREFrand,,rand}, @ref{XREFrandn,,randn}, @ref{XREFrandg,,randg}, @ref{XREFrandp,,randp}}
@end deftypefn
@c randp libinterp/corefcn/rand.cc
@anchor{XREFrandp}
@deftypefn {Built-in Function} {} randp (@var{l}, @var{n})
@deftypefnx {Built-in Function} {} randp (@var{l}, @var{m}, @var{n}, @dots{})
@deftypefnx {Built-in Function} {} randp (@var{l}, [@var{m} @var{n} @dots{}])
@deftypefnx {Built-in Function} {@var{v} =} randp ("state")
@deftypefnx {Built-in Function} {} randp ("state", @var{v})
@deftypefnx {Built-in Function} {} randp ("state", "reset")
@deftypefnx {Built-in Function} {@var{v} =} randp ("seed")
@deftypefnx {Built-in Function} {} randp ("seed", @var{v})
@deftypefnx {Built-in Function} {} randp ("seed", "reset")
@deftypefnx {Built-in Function} {} randp (@dots{}, "single")
@deftypefnx {Built-in Function} {} randp (@dots{}, "double")
Return a matrix with Poisson distributed random elements with mean value
parameter given by the first argument, @var{l}. The arguments
are handled the same as the arguments for @code{rand}, except for the
argument @var{l}.
Five different algorithms are used depending on the range of @var{l}
and whether or not @var{l} is a scalar or a matrix.
@table @asis
@item For scalar @var{l} @leq{} 12, use direct method.
W.H. Press, et al., @cite{Numerical Recipes in C},
Cambridge University Press, 1992.
@item For scalar @var{l} > 12, use rejection method.[1]
W.H. Press, et al., @cite{Numerical Recipes in C},
Cambridge University Press, 1992.
@item For matrix @var{l} @leq{} 10, use inversion method.[2]
E. Stadlober, et al., WinRand source code, available via FTP.
@item For matrix @var{l} > 10, use patchwork rejection method.
E. Stadlober, et al., WinRand source code, available via FTP, or
H. Zechner, @cite{Efficient sampling from continuous and discrete
unimodal distributions}, Doctoral Dissertation, 156pp., Technical
University Graz, Austria, 1994.
@item For @var{l} > 1e8, use normal approximation.
L. Montanet, et al., @cite{Review of Particle Properties}, Physical Review
D 50 p1284, 1994.
@end table
The class of the value returned can be controlled by a trailing
@qcode{"double"} or @qcode{"single"} argument. These are the only valid
classes.
@seealso{@ref{XREFrand,,rand}, @ref{XREFrandn,,randn}, @ref{XREFrande,,rande}, @ref{XREFrandg,,randg}}
@end deftypefn
@c randg libinterp/corefcn/rand.cc
@anchor{XREFrandg}
@deftypefn {Built-in Function} {} randg (@var{n})
@deftypefnx {Built-in Function} {} randg (@var{m}, @var{n}, @dots{})
@deftypefnx {Built-in Function} {} randg ([@var{m} @var{n} @dots{}])
@deftypefnx {Built-in Function} {@var{v} =} randg ("state")
@deftypefnx {Built-in Function} {} randg ("state", @var{v})
@deftypefnx {Built-in Function} {} randg ("state", "reset")
@deftypefnx {Built-in Function} {@var{v} =} randg ("seed")
@deftypefnx {Built-in Function} {} randg ("seed", @var{v})
@deftypefnx {Built-in Function} {} randg ("seed", "reset")
@deftypefnx {Built-in Function} {} randg (@dots{}, "single")
@deftypefnx {Built-in Function} {} randg (@dots{}, "double")
Return a matrix with @code{gamma (@var{a},1)} distributed random elements.
The arguments are handled the same as the arguments for @code{rand},
except for the argument @var{a}.
