1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Octave: Distributions</title>
<meta name="description" content="GNU Octave: Distributions">
<meta name="keywords" content="GNU Octave: Distributions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Statistics.html#Statistics" rel="up" title="Statistics">
<link href="Tests.html#Tests" rel="next" title="Tests">
<link href="Correlation-and-Regression-Analysis.html#Correlation-and-Regression-Analysis" rel="prev" title="Correlation and Regression Analysis">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Distributions"></a>
<div class="header">
<p>
Next: <a href="Tests.html#Tests" accesskey="n" rel="next">Tests</a>, Previous: <a href="Correlation-and-Regression-Analysis.html#Correlation-and-Regression-Analysis" accesskey="p" rel="prev">Correlation and Regression Analysis</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Distributions-1"></a>
<h3 class="section">26.5 Distributions</h3>
<p>Octave has functions for computing the Probability Density Function
(PDF), the Cumulative Distribution function (CDF), and the quantile
(the inverse of the CDF) for a large number of distributions.
</p>
<p>The following table summarizes the supported distributions (in
alphabetical order).
</p>
<table>
<thead><tr><th width="31%">Distribution</th><th width="23%">PDF</th><th width="23%">CDF</th><th width="23%">Quantile</th></tr></thead>
<tr><td width="31%">Beta Distribution</td><td width="23%"><code>betapdf</code></td><td width="23%"><code>betacdf</code></td><td width="23%"><code>betainv</code></td></tr>
<tr><td width="31%">Binomial Distribution</td><td width="23%"><code>binopdf</code></td><td width="23%"><code>binocdf</code></td><td width="23%"><code>binoinv</code></td></tr>
<tr><td width="31%">Cauchy Distribution</td><td width="23%"><code>cauchy_pdf</code></td><td width="23%"><code>cauchy_cdf</code></td><td width="23%"><code>cauchy_inv</code></td></tr>
<tr><td width="31%">Chi-Square Distribution</td><td width="23%"><code>chi2pdf</code></td><td width="23%"><code>chi2cdf</code></td><td width="23%"><code>chi2inv</code></td></tr>
<tr><td width="31%">Univariate Discrete Distribution</td><td width="23%"><code>discrete_pdf</code></td><td width="23%"><code>discrete_cdf</code></td><td width="23%"><code>discrete_inv</code></td></tr>
<tr><td width="31%">Empirical Distribution</td><td width="23%"><code>empirical_pdf</code></td><td width="23%"><code>empirical_cdf</code></td><td width="23%"><code>empirical_inv</code></td></tr>
<tr><td width="31%">Exponential Distribution</td><td width="23%"><code>exppdf</code></td><td width="23%"><code>expcdf</code></td><td width="23%"><code>expinv</code></td></tr>
<tr><td width="31%">F Distribution</td><td width="23%"><code>fpdf</code></td><td width="23%"><code>fcdf</code></td><td width="23%"><code>finv</code></td></tr>
<tr><td width="31%">Gamma Distribution</td><td width="23%"><code>gampdf</code></td><td width="23%"><code>gamcdf</code></td><td width="23%"><code>gaminv</code></td></tr>
<tr><td width="31%">Geometric Distribution</td><td width="23%"><code>geopdf</code></td><td width="23%"><code>geocdf</code></td><td width="23%"><code>geoinv</code></td></tr>
<tr><td width="31%">Hypergeometric Distribution</td><td width="23%"><code>hygepdf</code></td><td width="23%"><code>hygecdf</code></td><td width="23%"><code>hygeinv</code></td></tr>
<tr><td width="31%">Kolmogorov Smirnov Distribution</td><td width="23%"><em>Not Available</em></td><td width="23%"><code>kolmogorov_smirnov_cdf</code></td><td width="23%"><em>Not Available</em></td></tr>
<tr><td width="31%">Laplace Distribution</td><td width="23%"><code>laplace_pdf</code></td><td width="23%"><code>laplace_cdf</code></td><td width="23%"><code>laplace_inv</code></td></tr>
<tr><td width="31%">Logistic Distribution</td><td width="23%"><code>logistic_pdf</code></td><td width="23%"><code>logistic_cdf</code></td><td width="23%"><code>logistic_inv</code></td></tr>
