1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Octave: Coordinate Transformations</title>
<meta name="description" content="GNU Octave: Coordinate Transformations">
<meta name="keywords" content="GNU Octave: Coordinate Transformations">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Arithmetic.html#Arithmetic" rel="up" title="Arithmetic">
<link href="Mathematical-Constants.html#Mathematical-Constants" rel="next" title="Mathematical Constants">
<link href="Rational-Approximations.html#Rational-Approximations" rel="prev" title="Rational Approximations">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Coordinate-Transformations"></a>
<div class="header">
<p>
Next: <a href="Mathematical-Constants.html#Mathematical-Constants" accesskey="n" rel="next">Mathematical Constants</a>, Previous: <a href="Rational-Approximations.html#Rational-Approximations" accesskey="p" rel="prev">Rational Approximations</a>, Up: <a href="Arithmetic.html#Arithmetic" accesskey="u" rel="up">Arithmetic</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Coordinate-Transformations-1"></a>
<h3 class="section">17.8 Coordinate Transformations</h3>
<a name="XREFcart2pol"></a><dl>
<dt><a name="index-cart2pol"></a>Function File: <em>[<var>theta</var>, <var>r</var>] =</em> <strong>cart2pol</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-cart2pol-1"></a>Function File: <em>[<var>theta</var>, <var>r</var>, <var>z</var>] =</em> <strong>cart2pol</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-cart2pol-2"></a>Function File: <em>[<var>theta</var>, <var>r</var>] =</em> <strong>cart2pol</strong> <em>(<var>C</var>)</em></dt>
<dt><a name="index-cart2pol-3"></a>Function File: <em>[<var>theta</var>, <var>r</var>, <var>z</var>] =</em> <strong>cart2pol</strong> <em>(<var>C</var>)</em></dt>
<dt><a name="index-cart2pol-4"></a>Function File: <em><var>P</var> =</em> <strong>cart2pol</strong> <em>(…)</em></dt>
<dd>
<p>Transform Cartesian to polar or cylindrical coordinates.
</p>
<p><var>theta</var> describes the angle relative to the positive x-axis.
<var>r</var> is the distance to the z-axis (0, 0, z)<!-- /@w -->.
<var>x</var>, <var>y</var> (, and <var>z</var>) must be the same shape, or scalar.
If called with a single matrix argument then each row of <var>C</var>
represents the Cartesian coordinate (<var>x</var>, <var>y</var> (, <var>z</var>)).
</p>
<p>If only a single return argument is requested then return a matrix
<var>P</var> where each row represents one polar/(cylindrical) coordinate
(<var>theta</var>, <var>phi</var> (, <var>z</var>)).
</p>
<p><strong>See also:</strong> <a href="#XREFpol2cart">pol2cart</a>, <a href="#XREFcart2sph">cart2sph</a>, <a href="#XREFsph2cart">sph2cart</a>.
</p></dd></dl>
<a name="XREFpol2cart"></a><dl>
<dt><a name="index-pol2cart"></a>Function File: <em>[<var>x</var>, <var>y</var>] =</em> <strong>pol2cart</strong> <em>(<var>theta</var>, <var>r</var>)</em></dt>
<dt><a name="index-pol2cart-1"></a>Function File: <em>[<var>x</var>, <var>y</var>, <var>z</var>] =</em> <strong>pol2cart</strong> <em>(<var>theta</var>, <var>r</var>, <var>z</var>)</em></dt>
<dt><a name="index-pol2cart-2"></a>Function File: <em>[<var>x</var>, <var>y</var>] =</em> <strong>pol2cart</strong> <em>(<var>P</var>)</em></dt>
<dt><a name="index-pol2cart-3"></a>Function File: <em>[<var>x</var>, <var>y</var>, <var>z</var>] =</em> <strong>pol2cart</strong> <em>(<var>P</var>)</em></dt>
<dt><a name="index-pol2cart-4"></a>Function File: <em><var>C</var> =</em> <strong>pol2cart</strong> <em>(…)</em></dt>
<dd><p>Transform polar or cylindrical to Cartesian coordinates.
</p>
<p><var>theta</var>, <var>r</var>, (and <var>z</var>) must be the same shape, or scalar.