This can be used to generate many distributions:
@table @asis
@item @code{gamma (a, b)} for @code{a > -1}, @code{b > 0}
@example
r = b * randg (a)
@end example
@item @code{beta (a, b)} for @code{a > -1}, @code{b > -1}
@example
@group
r1 = randg (a, 1)
r = r1 / (r1 + randg (b, 1))
@end group
@end example
@item @code{Erlang (a, n)}
@example
r = a * randg (n)
@end example
@item @code{chisq (df)} for @code{df > 0}
@example
r = 2 * randg (df / 2)
@end example
@item @code{t (df)} for @code{0 < df < inf} (use randn if df is infinite)
@example
r = randn () / sqrt (2 * randg (df / 2) / df)
@end example
@item @code{F (n1, n2)} for @code{0 < n1}, @code{0 < n2}
@example
@group
## r1 equals 1 if n1 is infinite
r1 = 2 * randg (n1 / 2) / n1
## r2 equals 1 if n2 is infinite
r2 = 2 * randg (n2 / 2) / n2
r = r1 / r2
@end group
@end example
@item negative @code{binomial (n, p)} for @code{n > 0}, @code{0 < p <= 1}
@example
r = randp ((1 - p) / p * randg (n))
@end example
@item non-central @code{chisq (df, L)}, for @code{df >= 0} and @code{L > 0}
(use chisq if @code{L = 0})
@example
@group
r = randp (L / 2)
r(r > 0) = 2 * randg (r(r > 0))
r(df > 0) += 2 * randg (df(df > 0)/2)
@end group
@end example
@item @code{Dirichlet (a1, @dots{} ak)}
@example
@group
r = (randg (a1), @dots{}, randg (ak))
r = r / sum (r)
@end group
@end example
@end table
The class of the value returned can be controlled by a trailing
@qcode{"double"} or @qcode{"single"} argument. These are the only valid
classes.
@seealso{@ref{XREFrand,,rand}, @ref{XREFrandn,,randn}, @ref{XREFrande,,rande}, @ref{XREFrandp,,randp}}
@end deftypefn
The generators operate in the new or old style together, it is not
possible to mix the two. Initializing any generator with
@qcode{"state"} or @qcode{"seed"} causes the others to switch to the
same style for future calls.
The state of each generator is independent and calls to different
generators can be interleaved without affecting the final result. For
example,
@example
@group
rand ("state", [11, 22, 33]);
randn ("state", [44, 55, 66]);
u = rand (100, 1);
n = randn (100, 1);
@end group
@end example
@noindent
and
@example
@group
rand ("state", [11, 22, 33]);
randn ("state", [44, 55, 66]);
u = zeros (100, 1);
n = zeros (100, 1);
for i = 1:100
u(i) = rand ();
n(i) = randn ();
end
@end group
@end example
@noindent
produce equivalent results. When the generators are initialized in
the old style with @qcode{"seed"} only @code{rand} and @code{randn} are
independent, because the old @code{rande}, @code{randg} and
@code{randp} generators make calls to @code{rand} and @code{randn}.
The generators are initialized with random states at start-up, so
that the sequences of random numbers are not the same each time you run
Octave.@footnote{The old versions of @code{rand} and @code{randn}
obtain their initial seeds from the system clock.} If you really do
need to reproduce a sequence of numbers exactly, you can set the state
or seed to a specific value.
If invoked without arguments, @code{rand} and @code{randn} return a
single element of a random sequence.
The original @code{rand} and @code{randn} functions use Fortran code from
@sc{ranlib}, a library of Fortran routines for random number generation,
compiled by Barry W. Brown and James Lovato of the Department of
Biomathematics at The University of Texas, M.D. Anderson Cancer Center,
Houston, TX 77030.
@c randperm libinterp/corefcn/rand.cc
@anchor{XREFrandperm}
@deftypefn {Built-in Function} {} randperm (@var{n})
@deftypefnx {Built-in Function} {} randperm (@var{n}, @var{m})
Return a row vector containing a random permutation of @code{1:@var{n}}.
If @var{m} is supplied, return @var{m} unique entries, sampled without
replacement from @code{1:@var{n}}. The complexity is O(@var{n}) in
memory and O(@var{m}) in time, unless @var{m} < @var{n}/5, in which case
O(@var{m}) memory is used as well. The randomization is performed using
rand(). All permutations are equally likely.
