1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Octave: Multi-dimensional Interpolation</title>
<meta name="description" content="GNU Octave: Multi-dimensional Interpolation">
<meta name="keywords" content="GNU Octave: Multi-dimensional Interpolation">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Interpolation.html#Interpolation" rel="up" title="Interpolation">
<link href="Geometry.html#Geometry" rel="next" title="Geometry">
<link href="One_002ddimensional-Interpolation.html#One_002ddimensional-Interpolation" rel="prev" title="One-dimensional Interpolation">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Multi_002ddimensional-Interpolation"></a>
<div class="header">
<p>
Previous: <a href="One_002ddimensional-Interpolation.html#One_002ddimensional-Interpolation" accesskey="p" rel="prev">One-dimensional Interpolation</a>, Up: <a href="Interpolation.html#Interpolation" accesskey="u" rel="up">Interpolation</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Multi_002ddimensional-Interpolation-1"></a>
<h3 class="section">29.2 Multi-dimensional Interpolation</h3>
<p>There are three multi-dimensional interpolation functions in Octave, with
similar capabilities. Methods using Delaunay tessellation are described
in <a href="Interpolation-on-Scattered-Data.html#Interpolation-on-Scattered-Data">Interpolation on Scattered Data</a>.
</p>
<a name="XREFinterp2"></a><dl>
<dt><a name="index-interp2"></a>Function File: <em><var>zi</var> =</em> <strong>interp2</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>xi</var>, <var>yi</var>)</em></dt>
<dt><a name="index-interp2-1"></a>Function File: <em><var>zi</var> =</em> <strong>interp2</strong> <em>(<var>Z</var>, <var>xi</var>, <var>yi</var>)</em></dt>
<dt><a name="index-interp2-2"></a>Function File: <em><var>zi</var> =</em> <strong>interp2</strong> <em>(<var>Z</var>, <var>n</var>)</em></dt>
<dt><a name="index-interp2-3"></a>Function File: <em><var>zi</var> =</em> <strong>interp2</strong> <em>(…, <var>method</var>)</em></dt>
<dt><a name="index-interp2-4"></a>Function File: <em><var>zi</var> =</em> <strong>interp2</strong> <em>(…, <var>method</var>, <var>extrapval</var>)</em></dt>
<dd>
<p>Two-dimensional interpolation. <var>x</var>, <var>y</var> and <var>z</var> describe a
surface function. If <var>x</var> and <var>y</var> are vectors their length
must correspondent to the size of <var>z</var>. <var>x</var> and <var>y</var> must be
monotonic. If they are matrices they must have the <code>meshgrid</code>
format.
</p>
<dl compact="compact">
<dt><code>interp2 (<var>x</var>, <var>y</var>, <var>Z</var>, <var>xi</var>, <var>yi</var>, …)</code></dt>
<dd><p>Returns a matrix corresponding to the points described by the
matrices <var>xi</var>, <var>yi</var>.
</p>
<p>If the last argument is a string, the interpolation method can
be specified. The method can be <code>"linear"</code>, <code>"nearest"</code> or
<code>"cubic"</code>. If it is omitted <code>"linear"</code> interpolation is
assumed.
</p>
</dd>
<dt><code>interp2 (<var>z</var>, <var>xi</var>, <var>yi</var>)</code></dt>
<dd><p>Assumes <code><var>x</var> = 1:rows (<var>z</var>)</code> and <code><var>y</var> =
1:columns (<var>z</var>)</code>
</p>
</dd>
<dt><code>interp2 (<var>z</var>, <var>n</var>)</code></dt>
<dd><p>Interleaves the matrix <var>z</var> n-times. If <var>n</var> is omitted a value
of <code><var>n</var> = 1</code> is assumed.
</p></dd>
</dl>
<p>The variable <var>method</var> defines the method to use for the
interpolation. It can take one of the following values
</p>
<dl compact="compact">
<dt><code>"nearest"</code></dt>
<dd><p>Return the nearest neighbor.
</p>
</dd>
<dt><code>"linear"</code></dt>
<dd><p>Linear interpolation from nearest neighbors.
</p>
</dd>
<dt><code>"pchip"</code></dt>
<dd><p>Piecewise cubic Hermite interpolating polynomial.
</p>
</dd>
<dt><code>"cubic"</code></dt>
<dd><p>Cubic interpolation from four nearest neighbors.
</p>
</dd>
<dt><code>"spline"</code></dt>
<dd><p>Cubic spline interpolation—smooth first and second derivatives
throughout the curve.
</p></dd>
</dl>
<p>If a scalar value <var>extrapval</var> is defined as the final value, then
values outside the mesh as set to this value. Note that in this case
<var>method</var> must be defined as well. If <var>extrapval</var> is not
defined then NA is assumed.
</p>
<p><strong>See also:</strong> <a href="One_002ddimensional-Interpolation.html#XREFinterp1">interp1</a>.