<tr><td width="31%">Log-Normal Distribution</td><td width="23%"><code>lognpdf</code></td><td width="23%"><code>logncdf</code></td><td width="23%"><code>logninv</code></td></tr>
<tr><td width="31%">Univariate Normal Distribution</td><td width="23%"><code>normpdf</code></td><td width="23%"><code>normcdf</code></td><td width="23%"><code>norminv</code></td></tr>
<tr><td width="31%">Pascal Distribution</td><td width="23%"><code>nbinpdf</code></td><td width="23%"><code>nbincdf</code></td><td width="23%"><code>nbininv</code></td></tr>
<tr><td width="31%">Poisson Distribution</td><td width="23%"><code>poisspdf</code></td><td width="23%"><code>poisscdf</code></td><td width="23%"><code>poissinv</code></td></tr>
<tr><td width="31%">Standard Normal Distribution</td><td width="23%"><code>stdnormal_pdf</code></td><td width="23%"><code>stdnormal_cdf</code></td><td width="23%"><code>stdnormal_inv</code></td></tr>
<tr><td width="31%">t (Student) Distribution</td><td width="23%"><code>tpdf</code></td><td width="23%"><code>tcdf</code></td><td width="23%"><code>tinv</code></td></tr>
<tr><td width="31%">Univariate Discrete Distribution</td><td width="23%"><code>unidpdf</code></td><td width="23%"><code>unidcdf</code></td><td width="23%"><code>unidinv</code></td></tr>
<tr><td width="31%">Uniform Distribution</td><td width="23%"><code>unifpdf</code></td><td width="23%"><code>unifcdf</code></td><td width="23%"><code>unifinv</code></td></tr>
<tr><td width="31%">Weibull Distribution</td><td width="23%"><code>wblpdf</code></td><td width="23%"><code>wblcdf</code></td><td width="23%"><code>wblinv</code></td></tr>
</table>
<a name="XREFbetapdf"></a><dl>
<dt><a name="index-betapdf"></a>Function File: <em></em> <strong>betapdf</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the Beta distribution with parameters <var>a</var> and <var>b</var>.
</p></dd></dl>
<a name="XREFbetacdf"></a><dl>
<dt><a name="index-betacdf"></a>Function File: <em></em> <strong>betacdf</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the Beta distribution with parameters <var>a</var> and
<var>b</var>.
</p></dd></dl>
<a name="XREFbetainv"></a><dl>
<dt><a name="index-betainv"></a>Function File: <em></em> <strong>betainv</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of
the CDF) at <var>x</var> of the Beta distribution with parameters <var>a</var>
and <var>b</var>.
</p></dd></dl>
<a name="XREFbinopdf"></a><dl>
<dt><a name="index-binopdf"></a>Function File: <em></em> <strong>binopdf</strong> <em>(<var>x</var>, <var>n</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of the binomial distribution with parameters <var>n</var>
and <var>p</var>, where <var>n</var> is the number of trials and <var>p</var> is the
probability of success.
</p></dd></dl>
<a name="XREFbinocdf"></a><dl>
<dt><a name="index-binocdf"></a>Function File: <em></em> <strong>binocdf</strong> <em>(<var>x</var>, <var>n</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the binomial distribution with parameters <var>n</var> and
<var>p</var>, where <var>n</var> is the number of trials and <var>p</var> is the
probability of success.
</p></dd></dl>
<a name="XREFbinoinv"></a><dl>
<dt><a name="index-binoinv"></a>Function File: <em></em> <strong>binoinv</strong> <em>(<var>x</var>, <var>n</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of
the CDF) at <var>x</var> of the binomial distribution with parameters
<var>n</var> and <var>p</var>, where <var>n</var> is the number of trials and
<var>p</var> is the probability of success.
</p></dd></dl>
<a name="XREFcauchy_005fpdf"></a><dl>
<dt><a name="index-cauchy_005fpdf"></a>Function File: <em></em> <strong>cauchy_pdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-cauchy_005fpdf-1"></a>Function File: <em></em> <strong>cauchy_pdf</strong> <em>(<var>x</var>, <var>location</var>, <var>scale</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of the Cauchy distribution with location parameter
<var>location</var> and scale parameter <var>scale</var> > 0. Default values are
<var>location</var> = 0, <var>scale</var> = 1.