@seealso{@ref{XREFperms,,perms}}
@end deftypefn
@node Famous Matrices
@section Famous Matrices
The following functions return famous matrix forms.
@c gallery scripts/special-matrix/gallery.m
@anchor{XREFgallery}
@deftypefn {Function File} {} gallery (@var{name})
@deftypefnx {Function File} {} gallery (@var{name}, @var{args})
Create interesting matrices for testing.
@end deftypefn
@deftypefn {Function File} {@var{c} =} gallery ("cauchy", @var{x})
@deftypefnx {Function File} {@var{c} =} gallery ("cauchy", @var{x}, @var{y})
Create a Cauchy matrix.
@end deftypefn
@deftypefn {Function File} {@var{c} =} gallery ("chebspec", @var{n})
@deftypefnx {Function File} {@var{c} =} gallery ("chebspec", @var{n}, @var{k})
Create a Chebyshev spectral differentiation matrix.
@end deftypefn
@deftypefn {Function File} {@var{c} =} gallery ("chebvand", @var{p})
@deftypefnx {Function File} {@var{c} =} gallery ("chebvand", @var{m}, @var{p})
Create a Vandermonde-like matrix for the Chebyshev polynomials.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("chow", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("chow", @var{n}, @var{alpha})
@deftypefnx {Function File} {@var{a} =} gallery ("chow", @var{n}, @var{alpha}, @var{delta})
Create a Chow matrix -- a singular Toeplitz lower Hessenberg matrix.
@end deftypefn
@deftypefn {Function File} {@var{c} =} gallery ("circul", @var{v})
Create a circulant matrix.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("clement", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("clement", @var{n}, @var{k})
Create a tridiagonal matrix with zero diagonal entries.
@end deftypefn
@deftypefn {Function File} {@var{c} =} gallery ("compar", @var{a})
@deftypefnx {Function File} {@var{c} =} gallery ("compar", @var{a}, @var{k})
Create a comparison matrix.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("condex", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("condex", @var{n}, @var{k})
@deftypefnx {Function File} {@var{a} =} gallery ("condex", @var{n}, @var{k}, @var{theta})
Create a `counterexample' matrix to a condition estimator.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("cycol", [@var{m} @var{n}])
@deftypefnx {Function File} {@var{a} =} gallery ("cycol", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery (@dots{}, @var{k})
Create a matrix whose columns repeat cyclically.
@end deftypefn
@deftypefn {Function File} {[@var{c}, @var{d}, @var{e}] =} gallery ("dorr", @var{n})
@deftypefnx {Function File} {[@var{c}, @var{d}, @var{e}] =} gallery ("dorr", @var{n}, @var{theta})
@deftypefnx {Function File} {@var{a} =} gallery ("dorr", @dots{})
Create a diagonally dominant, ill conditioned, tridiagonal matrix.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("dramadah", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("dramadah", @var{n}, @var{k})
Create a (0, 1) matrix whose inverse has large integer entries.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("fiedler", @var{c})
Create a symmetric Fiedler matrix.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("forsythe", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("forsythe", @var{n}, @var{alpha})
@deftypefnx {Function File} {@var{a} =} gallery ("forsythe", @var{n}, @var{alpha}, @var{lambda})
Create a Forsythe matrix (a perturbed Jordan block).
@end deftypefn
@deftypefn {Function File} {@var{f} =} gallery ("frank", @var{n})
@deftypefnx {Function File} {@var{f} =} gallery ("frank", @var{n}, @var{k})
Create a Frank matrix (ill conditioned eigenvalues).
@end deftypefn
@deftypefn {Function File} {@var{c} =} gallery ("gcdmat", @var{n})
Create a greatest common divisor matrix.
@var{c} is an @var{n}-by-@var{n} matrix whose values correspond to the
greatest common divisor of its coordinate values, i.e., @var{c}(i,j)
correspond @code{gcd (i, j)}.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("gearmat", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("gearmat", @var{n}, @var{i})
@deftypefnx {Function File} {@var{a} =} gallery ("gearmat", @var{n}, @var{i}, @var{j})
Create a Gear matrix.
