1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Octave: Statistical Plots</title>
<meta name="description" content="GNU Octave: Statistical Plots">
<meta name="keywords" content="GNU Octave: Statistical Plots">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Statistics.html#Statistics" rel="up" title="Statistics">
<link href="Correlation-and-Regression-Analysis.html#Correlation-and-Regression-Analysis" rel="next" title="Correlation and Regression Analysis">
<link href="Basic-Statistical-Functions.html#Basic-Statistical-Functions" rel="prev" title="Basic Statistical Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Statistical-Plots"></a>
<div class="header">
<p>
Next: <a href="Correlation-and-Regression-Analysis.html#Correlation-and-Regression-Analysis" accesskey="n" rel="next">Correlation and Regression Analysis</a>, Previous: <a href="Basic-Statistical-Functions.html#Basic-Statistical-Functions" accesskey="p" rel="prev">Basic Statistical Functions</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Statistical-Plots-1"></a>
<h3 class="section">26.3 Statistical Plots</h3>
<p>Octave can create Quantile Plots (QQ-Plots), and Probability Plots
(PP-Plots). These are simple graphical tests for determining if a
data set comes from a certain distribution.
</p>
<p>Note that Octave can also show histograms of data
using the <code>hist</code> function as described in
<a href="Two_002dDimensional-Plots.html#Two_002dDimensional-Plots">Two-Dimensional Plots</a>.
</p>
<a name="XREFqqplot"></a><dl>
<dt><a name="index-qqplot"></a>Function File: <em>[<var>q</var>, <var>s</var>] =</em> <strong>qqplot</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-qqplot-1"></a>Function File: <em>[<var>q</var>, <var>s</var>] =</em> <strong>qqplot</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-qqplot-2"></a>Function File: <em>[<var>q</var>, <var>s</var>] =</em> <strong>qqplot</strong> <em>(<var>x</var>, <var>dist</var>)</em></dt>
<dt><a name="index-qqplot-3"></a>Function File: <em>[<var>q</var>, <var>s</var>] =</em> <strong>qqplot</strong> <em>(<var>x</var>, <var>y</var>, <var>params</var>)</em></dt>
<dt><a name="index-qqplot-4"></a>Function File: <em></em> <strong>qqplot</strong> <em>(…)</em></dt>
<dd><p>Perform a QQ-plot (quantile plot).
</p>
<p>If F is the CDF of the distribution <var>dist</var> with parameters
<var>params</var> and G its inverse, and <var>x</var> a sample vector of length
<var>n</var>, the QQ-plot graphs ordinate <var>s</var>(<var>i</var>) = <var>i</var>-th
largest element of x versus abscissa <var>q</var>(<var>i</var>f) = G((<var>i</var> -
0.5)/<var>n</var>).
</p>
<p>If the sample comes from F, except for a transformation of location
and scale, the pairs will approximately follow a straight line.
</p>
<p>If the second argument is a vector <var>y</var> the empirical CDF of <var>y</var>
is used as <var>dist</var>.
</p>
<p>The default for <var>dist</var> is the standard normal distribution. The
optional argument <var>params</var> contains a list of parameters of
<var>dist</var>. For example, for a quantile plot of the uniform
distribution on [2,4] and <var>x</var>, use
</p>
<div class="example">
<pre class="example">qqplot (x, "unif", 2, 4)
</pre></div>
<p><var>dist</var> can be any string for which a function <var>distinv</var> or
<var>dist_inv</var> exists that calculates the inverse CDF of distribution
<var>dist</var>.
</p>
<p>If no output arguments are given, the data are plotted directly.
</p></dd></dl>
<a name="XREFppplot"></a><dl>
<dt><a name="index-ppplot"></a>Function File: <em>[<var>p</var>, <var>y</var>] =</em> <strong>ppplot</strong> <em>(<var>x</var>, <var>dist</var>, <var>params</var>)</em></dt>
<dd><p>Perform a PP-plot (probability plot).
</p>
<p>If F is the CDF of the distribution <var>dist</var> with parameters
<var>params</var> and <var>x</var> a sample vector of length <var>n</var>, the
PP-plot graphs ordinate <var>y</var>(<var>i</var>) = F (<var>i</var>-th largest
element of <var>x</var>) versus abscissa <var>p</var>(<var>i</var>) = (<var>i</var> -
0.5)/<var>n</var>. If the sample comes from F, the pairs will
approximately follow a straight line.
</p>
<p>The default for <var>dist</var> is the standard normal distribution. The
optional argument <var>params</var> contains a list of parameters of
<var>dist</var>. For example, for a probability plot of the uniform
distribution on [2,4] and <var>x</var>, use
</p>
<div class="example">
<pre class="example">ppplot (x, "uniform", 2, 4)
</pre></div>
<p><var>dist</var> can be any string for which a function <var>dist_cdf</var>
that calculates the CDF of distribution <var>dist</var> exists.
</p>
<p>If no output arguments are given, the data are plotted directly.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Correlation-and-Regression-Analysis.html#Correlation-and-Regression-Analysis" accesskey="n" rel="next">Correlation and Regression Analysis</a>, Previous: <a href="Basic-Statistical-Functions.html#Basic-Statistical-Functions" accesskey="p" rel="prev">Basic Statistical Functions</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|