File: Statistical-Plots.html

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (143 lines) | stat: -rw-r--r-- 7,269 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Octave: Statistical Plots</title>

<meta name="description" content="GNU Octave: Statistical Plots">
<meta name="keywords" content="GNU Octave: Statistical Plots">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Statistics.html#Statistics" rel="up" title="Statistics">
<link href="Correlation-and-Regression-Analysis.html#Correlation-and-Regression-Analysis" rel="next" title="Correlation and Regression Analysis">
<link href="Basic-Statistical-Functions.html#Basic-Statistical-Functions" rel="prev" title="Basic Statistical Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Statistical-Plots"></a>
<div class="header">
<p>
Next: <a href="Correlation-and-Regression-Analysis.html#Correlation-and-Regression-Analysis" accesskey="n" rel="next">Correlation and Regression Analysis</a>, Previous: <a href="Basic-Statistical-Functions.html#Basic-Statistical-Functions" accesskey="p" rel="prev">Basic Statistical Functions</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Statistical-Plots-1"></a>
<h3 class="section">26.3 Statistical Plots</h3>


<p>Octave can create Quantile Plots (QQ-Plots), and Probability Plots
(PP-Plots).  These are simple graphical tests for determining if a
data set comes from a certain distribution.
</p>
<p>Note that Octave can also show histograms of data
using the <code>hist</code> function as described in
<a href="Two_002dDimensional-Plots.html#Two_002dDimensional-Plots">Two-Dimensional Plots</a>.
</p>
<a name="XREFqqplot"></a><dl>
<dt><a name="index-qqplot"></a>Function File: <em>[<var>q</var>, <var>s</var>] =</em> <strong>qqplot</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-qqplot-1"></a>Function File: <em>[<var>q</var>, <var>s</var>] =</em> <strong>qqplot</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-qqplot-2"></a>Function File: <em>[<var>q</var>, <var>s</var>] =</em> <strong>qqplot</strong> <em>(<var>x</var>, <var>dist</var>)</em></dt>
<dt><a name="index-qqplot-3"></a>Function File: <em>[<var>q</var>, <var>s</var>] =</em> <strong>qqplot</strong> <em>(<var>x</var>, <var>y</var>, <var>params</var>)</em></dt>
<dt><a name="index-qqplot-4"></a>Function File: <em></em> <strong>qqplot</strong> <em>(&hellip;)</em></dt>
<dd><p>Perform a QQ-plot (quantile plot).
</p>
<p>If F is the CDF of the distribution <var>dist</var> with parameters
<var>params</var> and G its inverse, and <var>x</var> a sample vector of length
<var>n</var>, the QQ-plot graphs ordinate <var>s</var>(<var>i</var>) = <var>i</var>-th
largest element of x versus abscissa <var>q</var>(<var>i</var>f) = G((<var>i</var> -
0.5)/<var>n</var>).
</p>
<p>If the sample comes from F, except for a transformation of location
and scale, the pairs will approximately follow a straight line.
</p>
<p>If the second argument is a vector <var>y</var> the empirical CDF of <var>y</var>
is used as <var>dist</var>.
</p>
<p>The default for <var>dist</var> is the standard normal distribution.  The
optional argument <var>params</var> contains a list of parameters of
<var>dist</var>.  For example, for a quantile plot of the uniform
distribution on [2,4] and <var>x</var>, use
</p>
<div class="example">
<pre class="example">qqplot (x, &quot;unif&quot;, 2, 4)
</pre></div>

<p><var>dist</var> can be any string for which a function <var>distinv</var> or
<var>dist_inv</var> exists that calculates the inverse CDF of distribution
<var>dist</var>.
</p>
<p>If no output arguments are given, the data are plotted directly.
</p></dd></dl>


<a name="XREFppplot"></a><dl>
<dt><a name="index-ppplot"></a>Function File: <em>[<var>p</var>, <var>y</var>] =</em> <strong>ppplot</strong> <em>(<var>x</var>, <var>dist</var>, <var>params</var>)</em></dt>
<dd><p>Perform a PP-plot (probability plot).
</p>
<p>If F is the CDF of the distribution <var>dist</var> with parameters
<var>params</var> and <var>x</var> a sample vector of length <var>n</var>, the
PP-plot graphs ordinate <var>y</var>(<var>i</var>) = F (<var>i</var>-th largest
element of <var>x</var>) versus abscissa <var>p</var>(<var>i</var>) = (<var>i</var> -
0.5)/<var>n</var>.  If the sample comes from F, the pairs will
approximately follow a straight line.
</p>
<p>The default for <var>dist</var> is the standard normal distribution.  The
optional argument <var>params</var> contains a list of parameters of
<var>dist</var>.  For example, for a probability plot of the uniform
distribution on [2,4] and <var>x</var>, use
</p>
<div class="example">
<pre class="example">ppplot (x, &quot;uniform&quot;, 2, 4)
</pre></div>

<p><var>dist</var> can be any string for which a function <var>dist_cdf</var>
that calculates the CDF of distribution <var>dist</var> exists.
</p>
<p>If no output arguments are given, the data are plotted directly.
</p></dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Correlation-and-Regression-Analysis.html#Correlation-and-Regression-Analysis" accesskey="n" rel="next">Correlation and Regression Analysis</a>, Previous: <a href="Basic-Statistical-Functions.html#Basic-Statistical-Functions" accesskey="p" rel="prev">Basic Statistical Functions</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>