File: Derivatives-_002f-Integrals-_002f-Transforms.html

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (124 lines) | stat: -rw-r--r-- 6,634 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Octave: Derivatives / Integrals / Transforms</title>

<meta name="description" content="GNU Octave: Derivatives / Integrals / Transforms">
<meta name="keywords" content="GNU Octave: Derivatives / Integrals / Transforms">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Polynomial-Manipulations.html#Polynomial-Manipulations" rel="up" title="Polynomial Manipulations">
<link href="Polynomial-Interpolation.html#Polynomial-Interpolation" rel="next" title="Polynomial Interpolation">
<link href="Products-of-Polynomials.html#Products-of-Polynomials" rel="prev" title="Products of Polynomials">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Derivatives-_002f-Integrals-_002f-Transforms"></a>
<div class="header">
<p>
Next: <a href="Polynomial-Interpolation.html#Polynomial-Interpolation" accesskey="n" rel="next">Polynomial Interpolation</a>, Previous: <a href="Products-of-Polynomials.html#Products-of-Polynomials" accesskey="p" rel="prev">Products of Polynomials</a>, Up: <a href="Polynomial-Manipulations.html#Polynomial-Manipulations" accesskey="u" rel="up">Polynomial Manipulations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Derivatives-_002f-Integrals-_002f-Transforms-1"></a>
<h3 class="section">28.4 Derivatives / Integrals / Transforms</h3>

<p>Octave comes with functions for computing the derivative and the integral
of a polynomial.  The functions <code>polyder</code> and <code>polyint</code>
both return new polynomials describing the result.  As an example we&rsquo;ll
compute the definite integral of <em>p(x) = x^2 + 1</em> from 0 to 3.
</p>
<div class="example">
<pre class="example">c = [1, 0, 1];
integral = polyint (c);
area = polyval (integral, 3) - polyval (integral, 0)
&rArr; 12
</pre></div>

<a name="XREFpolyder"></a><dl>
<dt><a name="index-polyder"></a>Function File: <em></em> <strong>polyder</strong> <em>(<var>p</var>)</em></dt>
<dt><a name="index-polyder-1"></a>Function File: <em>[<var>k</var>] =</em> <strong>polyder</strong> <em>(<var>a</var>, <var>b</var>)</em></dt>
<dt><a name="index-polyder-2"></a>Function File: <em>[<var>q</var>, <var>d</var>] =</em> <strong>polyder</strong> <em>(<var>b</var>, <var>a</var>)</em></dt>
<dd><p>Return the coefficients of the derivative of the polynomial whose
coefficients are given by the vector <var>p</var>.  If a pair of polynomials
is given, return the derivative of the product <em><var>a</var>*<var>b</var></em>.
If two inputs and two outputs are given, return the derivative of the
polynomial quotient <em><var>b</var>/<var>a</var></em>.  The quotient numerator is
in <var>q</var> and the denominator in <var>d</var>.
</p>
<p><strong>See also:</strong> <a href="#XREFpolyint">polyint</a>, <a href="Evaluating-Polynomials.html#XREFpolyval">polyval</a>, <a href="Miscellaneous-Functions.html#XREFpolyreduce">polyreduce</a>.
</p></dd></dl>


<a name="XREFpolyint"></a><dl>
<dt><a name="index-polyint"></a>Function File: <em></em> <strong>polyint</strong> <em>(<var>p</var>)</em></dt>
<dt><a name="index-polyint-1"></a>Function File: <em></em> <strong>polyint</strong> <em>(<var>p</var>, <var>k</var>)</em></dt>
<dd><p>Return the coefficients of the integral of the polynomial whose
coefficients are represented by the vector <var>p</var>.  The variable
<var>k</var> is the constant of integration, which by default is set to zero.
</p>
<p><strong>See also:</strong> <a href="#XREFpolyder">polyder</a>, <a href="Evaluating-Polynomials.html#XREFpolyval">polyval</a>.
</p></dd></dl>


<a name="XREFpolyaffine"></a><dl>
<dt><a name="index-polyaffine"></a>Function File: <em></em> <strong>polyaffine</strong> <em>(<var>f</var>, <var>mu</var>)</em></dt>
<dd><p>Return the coefficients of the polynomial vector <var>f</var> after an affine
transformation.  If <var>f</var> is the vector representing the polynomial f(x),
then <code><var>g</var> = polyaffine (<var>f</var>, <var>mu</var>)</code> is the vector
representing:
</p>
<div class="example">
<pre class="example">g(x) = f( (x - <var>mu</var>(1)) / <var>mu</var>(2) )
</pre></div>


<p><strong>See also:</strong> <a href="Evaluating-Polynomials.html#XREFpolyval">polyval</a>, <a href="Polynomial-Interpolation.html#XREFpolyfit">polyfit</a>.
</p></dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Polynomial-Interpolation.html#Polynomial-Interpolation" accesskey="n" rel="next">Polynomial Interpolation</a>, Previous: <a href="Products-of-Polynomials.html#Products-of-Polynomials" accesskey="p" rel="prev">Products of Polynomials</a>, Up: <a href="Polynomial-Manipulations.html#Polynomial-Manipulations" accesskey="u" rel="up">Polynomial Manipulations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>