</p></dd></dl>
<a name="XREFinterp3"></a><dl>
<dt><a name="index-interp3"></a>Function File: <em><var>vi</var> =</em> <strong>interp3</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>v</var>, <var>xi</var>, <var>yi</var>, <var>zi</var>)</em></dt>
<dt><a name="index-interp3-1"></a>Function File: <em><var>vi</var> =</em> <strong>interp3</strong> <em>(<var>v</var>, <var>xi</var>, <var>yi</var>, <var>zi</var>)</em></dt>
<dt><a name="index-interp3-2"></a>Function File: <em><var>vi</var> =</em> <strong>interp3</strong> <em>(<var>v</var>, <var>m</var>)</em></dt>
<dt><a name="index-interp3-3"></a>Function File: <em><var>vi</var> =</em> <strong>interp3</strong> <em>(<var>v</var>)</em></dt>
<dt><a name="index-interp3-4"></a>Function File: <em><var>vi</var> =</em> <strong>interp3</strong> <em>(…, <var>method</var>)</em></dt>
<dt><a name="index-interp3-5"></a>Function File: <em><var>vi</var> =</em> <strong>interp3</strong> <em>(…, <var>method</var>, <var>extrapval</var>)</em></dt>
<dd>
<p>Perform 3-dimensional interpolation. Each element of the 3-dimensional
array <var>v</var> represents a value at a location given by the parameters
<var>x</var>, <var>y</var>, and <var>z</var>. The parameters <var>x</var>, <var>x</var>, and
<var>z</var> are either 3-dimensional arrays of the same size as the array
<var>v</var> in the <code>"meshgrid"</code> format or vectors. The parameters
<var>xi</var>, etc. respect a similar format to <var>x</var>, etc., and they
represent the points at which the array <var>vi</var> is interpolated.
</p>
<p>If <var>x</var>, <var>y</var>, <var>z</var> are omitted, they are assumed to be
<code>x = 1 : size (<var>v</var>, 2)</code>, <code>y = 1 : size (<var>v</var>, 1)</code> and
<code>z = 1 : size (<var>v</var>, 3)</code>. If <var>m</var> is specified, then
the interpolation adds a point half way between each of the interpolation
points. This process is performed <var>m</var> times. If only <var>v</var> is
specified, then <var>m</var> is assumed to be <code>1</code>.
</p>
<p>Method is one of:
</p>
<dl compact="compact">
<dt><code>"nearest"</code></dt>
<dd><p>Return the nearest neighbor.
</p>
</dd>
<dt><code>"linear"</code></dt>
<dd><p>Linear interpolation from nearest neighbors.
</p>
</dd>
<dt><code>"cubic"</code></dt>
<dd><p>Cubic interpolation from four nearest neighbors (not implemented yet).
</p>
</dd>
<dt><code>"spline"</code></dt>
<dd><p>Cubic spline interpolation—smooth first and second derivatives
throughout the curve.
</p></dd>
</dl>
<p>The default method is <code>"linear"</code>.
</p>
<p>If <var>extrap</var> is the string <code>"extrap"</code>, then extrapolate values
beyond the endpoints. If <var>extrap</var> is a number, replace values beyond
the endpoints with that number. If <var>extrap</var> is missing, assume NA.
</p>
<p><strong>See also:</strong> <a href="One_002ddimensional-Interpolation.html#XREFinterp1">interp1</a>, <a href="#XREFinterp2">interp2</a>, <a href="One_002ddimensional-Interpolation.html#XREFspline">spline</a>, <a href="Three_002dDimensional-Plots.html#XREFmeshgrid">meshgrid</a>.
</p></dd></dl>
<a name="XREFinterpn"></a><dl>
<dt><a name="index-interpn"></a>Function File: <em><var>vi</var> =</em> <strong>interpn</strong> <em>(<var>x1</var>, <var>x2</var>, …, <var>v</var>, <var>y1</var>, <var>y2</var>, …)</em></dt>
<dt><a name="index-interpn-1"></a>Function File: <em><var>vi</var> =</em> <strong>interpn</strong> <em>(<var>v</var>, <var>y1</var>, <var>y2</var>, …)</em></dt>
<dt><a name="index-interpn-2"></a>Function File: <em><var>vi</var> =</em> <strong>interpn</strong> <em>(<var>v</var>, <var>m</var>)</em></dt>
<dt><a name="index-interpn-3"></a>Function File: <em><var>vi</var> =</em> <strong>interpn</strong> <em>(<var>v</var>)</em></dt>
<dt><a name="index-interpn-4"></a>Function File: <em><var>vi</var> =</em> <strong>interpn</strong> <em>(…, <var>method</var>)</em></dt>
<dt><a name="index-interpn-5"></a>Function File: <em><var>vi</var> =</em> <strong>interpn</strong> <em>(…, <var>method</var>, <var>extrapval</var>)</em></dt>
<dd>
<p>Perform <var>n</var>-dimensional interpolation, where <var>n</var> is at least two.
Each element of the <var>n</var>-dimensional array <var>v</var> represents a value
at a location given by the parameters <var>x1</var>, <var>x2</var>, …, <var>xn</var>.