</p></dd></dl>
<a name="XREFcauchy_005fcdf"></a><dl>
<dt><a name="index-cauchy_005fcdf"></a>Function File: <em></em> <strong>cauchy_cdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-cauchy_005fcdf-1"></a>Function File: <em></em> <strong>cauchy_cdf</strong> <em>(<var>x</var>, <var>location</var>, <var>scale</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution
function (CDF) at <var>x</var> of the Cauchy distribution with location
parameter <var>location</var> and scale parameter <var>scale</var>. Default
values are <var>location</var> = 0, <var>scale</var> = 1.
</p></dd></dl>
<a name="XREFcauchy_005finv"></a><dl>
<dt><a name="index-cauchy_005finv"></a>Function File: <em></em> <strong>cauchy_inv</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-cauchy_005finv-1"></a>Function File: <em></em> <strong>cauchy_inv</strong> <em>(<var>x</var>, <var>location</var>, <var>scale</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the
CDF) at <var>x</var> of the Cauchy distribution with location parameter
<var>location</var> and scale parameter <var>scale</var>. Default values are
<var>location</var> = 0, <var>scale</var> = 1.
</p></dd></dl>
<a name="XREFchi2pdf"></a><dl>
<dt><a name="index-chi2pdf"></a>Function File: <em></em> <strong>chi2pdf</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of the chi-square distribution with <var>n</var> degrees
of freedom.
</p></dd></dl>
<a name="XREFchi2cdf"></a><dl>
<dt><a name="index-chi2cdf"></a>Function File: <em></em> <strong>chi2cdf</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution
function (CDF) at <var>x</var> of the chi-square distribution with <var>n</var>
degrees of freedom.
</p></dd></dl>
<a name="XREFchi2inv"></a><dl>
<dt><a name="index-chi2inv"></a>Function File: <em></em> <strong>chi2inv</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the
CDF) at <var>x</var> of the chi-square distribution with <var>n</var> degrees of
freedom.
</p></dd></dl>
<a name="XREFdiscrete_005fpdf"></a><dl>
<dt><a name="index-discrete_005fpdf"></a>Function File: <em></em> <strong>discrete_pdf</strong> <em>(<var>x</var>, <var>v</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of a univariate discrete distribution which assumes
the values in <var>v</var> with probabilities <var>p</var>.
</p></dd></dl>
<a name="XREFdiscrete_005fcdf"></a><dl>
<dt><a name="index-discrete_005fcdf"></a>Function File: <em></em> <strong>discrete_cdf</strong> <em>(<var>x</var>, <var>v</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution
function (CDF) at <var>x</var> of a univariate discrete distribution which
assumes the values in <var>v</var> with probabilities <var>p</var>.
</p></dd></dl>
<a name="XREFdiscrete_005finv"></a><dl>
<dt><a name="index-discrete_005finv"></a>Function File: <em></em> <strong>discrete_inv</strong> <em>(<var>x</var>, <var>v</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of
the CDF) at <var>x</var> of the univariate distribution which assumes the
values in <var>v</var> with probabilities <var>p</var>.
</p></dd></dl>
<a name="XREFempirical_005fpdf"></a><dl>
<dt><a name="index-empirical_005fpdf"></a>Function File: <em></em> <strong>empirical_pdf</strong> <em>(<var>x</var>, <var>data</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of the empirical distribution obtained from the
univariate sample <var>data</var>.
</p></dd></dl>
<a name="XREFempirical_005fcdf"></a><dl>
<dt><a name="index-empirical_005fcdf"></a>Function File: <em></em> <strong>empirical_cdf</strong> <em>(<var>x</var>, <var>data</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution
function (CDF) at <var>x</var> of the empirical distribution obtained from
the univariate sample <var>data</var>.
</p></dd></dl>
<a name="XREFempirical_005finv"></a><dl>
<dt><a name="index-empirical_005finv"></a>Function File: <em></em> <strong>empirical_inv</strong> <em>(<var>x</var>, <var>data</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the
CDF) at <var>x</var> of the empirical distribution obtained from the
univariate sample <var>data</var>.
</p></dd></dl>
<a name="XREFexppdf"></a><dl>
<dt><a name="index-exppdf"></a>Function File: <em></em> <strong>exppdf</strong> <em>(<var>x</var>, <var>lambda</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of the exponential distribution with mean <var>lambda</var>.