@end deftypefn
@deftypefn {Function File} {@var{g} =} gallery ("grcar", @var{n})
@deftypefnx {Function File} {@var{g} =} gallery ("grcar", @var{n}, @var{k})
Create a Toeplitz matrix with sensitive eigenvalues.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("hanowa", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("hanowa", @var{n}, @var{d})
Create a matrix whose eigenvalues lie on a vertical line in the complex
plane.
@end deftypefn
@deftypefn {Function File} {@var{v} =} gallery ("house", @var{x})
@deftypefnx {Function File} {[@var{v}, @var{beta}] =} gallery ("house", @var{x})
Create a householder matrix.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("integerdata", @var{imax}, [@var{M} @var{N} @dots{}], @var{j})
@deftypefnx {Function File} {@var{a} =} gallery ("integerdata", @var{imax}, @var{M}, @var{N}, @dots{}, @var{j})
@deftypefnx {Function File} {@var{a} =} gallery ("integerdata", [@var{imin}, @var{imax}], [@var{M} @var{N} @dots{}], @var{j})
@deftypefnx {Function File} {@var{a} =} gallery ("integerdata", [@var{imin}, @var{imax}], @var{M}, @var{N}, @dots{}, @var{j})
@deftypefnx {Function File} {@var{a} =} gallery ("integerdata", @dots{}, "@var{class}")
Create a matrix with random integers in the range [1, @var{imax}].
If @var{imin} is given then the integers are in the range
[@var{imin}, @var{imax}].
The second input is a matrix of dimensions describing the size of the output.
The dimensions can also be input as comma-separated arguments.
The input @var{j} is an integer index in the range [0, 2^32-1]. The
values of the output matrix are always exactly the same
(reproducibility) for a given size input and @var{j} index.
The final optional argument determines the class of the resulting matrix.
Possible values for @var{class}: @qcode{"uint8"}, @qcode{"uint16"},
@qcode{"uint32"}, @qcode{"int8"}, @qcode{"int16"}, int32", @qcode{"single"},
@qcode{"double"}. The default is @qcode{"double"}.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("invhess", @var{x})
@deftypefnx {Function File} {@var{a} =} gallery ("invhess", @var{x}, @var{y})
Create the inverse of an upper Hessenberg matrix.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("invol", @var{n})
Create an involutory matrix.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("ipjfact", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("ipjfact", @var{n}, @var{k})
Create an Hankel matrix with factorial elements.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("jordbloc", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("jordbloc", @var{n}, @var{lambda})
Create a Jordan block.
@end deftypefn
@deftypefn {Function File} {@var{u} =} gallery ("kahan", @var{n})
@deftypefnx {Function File} {@var{u} =} gallery ("kahan", @var{n}, @var{theta})
@deftypefnx {Function File} {@var{u} =} gallery ("kahan", @var{n}, @var{theta}, @var{pert})
Create a Kahan matrix (upper trapezoidal).
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("kms", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("kms", @var{n}, @var{rho})
Create a Kac-Murdock-Szego Toeplitz matrix.
@end deftypefn
@deftypefn {Function File} {@var{b} =} gallery ("krylov", @var{a})
@deftypefnx {Function File} {@var{b} =} gallery ("krylov", @var{a}, @var{x})
@deftypefnx {Function File} {@var{b} =} gallery ("krylov", @var{a}, @var{x}, @var{j})
Create a Krylov matrix.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("lauchli", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("lauchli", @var{n}, @var{mu})
Create a Lauchli matrix (rectangular).
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("lehmer", @var{n})
Create a Lehmer matrix (symmetric positive definite).
@end deftypefn
@deftypefn {Function File} {@var{t} =} gallery ("lesp", @var{n})
Create a tridiagonal matrix with real, sensitive eigenvalues.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("lotkin", @var{n})
Create a Lotkin matrix.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("minij", @var{n})
Create a symmetric positive definite matrix MIN(i,j).