The parameters <var>x1</var>, <var>x2</var>, …, <var>xn</var> are either
<var>n</var>-dimensional arrays of the same size as the array <var>v</var> in
the <code>"ndgrid"</code> format or vectors. The parameters <var>y1</var>, etc.
respect a similar format to <var>x1</var>, etc., and they represent the points
at which the array <var>vi</var> is interpolated.
</p>
<p>If <var>x1</var>, …, <var>xn</var> are omitted, they are assumed to be
<code>x1 = 1 : size (<var>v</var>, 1)</code>, etc. If <var>m</var> is specified, then
the interpolation adds a point half way between each of the interpolation
points. This process is performed <var>m</var> times. If only <var>v</var> is
specified, then <var>m</var> is assumed to be <code>1</code>.
</p>
<p>Method is one of:
</p>
<dl compact="compact">
<dt><code>"nearest"</code></dt>
<dd><p>Return the nearest neighbor.
</p>
</dd>
<dt><code>"linear"</code></dt>
<dd><p>Linear interpolation from nearest neighbors.
</p>
</dd>
<dt><code>"cubic"</code></dt>
<dd><p>Cubic interpolation from four nearest neighbors (not implemented yet).
</p>
</dd>
<dt><code>"spline"</code></dt>
<dd><p>Cubic spline interpolation—smooth first and second derivatives
throughout the curve.
</p></dd>
</dl>
<p>The default method is <code>"linear"</code>.
</p>
<p>If <var>extrapval</var> is the scalar value, use it to replace the values
beyond the endpoints with that number. If <var>extrapval</var> is missing,
assume NA.
</p>
<p><strong>See also:</strong> <a href="One_002ddimensional-Interpolation.html#XREFinterp1">interp1</a>, <a href="#XREFinterp2">interp2</a>, <a href="One_002ddimensional-Interpolation.html#XREFspline">spline</a>, <a href="Three_002dDimensional-Plots.html#XREFndgrid">ndgrid</a>.
</p></dd></dl>
<p>A significant difference between <code>interpn</code> and the other two
multi-dimensional interpolation functions is the fashion in which the
dimensions are treated. For <code>interp2</code> and <code>interp3</code>, the y-axis is
considered to be the columns of the matrix, whereas the x-axis corresponds to
the rows of the array. As Octave indexes arrays in column major order, the
first dimension of any array is the columns, and so <code>interpn</code> effectively
reverses the ’x’ and ’y’ dimensions. Consider the example,
</p>
<div class="example">
<pre class="example">x = y = z = -1:1;
f = @(x,y,z) x.^2 - y - z.^2;
[xx, yy, zz] = meshgrid (x, y, z);
v = f (xx,yy,zz);
xi = yi = zi = -1:0.1:1;
[xxi, yyi, zzi] = meshgrid (xi, yi, zi);
vi = interp3 (x, y, z, v, xxi, yyi, zzi, "spline");
[xxi, yyi, zzi] = ndgrid (xi, yi, zi);
vi2 = interpn (x, y, z, v, xxi, yyi, zzi, "spline");
mesh (zi, yi, squeeze (vi2(1,:,:)));
</pre></div>
<p>where <code>vi</code> and <code>vi2</code> are identical. The reversal of the
dimensions is treated in the <code>meshgrid</code> and <code>ndgrid</code> functions
respectively.
The result of this code can be seen in <a href="#fig_003ainterpn">Figure 29.4</a>.
</p>
<div class="float"><a name="fig_003ainterpn"></a>
<div align="center"><img src="interpn.png" alt="interpn">
</div>
<div class="float-caption"><p><strong>Figure 29.4: </strong>Demonstration of the use of <code>interpn</code></p></div></div>
<p>In additional the support function <code>bicubic</code> that underlies the
cubic interpolation of <code>interp2</code> function can be called directly.
</p>
<a name="XREFbicubic"></a><dl>
<dt><a name="index-bicubic"></a>Function File: <em><var>zi</var> =</em> <strong>bicubic</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>xi</var>, <var>yi</var>, <var>extrapval</var>)</em></dt>
<dd>
<p>Return a matrix <var>zi</var> corresponding to the bicubic
interpolations at <var>xi</var> and <var>yi</var> of the data supplied
as <var>x</var>, <var>y</var> and <var>z</var>. Points outside the grid are set
to <var>extrapval</var>.
</p>
<p>See <a href="http://wiki.woodpecker.org.cn/moin/Octave/Bicubic">http://wiki.woodpecker.org.cn/moin/Octave/Bicubic</a>
for further information.
</p>
<p><strong>See also:</strong> <a href="#XREFinterp2">interp2</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Previous: <a href="One_002ddimensional-Interpolation.html#One_002ddimensional-Interpolation" accesskey="p" rel="prev">One-dimensional Interpolation</a>, Up: <a href="Interpolation.html#Interpolation" accesskey="u" rel="up">Interpolation</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|