</p></dd></dl>
<a name="XREFexpcdf"></a><dl>
<dt><a name="index-expcdf"></a>Function File: <em></em> <strong>expcdf</strong> <em>(<var>x</var>, <var>lambda</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution
function (CDF) at <var>x</var> of the exponential distribution with
mean <var>lambda</var>.
</p>
<p>The arguments can be of common size or scalars.
</p></dd></dl>
<a name="XREFexpinv"></a><dl>
<dt><a name="index-expinv"></a>Function File: <em></em> <strong>expinv</strong> <em>(<var>x</var>, <var>lambda</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the
CDF) at <var>x</var> of the exponential distribution with mean <var>lambda</var>.
</p></dd></dl>
<a name="XREFfpdf"></a><dl>
<dt><a name="index-fpdf"></a>Function File: <em></em> <strong>fpdf</strong> <em>(<var>x</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of the F distribution with <var>m</var> and <var>n</var>
degrees of freedom.
</p></dd></dl>
<a name="XREFfcdf"></a><dl>
<dt><a name="index-fcdf"></a>Function File: <em></em> <strong>fcdf</strong> <em>(<var>x</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the F distribution with <var>m</var> and <var>n</var> degrees of
freedom.
</p></dd></dl>
<a name="XREFfinv"></a><dl>
<dt><a name="index-finv"></a>Function File: <em></em> <strong>finv</strong> <em>(<var>x</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of
the CDF) at <var>x</var> of the F distribution with <var>m</var> and <var>n</var>
degrees of freedom.
</p></dd></dl>
<a name="XREFgampdf"></a><dl>
<dt><a name="index-gampdf"></a>Function File: <em></em> <strong>gampdf</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, return the probability density function
(PDF) at <var>x</var> of the Gamma distribution with shape parameter
<var>a</var> and scale <var>b</var>.
</p></dd></dl>
<a name="XREFgamcdf"></a><dl>
<dt><a name="index-gamcdf"></a>Function File: <em></em> <strong>gamcdf</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution
function (CDF) at <var>x</var> of the Gamma distribution with shape
parameter <var>a</var> and scale <var>b</var>.
</p></dd></dl>
<a name="XREFgaminv"></a><dl>
<dt><a name="index-gaminv"></a>Function File: <em></em> <strong>gaminv</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of
the CDF) at <var>x</var> of the Gamma distribution with shape parameter
<var>a</var> and scale <var>b</var>.
</p></dd></dl>
<a name="XREFgeopdf"></a><dl>
<dt><a name="index-geopdf"></a>Function File: <em></em> <strong>geopdf</strong> <em>(<var>x</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of the geometric distribution with parameter <var>p</var>.
</p>
<p>The geometric distribution models the number of failures (<var>x</var>-1) of a
Bernoulli trial with probability <var>p</var> before the first success (<var>x</var>).
</p></dd></dl>
<a name="XREFgeocdf"></a><dl>
<dt><a name="index-geocdf"></a>Function File: <em></em> <strong>geocdf</strong> <em>(<var>x</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the geometric distribution with parameter <var>p</var>.
</p>
<p>The geometric distribution models the number of failures (<var>x</var>-1) of a
Bernoulli trial with probability <var>p</var> before the first success (<var>x</var>).
</p></dd></dl>
<a name="XREFgeoinv"></a><dl>
<dt><a name="index-geoinv"></a>Function File: <em></em> <strong>geoinv</strong> <em>(<var>x</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of
the CDF) at <var>x</var> of the geometric distribution with parameter <var>p</var>.
</p>
<p>The geometric distribution models the number of failures (<var>x</var>-1) of a
Bernoulli trial with probability <var>p</var> before the first success (<var>x</var>).
</p></dd></dl>
<a name="XREFhygepdf"></a><dl>
<dt><a name="index-hygepdf"></a>Function File: <em></em> <strong>hygepdf</strong> <em>(<var>x</var>, <var>t</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>Compute the probability density function (PDF) at <var>x</var> of the
hypergeometric distribution with parameters <var>t</var>, <var>m</var>, and
<var>n</var>. This is the probability of obtaining <var>x</var> marked items
when randomly drawing a sample of size <var>n</var> without replacement
from a population of total size <var>t</var> containing <var>m</var> marked items.
</p>
<p>The parameters <var>t</var>, <var>m</var>, and <var>n</var> must be positive integers
with <var>m</var> and <var>n</var> not greater than <var>t</var>.