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("moler", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("moler", @var{n}, @var{alpha})
Create a Moler matrix (symmetric positive definite).
@end deftypefn
@deftypefn {Function File} {[@var{a}, @var{t}] =} gallery ("neumann", @var{n})
Create a singular matrix from the discrete Neumann problem (sparse).
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("normaldata", [@var{M} @var{N} @dots{}], @var{j})
@deftypefnx {Function File} {@var{a} =} gallery ("normaldata", @var{M}, @var{N}, @dots{}, @var{j})
@deftypefnx {Function File} {@var{a} =} gallery ("normaldata", @dots{}, "@var{class}")
Create a matrix with random samples from the standard normal distribution
(mean = 0, std = 1).
The first input is a matrix of dimensions describing the size of the output.
The dimensions can also be input as comma-separated arguments.
The input @var{j} is an integer index in the range [0, 2^32-1]. The
values of the output matrix are always exactly the same
(reproducibility) for a given size input and @var{j} index.
The final optional argument determines the class of the resulting matrix.
Possible values for @var{class}: @qcode{"single"}, @qcode{"double"}.
The default is @qcode{"double"}.
@end deftypefn
@deftypefn {Function File} {@var{q} =} gallery ("orthog", @var{n})
@deftypefnx {Function File} {@var{q} =} gallery ("orthog", @var{n}, @var{k})
Create orthogonal and nearly orthogonal matrices.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("parter", @var{n})
Create a Parter matrix (a Toeplitz matrix with singular values near pi).
@end deftypefn
@deftypefn {Function File} {@var{p} =} gallery ("pei", @var{n})
@deftypefnx {Function File} {@var{p} =} gallery ("pei", @var{n}, @var{alpha})
Create a Pei matrix.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("Poisson", @var{n})
Create a block tridiagonal matrix from Poisson's equation (sparse).
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("prolate", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("prolate", @var{n}, @var{w})
Create a prolate matrix (symmetric, ill-conditioned Toeplitz matrix).
@end deftypefn
@deftypefn {Function File} {@var{h} =} gallery ("randhess", @var{x})
Create a random, orthogonal upper Hessenberg matrix.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("rando", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("rando", @var{n}, @var{k})
Create a random matrix with elements -1, 0 or 1.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("randsvd", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa})
@deftypefnx {Function File} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa}, @var{mode})
@deftypefnx {Function File} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa}, @var{mode}, @var{kl})
@deftypefnx {Function File} {@var{a} =} gallery ("randsvd", @var{n}, @var{kappa}, @var{mode}, @var{kl}, @var{ku})
Create a random matrix with pre-assigned singular values.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("redheff", @var{n})
Create a zero and ones matrix of Redheffer associated with the Riemann
hypothesis.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("riemann", @var{n})
Create a matrix associated with the Riemann hypothesis.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("ris", @var{n})
Create a symmetric Hankel matrix.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("smoke", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("smoke", @var{n}, @var{k})
Create a complex matrix, with a `smoke ring' pseudospectrum.
@end deftypefn
@deftypefn {Function File} {@var{t} =} gallery ("toeppd", @var{n})
@deftypefnx {Function File} {@var{t} =} gallery ("toeppd", @var{n}, @var{m})
@deftypefnx {Function File} {@var{t} =} gallery ("toeppd", @var{n}, @var{m}, @var{w})
@deftypefnx {Function File} {@var{t} =} gallery ("toeppd", @var{n}, @var{m}, @var{w}, @var{theta})
Create a symmetric positive definite Toeplitz matrix.
@end deftypefn
@deftypefn {Function File} {@var{p} =} gallery ("toeppen", @var{n})
@deftypefnx {Function File} {@var{p} =} gallery ("toeppen", @var{n}, @var{a})
@deftypefnx {Function File} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b})
@deftypefnx {Function File} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b}, @var{c})
@deftypefnx {Function File} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b}, @var{c}, @var{d})
@deftypefnx {Function File} {@var{p} =} gallery ("toeppen", @var{n}, @var{a}, @var{b}, @var{c}, @var{d}, @var{e})
Create a pentadiagonal Toeplitz matrix (sparse).