<var>theta</var> describes the angle relative to the positive x-axis.
<var>r</var> is the distance to the z-axis (0, 0, z).
If called with a single matrix argument then each row of <var>P</var>
represents the polar/(cylindrical) coordinate (<var>theta</var>, <var>r</var> (,
<var>z</var>)).
</p>
<p>If only a single return argument is requested then return a matrix
<var>C</var> where each row represents one Cartesian coordinate
(<var>x</var>, <var>y</var> (, <var>z</var>)).
</p>
<p><strong>See also:</strong> <a href="#XREFcart2pol">cart2pol</a>, <a href="#XREFsph2cart">sph2cart</a>, <a href="#XREFcart2sph">cart2sph</a>.
</p></dd></dl>
<a name="XREFcart2sph"></a><dl>
<dt><a name="index-cart2sph"></a>Function File: <em>[<var>theta</var>, <var>phi</var>, <var>r</var>] =</em> <strong>cart2sph</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-cart2sph-1"></a>Function File: <em>[<var>theta</var>, <var>phi</var>, <var>r</var>] =</em> <strong>cart2sph</strong> <em>(<var>C</var>)</em></dt>
<dt><a name="index-cart2sph-2"></a>Function File: <em><var>S</var> =</em> <strong>cart2sph</strong> <em>(…)</em></dt>
<dd><p>Transform Cartesian to spherical coordinates.
</p>
<p><var>theta</var> describes the angle relative to the positive x-axis.
<var>phi</var> is the angle relative to the xy-plane.
<var>r</var> is the distance to the origin (0, 0, 0)<!-- /@w -->.
<var>x</var>, <var>y</var>, and <var>z</var> must be the same shape, or scalar.
If called with a single matrix argument then each row of <var>C</var>
represents the Cartesian coordinate (<var>x</var>, <var>y</var>, <var>z</var>).
</p>
<p>If only a single return argument is requested then return a matrix
<var>S</var> where each row represents one spherical coordinate
(<var>theta</var>, <var>phi</var>, <var>r</var>).
</p>
<p><strong>See also:</strong> <a href="#XREFsph2cart">sph2cart</a>, <a href="#XREFcart2pol">cart2pol</a>, <a href="#XREFpol2cart">pol2cart</a>.
</p></dd></dl>
<a name="XREFsph2cart"></a><dl>
<dt><a name="index-sph2cart"></a>Function File: <em>[<var>x</var>, <var>y</var>, <var>z</var>] =</em> <strong>sph2cart</strong> <em>(<var>theta</var>, <var>phi</var>, <var>r</var>)</em></dt>
<dt><a name="index-sph2cart-1"></a>Function File: <em>[<var>x</var>, <var>y</var>, <var>z</var>] =</em> <strong>sph2cart</strong> <em>(<var>S</var>)</em></dt>
<dt><a name="index-sph2cart-2"></a>Function File: <em><var>C</var> =</em> <strong>sph2cart</strong> <em>(…)</em></dt>
<dd><p>Transform spherical to Cartesian coordinates.
</p>
<p><var>theta</var> describes the angle relative to the positive x-axis.
<var>phi</var> is the angle relative to the xy-plane.
<var>r</var> is the distance to the origin (0, 0, 0)<!-- /@w -->.
<var>theta</var>, <var>phi</var>, and <var>r</var> must be the same shape, or scalar.
If called with a single matrix argument then each row of <var>S</var>
represents the spherical coordinate (<var>theta</var>, <var>phi</var>, <var>r</var>).
</p>
<p>If only a single return argument is requested then return a matrix
<var>C</var> where each row represents one Cartesian coordinate
(<var>x</var>, <var>y</var>, <var>z</var>).
</p>
<p><strong>See also:</strong> <a href="#XREFcart2sph">cart2sph</a>, <a href="#XREFpol2cart">pol2cart</a>, <a href="#XREFcart2pol">cart2pol</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Mathematical-Constants.html#Mathematical-Constants" accesskey="n" rel="next">Mathematical Constants</a>, Previous: <a href="Rational-Approximations.html#Rational-Approximations" accesskey="p" rel="prev">Rational Approximations</a>, Up: <a href="Arithmetic.html#Arithmetic" accesskey="u" rel="up">Arithmetic</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|