</p></dd></dl>
<a name="XREFhygecdf"></a><dl>
<dt><a name="index-hygecdf"></a>Function File: <em></em> <strong>hygecdf</strong> <em>(<var>x</var>, <var>t</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>Compute the cumulative distribution function (CDF) at <var>x</var> of the
hypergeometric distribution with parameters <var>t</var>, <var>m</var>, and
<var>n</var>. This is the probability of obtaining not more than <var>x</var>
marked items when randomly drawing a sample of size <var>n</var> without
replacement from a population of total size <var>t</var> containing
<var>m</var> marked items.
</p>
<p>The parameters <var>t</var>, <var>m</var>, and <var>n</var> must be positive integers
with <var>m</var> and <var>n</var> not greater than <var>t</var>.
</p></dd></dl>
<a name="XREFhygeinv"></a><dl>
<dt><a name="index-hygeinv"></a>Function File: <em></em> <strong>hygeinv</strong> <em>(<var>x</var>, <var>t</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of
the CDF) at <var>x</var> of the hypergeometric distribution with parameters
<var>t</var>, <var>m</var>, and <var>n</var>. This is the probability of obtaining <var>x</var>
marked items when randomly drawing a sample of size <var>n</var> without
replacement from a population of total size <var>t</var> containing <var>m</var>
marked items.
</p>
<p>The parameters <var>t</var>, <var>m</var>, and <var>n</var> must be positive integers
with <var>m</var> and <var>n</var> not greater than <var>t</var>.
</p></dd></dl>
<a name="XREFkolmogorov_005fsmirnov_005fcdf"></a><dl>
<dt><a name="index-kolmogorov_005fsmirnov_005fcdf"></a>Function File: <em></em> <strong>kolmogorov_smirnov_cdf</strong> <em>(<var>x</var>, <var>tol</var>)</em></dt>
<dd><p>Return the cumulative distribution function (CDF) at <var>x</var> of the
Kolmogorov-Smirnov distribution,
</p>
<div class="example">
<pre class="example"> Inf
Q(x) = SUM (-1)^k exp (-2 k^2 x^2)
k = -Inf
</pre></div>
<p>for <var>x</var> > 0.
</p>
<p>The optional parameter <var>tol</var> specifies the precision up to which
the series should be evaluated; the default is <var>tol</var> = <code>eps</code>.
</p></dd></dl>
<a name="XREFlaplace_005fpdf"></a><dl>
<dt><a name="index-laplace_005fpdf"></a>Function File: <em></em> <strong>laplace_pdf</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of the Laplace distribution.
</p></dd></dl>
<a name="XREFlaplace_005fcdf"></a><dl>
<dt><a name="index-laplace_005fcdf"></a>Function File: <em></em> <strong>laplace_cdf</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution
function (CDF) at <var>x</var> of the Laplace distribution.
</p></dd></dl>
<a name="XREFlaplace_005finv"></a><dl>
<dt><a name="index-laplace_005finv"></a>Function File: <em></em> <strong>laplace_inv</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the
CDF) at <var>x</var> of the Laplace distribution.
</p></dd></dl>
<a name="XREFlogistic_005fpdf"></a><dl>
<dt><a name="index-logistic_005fpdf"></a>Function File: <em></em> <strong>logistic_pdf</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the PDF at <var>x</var> of the
logistic distribution.
</p></dd></dl>
<a name="XREFlogistic_005fcdf"></a><dl>
<dt><a name="index-logistic_005fcdf"></a>Function File: <em></em> <strong>logistic_cdf</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the logistic distribution.
</p></dd></dl>
<a name="XREFlogistic_005finv"></a><dl>
<dt><a name="index-logistic_005finv"></a>Function File: <em></em> <strong>logistic_inv</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of
the CDF) at <var>x</var> of the logistic distribution.
</p></dd></dl>
<a name="XREFlognpdf"></a><dl>
<dt><a name="index-lognpdf"></a>Function File: <em></em> <strong>lognpdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-lognpdf-1"></a>Function File: <em></em> <strong>lognpdf</strong> <em>(<var>x</var>, <var>mu</var>, <var>sigma</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of the lognormal distribution with parameters
<var>mu</var> and <var>sigma</var>. If a random variable follows this distribution,
its logarithm is normally distributed with mean <var>mu</var> and standard
deviation <var>sigma</var>.