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("tridiag", @var{x}, @var{y}, @var{z})
@deftypefnx {Function File} {@var{a} =} gallery ("tridiag", @var{n})
@deftypefnx {Function File} {@var{a} =} gallery ("tridiag", @var{n}, @var{c}, @var{d}, @var{e})
Create a tridiagonal matrix (sparse).
@end deftypefn
@deftypefn {Function File} {@var{t} =} gallery ("triw", @var{n})
@deftypefnx {Function File} {@var{t} =} gallery ("triw", @var{n}, @var{alpha})
@deftypefnx {Function File} {@var{t} =} gallery ("triw", @var{n}, @var{alpha}, @var{k})
Create an upper triangular matrix discussed by Kahan, Golub and Wilkinson.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("uniformdata", [@var{M} @var{N} @dots{}], @var{j})
@deftypefnx {Function File} {@var{a} =} gallery ("uniformdata", @var{M}, @var{N}, @dots{}, @var{j})
@deftypefnx {Function File} {@var{a} =} gallery ("uniformdata", @dots{}, "@var{class}")
Create a matrix with random samples from the standard uniform distribution
(range [0,1]).
The first input is a matrix of dimensions describing the size of the output.
The dimensions can also be input as comma-separated arguments.
The input @var{j} is an integer index in the range [0, 2^32-1]. The
values of the output matrix are always exactly the same
(reproducibility) for a given size input and @var{j} index.
The final optional argument determines the class of the resulting matrix.
Possible values for @var{class}: @qcode{"single"}, @qcode{"double"}.
The default is @qcode{"double"}.
@end deftypefn
@deftypefn {Function File} {@var{a} =} gallery ("wathen", @var{nx}, @var{ny})
@deftypefnx {Function File} {@var{a} =} gallery ("wathen", @var{nx}, @var{ny}, @var{k})
Create the Wathen matrix.
@end deftypefn
@deftypefn {Function File} {[@var{a}, @var{b}] =} gallery ("wilk", @var{n})
Create various specific matrices devised/discussed by Wilkinson.
@end deftypefn
@c hadamard scripts/special-matrix/hadamard.m
@anchor{XREFhadamard}
@deftypefn {Function File} {} hadamard (@var{n})
Construct a Hadamard matrix (@nospell{Hn}) of size @var{n}-by-@var{n}. The
size @var{n} must be of the form @math{2^k * p} in which
p is one of 1, 12, 20 or 28. The returned matrix is normalized,
meaning @w{@code{Hn(:,1) == 1}} and @w{@code{Hn(1,:) == 1}}.
Some of the properties of Hadamard matrices are:
@itemize @bullet
@item
@code{kron (Hm, Hn)} is a Hadamard matrix of size @var{m}-by-@var{n}.
@item
@code{Hn * Hn' = @var{n} * eye (@var{n})}.
@item
The rows of @nospell{Hn} are orthogonal.
@item
@code{det (@var{A}) <= abs (det (Hn))} for all @var{A} with
@w{@code{abs (@var{A}(i, j)) <= 1}}.
@item
Multiplying any row or column by -1 and the matrix will remain a Hadamard
matrix.
@end itemize
@seealso{@ref{XREFcompan,,compan}, @ref{XREFhankel,,hankel}, @ref{XREFtoeplitz,,toeplitz}}
@end deftypefn
@c hankel scripts/special-matrix/hankel.m
@anchor{XREFhankel}
@deftypefn {Function File} {} hankel (@var{c})
@deftypefnx {Function File} {} hankel (@var{c}, @var{r})
Return the Hankel matrix constructed from the first column @var{c}, and
(optionally) the last row @var{r}. If the last element of @var{c} is
not the same as the first element of @var{r}, the last element of
@var{c} is used. If the second argument is omitted, it is assumed to
be a vector of zeros with the same size as @var{c}.