</p>
<p>Default values are <var>mu</var> = 0, <var>sigma</var> = 1.
</p></dd></dl>
<a name="XREFlogncdf"></a><dl>
<dt><a name="index-logncdf"></a>Function File: <em></em> <strong>logncdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-logncdf-1"></a>Function File: <em></em> <strong>logncdf</strong> <em>(<var>x</var>, <var>mu</var>, <var>sigma</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the lognormal distribution with parameters
<var>mu</var> and <var>sigma</var>. If a random variable follows this distribution,
its logarithm is normally distributed with mean <var>mu</var> and standard
deviation <var>sigma</var>.
</p>
<p>Default values are <var>mu</var> = 0, <var>sigma</var> = 1.
</p></dd></dl>
<a name="XREFlogninv"></a><dl>
<dt><a name="index-logninv"></a>Function File: <em></em> <strong>logninv</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-logninv-1"></a>Function File: <em></em> <strong>logninv</strong> <em>(<var>x</var>, <var>mu</var>, <var>sigma</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the
CDF) at <var>x</var> of the lognormal distribution with parameters
<var>mu</var> and <var>sigma</var>. If a random variable follows this distribution,
its logarithm is normally distributed with mean <var>mu</var> and standard
deviation <var>sigma</var>.
</p>
<p>Default values are <var>mu</var> = 0, <var>sigma</var> = 1.
</p></dd></dl>
<a name="XREFnbinpdf"></a><dl>
<dt><a name="index-nbinpdf"></a>Function File: <em></em> <strong>nbinpdf</strong> <em>(<var>x</var>, <var>n</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of the negative binomial distribution with
parameters <var>n</var> and <var>p</var>.
</p>
<p>When <var>n</var> is integer this is the Pascal distribution. When
<var>n</var> is extended to real numbers this is the Polya distribution.
</p>
<p>The number of failures in a Bernoulli experiment with success
probability <var>p</var> before the <var>n</var>-th success follows this
distribution.
</p></dd></dl>
<a name="XREFnbincdf"></a><dl>
<dt><a name="index-nbincdf"></a>Function File: <em></em> <strong>nbincdf</strong> <em>(<var>x</var>, <var>n</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the negative binomial distribution with
parameters <var>n</var> and <var>p</var>.
</p>
<p>When <var>n</var> is integer this is the Pascal distribution. When
<var>n</var> is extended to real numbers this is the Polya distribution.
</p>
<p>The number of failures in a Bernoulli experiment with success
probability <var>p</var> before the <var>n</var>-th success follows this
distribution.
</p></dd></dl>
<a name="XREFnbininv"></a><dl>
<dt><a name="index-nbininv"></a>Function File: <em></em> <strong>nbininv</strong> <em>(<var>x</var>, <var>n</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of
the CDF) at <var>x</var> of the negative binomial distribution
with parameters <var>n</var> and <var>p</var>.
</p>
<p>When <var>n</var> is integer this is the Pascal distribution. When
<var>n</var> is extended to real numbers this is the Polya distribution.
</p>
<p>The number of failures in a Bernoulli experiment with success
probability <var>p</var> before the <var>n</var>-th success follows this
distribution.
</p></dd></dl>
<a name="XREFnormpdf"></a><dl>
<dt><a name="index-normpdf"></a>Function File: <em></em> <strong>normpdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-normpdf-1"></a>Function File: <em></em> <strong>normpdf</strong> <em>(<var>x</var>, <var>mu</var>, <var>sigma</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of the normal distribution with mean <var>mu</var> and
standard deviation <var>sigma</var>.
</p>
<p>Default values are <var>mu</var> = 0, <var>sigma</var> = 1.
</p></dd></dl>
<a name="XREFnormcdf"></a><dl>
<dt><a name="index-normcdf"></a>Function File: <em></em> <strong>normcdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-normcdf-1"></a>Function File: <em></em> <strong>normcdf</strong> <em>(<var>x</var>, <var>mu</var>, <var>sigma</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution
function (CDF) at <var>x</var> of the normal distribution with mean
<var>mu</var> and standard deviation <var>sigma</var>.
</p>
<p>Default values are <var>mu</var> = 0, <var>sigma</var> = 1.