A Hankel matrix formed from an m-vector @var{c}, and an n-vector
@var{r}, has the elements
@tex
$$
H(i, j) = \cases{c_{i+j-1},&$i+j-1\le m$;\cr r_{i+j-m},&otherwise.\cr}
$$
@end tex
@ifnottex
@example
@group
H(i,j) = c(i+j-1), i+j-1 <= m;
H(i,j) = r(i+j-m), otherwise
@end group
@end example
@end ifnottex
@seealso{@ref{XREFhadamard,,hadamard}, @ref{XREFtoeplitz,,toeplitz}}
@end deftypefn
@c hilb scripts/special-matrix/hilb.m
@anchor{XREFhilb}
@deftypefn {Function File} {} hilb (@var{n})
Return the Hilbert matrix of order @var{n}. The @math{i,j} element
of a Hilbert matrix is defined as
@tex
$$
H(i, j) = {1 \over (i + j - 1)}
$$
@end tex
@ifnottex
@example
H(i, j) = 1 / (i + j - 1)
@end example
@end ifnottex
Hilbert matrices are close to being singular which make them difficult to
invert with numerical routines.
Comparing the condition number of a random matrix 5x5 matrix with that of
a Hilbert matrix of order 5 reveals just how difficult the problem is.
@example
@group
cond (rand (5))
@result{} 14.392
cond (hilb (5))
@result{} 4.7661e+05
@end group
@end example
@seealso{@ref{XREFinvhilb,,invhilb}}
@end deftypefn
@c invhilb scripts/special-matrix/invhilb.m
@anchor{XREFinvhilb}
@deftypefn {Function File} {} invhilb (@var{n})
Return the inverse of the Hilbert matrix of order @var{n}. This can be
computed exactly using
@tex
$$\eqalign{
A_{ij} &= -1^{i+j} (i+j-1)
\left( \matrix{n+i-1 \cr n-j } \right)
\left( \matrix{n+j-1 \cr n-i } \right)
\left( \matrix{i+j-2 \cr i-2 } \right)^2 \cr
&= { p(i)p(j) \over (i+j-1) }
}$$
where
$$
p(k) = -1^k \left( \matrix{ k+n-1 \cr k-1 } \right)
\left( \matrix{ n \cr k } \right)
$$
@end tex
@ifnottex
@example
@group
(i+j) /n+i-1\ /n+j-1\ /i+j-2\ 2
A(i,j) = -1 (i+j-1)( )( ) ( )
\ n-j / \ n-i / \ i-2 /
= p(i) p(j) / (i+j-1)
@end group
@end example
@noindent
where
@example
@group
k /k+n-1\ /n\
p(k) = -1 ( ) ( )
\ k-1 / \k/
@end group
@end example
@end ifnottex
The validity of this formula can easily be checked by expanding
the binomial coefficients in both formulas as factorials. It can
be derived more directly via the theory of Cauchy matrices.
See J. W. Demmel, @cite{Applied Numerical Linear Algebra}, p. 92.
Compare this with the numerical calculation of @code{inverse (hilb (n))},
which suffers from the ill-conditioning of the Hilbert matrix, and the
finite precision of your computer's floating point arithmetic.
@seealso{@ref{XREFhilb,,hilb}}
@end deftypefn
@c magic scripts/special-matrix/magic.m
@anchor{XREFmagic}
@deftypefn {Function File} {} magic (@var{n})
Create an @var{n}-by-@var{n} magic square. A magic square is an arrangement
of the integers @code{1:n^2} such that the row sums, column sums, and
diagonal sums are all equal to the same value.
Note: @var{n} must be greater than 2 for the magic square to exist.
@end deftypefn
@c pascal scripts/special-matrix/pascal.m
@anchor{XREFpascal}
@deftypefn {Function File} {} pascal (@var{n})
@deftypefnx {Function File} {} pascal (@var{n}, @var{t})
Return the Pascal matrix of order @var{n} if @code{@var{t} = 0}. @var{t}
defaults to 0. Return the pseudo-lower triangular Cholesky@tie{}factor of
the Pascal matrix if @code{@var{t} = 1} (The sign of some columns may be
negative). This matrix is its own inverse, that is @code{pascal (@var{n},
1) ^ 2 == eye (@var{n})}. If @code{@var{t} = -1}, return the true
Cholesky@tie{}factor with strictly positive values on the diagonal. If
@code{@var{t} = 2}, return a transposed and permuted version of @code{pascal
(@var{n}, 1)}, which is the cube root of the identity matrix. That is,
@code{pascal (@var{n}, 2) ^ 3 == eye (@var{n})}.