</p></dd></dl>
<a name="XREFnorminv"></a><dl>
<dt><a name="index-norminv"></a>Function File: <em></em> <strong>norminv</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-norminv-1"></a>Function File: <em></em> <strong>norminv</strong> <em>(<var>x</var>, <var>mu</var>, <var>sigma</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the
CDF) at <var>x</var> of the normal distribution with mean <var>mu</var> and
standard deviation <var>sigma</var>.
</p>
<p>Default values are <var>mu</var> = 0, <var>sigma</var> = 1.
</p></dd></dl>
<a name="XREFpoisspdf"></a><dl>
<dt><a name="index-poisspdf"></a>Function File: <em></em> <strong>poisspdf</strong> <em>(<var>x</var>, <var>lambda</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of the Poisson distribution with parameter <var>lambda</var>.
</p></dd></dl>
<a name="XREFpoisscdf"></a><dl>
<dt><a name="index-poisscdf"></a>Function File: <em></em> <strong>poisscdf</strong> <em>(<var>x</var>, <var>lambda</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution
function (CDF) at <var>x</var> of the Poisson distribution with parameter
lambda.
</p></dd></dl>
<a name="XREFpoissinv"></a><dl>
<dt><a name="index-poissinv"></a>Function File: <em></em> <strong>poissinv</strong> <em>(<var>x</var>, <var>lambda</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of
the CDF) at <var>x</var> of the Poisson distribution with parameter
<var>lambda</var>.
</p></dd></dl>
<a name="XREFstdnormal_005fpdf"></a><dl>
<dt><a name="index-stdnormal_005fpdf"></a>Function File: <em></em> <strong>stdnormal_pdf</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of the standard normal distribution (mean = 0,
standard deviation = 1).
</p></dd></dl>
<a name="XREFstdnormal_005fcdf"></a><dl>
<dt><a name="index-stdnormal_005fcdf"></a>Function File: <em></em> <strong>stdnormal_cdf</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution
function (CDF) at <var>x</var> of the standard normal distribution
(mean = 0, standard deviation = 1).
</p></dd></dl>
<a name="XREFstdnormal_005finv"></a><dl>
<dt><a name="index-stdnormal_005finv"></a>Function File: <em></em> <strong>stdnormal_inv</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the
inverse of the CDF) at <var>x</var> of the standard normal distribution
(mean = 0, standard deviation = 1).
</p></dd></dl>
<a name="XREFtpdf"></a><dl>
<dt><a name="index-tpdf"></a>Function File: <em></em> <strong>tpdf</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of the <var>t</var> (Student) distribution with <var>n</var>
degrees of freedom.
</p></dd></dl>
<a name="XREFtcdf"></a><dl>
<dt><a name="index-tcdf"></a>Function File: <em></em> <strong>tcdf</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution
function (CDF) at <var>x</var> of the t (Student) distribution with
<var>n</var> degrees of freedom, i.e., PROB (t(<var>n</var>) ≤ <var>x</var>).
</p></dd></dl>
<a name="XREFtinv"></a><dl>
<dt><a name="index-tinv"></a>Function File: <em></em> <strong>tinv</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of
the CDF) at <var>x</var> of the t (Student) distribution with <var>n</var>
degrees of freedom. This function is analogous to looking in a table
for the t-value of a single-tailed distribution.
</p></dd></dl>
<a name="XREFunidpdf"></a><dl>
<dt><a name="index-unidpdf"></a>Function File: <em></em> <strong>unidpdf</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function
(PDF) at <var>x</var> of a discrete uniform distribution which assumes
the integer values 1–<var>n</var> with equal probability.
</p>
<p>Warning: The underlying implementation uses the double class and
will only be accurate for <var>n</var> ≤ <code>bitmax</code>
(<em>2^{53} - 1</em><!-- /@w --> on IEEE-754 compatible systems).
</p></dd></dl>
<a name="XREFunidcdf"></a><dl>
<dt><a name="index-unidcdf"></a>Function File: <em></em> <strong>unidcdf</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution
function (CDF) at <var>x</var> of a discrete uniform distribution which assumes
the integer values 1–<var>n</var> with equal probability.
</p></dd></dl>
<a name="XREFunidinv"></a><dl>
<dt><a name="index-unidinv"></a>Function File: <em></em> <strong>unidinv</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of
the CDF) at <var>x</var> of the discrete uniform distribution which assumes
the integer values 1–<var>n</var> with equal probability.