@seealso{@ref{XREFchol,,chol}}
@end deftypefn
@c rosser scripts/special-matrix/rosser.m
@anchor{XREFrosser}
@deftypefn {Function File} {} rosser ()
Return the Rosser matrix. This is a difficult test case used to evaluate
eigenvalue algorithms.
@seealso{@ref{XREFwilkinson,,wilkinson}, @ref{XREFeig,,eig}}
@end deftypefn
@c toeplitz scripts/special-matrix/toeplitz.m
@anchor{XREFtoeplitz}
@deftypefn {Function File} {} toeplitz (@var{c})
@deftypefnx {Function File} {} toeplitz (@var{c}, @var{r})
Return the Toeplitz matrix constructed from the first column @var{c},
and (optionally) the first row @var{r}. If the first element of @var{r}
is not the same as the first element of @var{c}, the first element of
@var{c} is used. If the second argument is omitted, the first row is
taken to be the same as the first column.
A square Toeplitz matrix has the form:
@tex
$$
\left[\matrix{c_0 & r_1 & r_2 & \cdots & r_n\cr
c_1 & c_0 & r_1 & \cdots & r_{n-1}\cr
c_2 & c_1 & c_0 & \cdots & r_{n-2}\cr
\vdots & \vdots & \vdots & \ddots & \vdots\cr
c_n & c_{n-1} & c_{n-2} & \ldots & c_0}\right]
$$
@end tex
@ifnottex
@example
@group
c(0) r(1) r(2) @dots{} r(n)
c(1) c(0) r(1) @dots{} r(n-1)
c(2) c(1) c(0) @dots{} r(n-2)
. . . . .
. . . . .
. . . . .
c(n) c(n-1) c(n-2) @dots{} c(0)
@end group
@end example
@end ifnottex
@seealso{@ref{XREFhankel,,hankel}}
@end deftypefn
@c vander scripts/special-matrix/vander.m
@anchor{XREFvander}
@deftypefn {Function File} {} vander (@var{c})
@deftypefnx {Function File} {} vander (@var{c}, @var{n})
Return the Vandermonde matrix whose next to last column is @var{c}.
If @var{n} is specified, it determines the number of columns;
otherwise, @var{n} is taken to be equal to the length of @var{c}.
A Vandermonde matrix has the form:
@tex
$$
\left[\matrix{c_1^{n-1} & \cdots & c_1^2 & c_1 & 1 \cr
c_2^{n-1} & \cdots & c_2^2 & c_2 & 1 \cr
\vdots & \ddots & \vdots & \vdots & \vdots \cr
c_n^{n-1} & \cdots & c_n^2 & c_n & 1 }\right]
$$
@end tex
@ifnottex
@example
@group
c(1)^(n-1) @dots{} c(1)^2 c(1) 1
c(2)^(n-1) @dots{} c(2)^2 c(2) 1
. . . . .
. . . . .
. . . . .
c(n)^(n-1) @dots{} c(n)^2 c(n) 1
@end group
@end example
@end ifnottex
@seealso{@ref{XREFpolyfit,,polyfit}}
@end deftypefn
@c wilkinson scripts/special-matrix/wilkinson.m
@anchor{XREFwilkinson}
@deftypefn {Function File} {} wilkinson (@var{n})
Return the Wilkinson matrix of order @var{n}. Wilkinson matrices are
symmetric and tridiagonal with pairs of nearly, but not exactly, equal
eigenvalues. They are useful in testing the behavior and performance
of eigenvalue solvers.
@seealso{@ref{XREFrosser,,rosser}, @ref{XREFeig,,eig}}
@end deftypefn
|