</p></dd></dl>
<a name="XREFunifpdf"></a><dl>
<dt><a name="index-unifpdf"></a>Function File: <em></em> <strong>unifpdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-unifpdf-1"></a>Function File: <em></em> <strong>unifpdf</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the uniform distribution on the interval [<var>a</var>, <var>b</var>].
</p>
<p>Default values are <var>a</var> = 0, <var>b</var> = 1.
</p></dd></dl>
<a name="XREFunifcdf"></a><dl>
<dt><a name="index-unifcdf"></a>Function File: <em></em> <strong>unifcdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-unifcdf-1"></a>Function File: <em></em> <strong>unifcdf</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution
function (CDF) at <var>x</var> of the uniform distribution on the interval
[<var>a</var>, <var>b</var>].
</p>
<p>Default values are <var>a</var> = 0, <var>b</var> = 1.
</p></dd></dl>
<a name="XREFunifinv"></a><dl>
<dt><a name="index-unifinv"></a>Function File: <em></em> <strong>unifinv</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-unifinv-1"></a>Function File: <em></em> <strong>unifinv</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the
CDF) at <var>x</var> of the uniform distribution on the interval
[<var>a</var>, <var>b</var>].
</p>
<p>Default values are <var>a</var> = 0, <var>b</var> = 1.
</p></dd></dl>
<a name="XREFwblpdf"></a><dl>
<dt><a name="index-wblpdf"></a>Function File: <em></em> <strong>wblpdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-wblpdf-1"></a>Function File: <em></em> <strong>wblpdf</strong> <em>(<var>x</var>, <var>scale</var>)</em></dt>
<dt><a name="index-wblpdf-2"></a>Function File: <em></em> <strong>wblpdf</strong> <em>(<var>x</var>, <var>scale</var>, <var>shape</var>)</em></dt>
<dd><p>Compute the probability density function (PDF) at <var>x</var> of the
Weibull distribution with scale parameter <var>scale</var> and shape
parameter <var>shape</var> which is given by
</p>
<div class="example">
<pre class="example">shape * scale^(-shape) * x^(shape-1) * exp (-(x/scale)^shape)
</pre></div>
<p>for <var>x</var> ≥ 0.
</p>
<p>Default values are <var>scale</var> = 1, <var>shape</var> = 1.
</p></dd></dl>
<a name="XREFwblcdf"></a><dl>
<dt><a name="index-wblcdf"></a>Function File: <em></em> <strong>wblcdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-wblcdf-1"></a>Function File: <em></em> <strong>wblcdf</strong> <em>(<var>x</var>, <var>scale</var>)</em></dt>
<dt><a name="index-wblcdf-2"></a>Function File: <em></em> <strong>wblcdf</strong> <em>(<var>x</var>, <var>scale</var>, <var>shape</var>)</em></dt>
<dd><p>Compute the cumulative distribution function (CDF) at <var>x</var> of the
Weibull distribution with scale parameter <var>scale</var> and shape
parameter <var>shape</var>, which is
</p>
<div class="example">
<pre class="example">1 - exp (-(x/scale)^shape)
</pre></div>
<p>for <var>x</var> ≥ 0.
</p>
<p>Default values are <var>scale</var> = 1, <var>shape</var> = 1.
</p></dd></dl>
<a name="XREFwblinv"></a><dl>
<dt><a name="index-wblinv"></a>Function File: <em></em> <strong>wblinv</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-wblinv-1"></a>Function File: <em></em> <strong>wblinv</strong> <em>(<var>x</var>, <var>scale</var>)</em></dt>
<dt><a name="index-wblinv-2"></a>Function File: <em></em> <strong>wblinv</strong> <em>(<var>x</var>, <var>scale</var>, <var>shape</var>)</em></dt>
<dd><p>Compute the quantile (the inverse of the CDF) at <var>x</var> of the
Weibull distribution with scale parameter <var>scale</var> and shape
parameter <var>shape</var>.
</p>
<p>Default values are <var>scale</var> = 1, <var>shape</var> = 1.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Tests.html#Tests" accesskey="n" rel="next">Tests</a>, Previous: <a href="Correlation-and-Regression-Analysis.html#Correlation-and-Regression-Analysis" accesskey="p" rel="prev">Correlation and Regression Analysis</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|