1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Octave: Three-Dimensional Plots</title>
<meta name="description" content="GNU Octave: Three-Dimensional Plots">
<meta name="keywords" content="GNU Octave: Three-Dimensional Plots">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="High_002dLevel-Plotting.html#High_002dLevel-Plotting" rel="up" title="High-Level Plotting">
<link href="Aspect-Ratio.html#Aspect-Ratio" rel="next" title="Aspect Ratio">
<link href="Two_002ddimensional-Geometric-Shapes.html#Two_002ddimensional-Geometric-Shapes" rel="prev" title="Two-dimensional Geometric Shapes">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Three_002dDimensional-Plots"></a>
<div class="header">
<p>
Next: <a href="Plot-Annotations.html#Plot-Annotations" accesskey="n" rel="next">Plot Annotations</a>, Previous: <a href="Two_002dDimensional-Plots.html#Two_002dDimensional-Plots" accesskey="p" rel="prev">Two-Dimensional Plots</a>, Up: <a href="High_002dLevel-Plotting.html#High_002dLevel-Plotting" accesskey="u" rel="up">High-Level Plotting</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Three_002dDimensional-Plots-1"></a>
<h4 class="subsection">15.2.2 Three-Dimensional Plots</h4>
<a name="index-plotting_002c-three_002ddimensional"></a>
<p>The function <code>mesh</code> produces mesh surface plots. For example,
</p>
<div class="example">
<pre class="example">tx = ty = linspace (-8, 8, 41)';
[xx, yy] = meshgrid (tx, ty);
r = sqrt (xx .^ 2 + yy .^ 2) + eps;
tz = sin (r) ./ r;
mesh (tx, ty, tz);
</pre></div>
<p>produces the familiar “sombrero” plot shown in <a href="#fig_003amesh">Figure 15.5</a>. Note
the use of the function <code>meshgrid</code> to create matrices of X and Y
coordinates to use for plotting the Z data. The <code>ndgrid</code> function
is similar to <code>meshgrid</code>, but works for N-dimensional matrices.
</p>
<div class="float"><a name="fig_003amesh"></a>
<div align="center"><img src="mesh.png" alt="mesh">
</div>
<div class="float-caption"><p><strong>Figure 15.5: </strong>Mesh plot.</p></div></div>
<p>The <code>meshc</code> function is similar to <code>mesh</code>, but also produces a
plot of contours for the surface.
</p>
<p>The <code>plot3</code> function displays arbitrary three-dimensional data,
without requiring it to form a surface. For example,
</p>
<div class="example">
<pre class="example">t = 0:0.1:10*pi;
r = linspace (0, 1, numel (t));
z = linspace (0, 1, numel (t));
plot3 (r.*sin(t), r.*cos(t), z);
</pre></div>
<p>displays the spiral in three dimensions shown in <a href="#fig_003aplot3">Figure 15.6</a>.
</p>
<div class="float"><a name="fig_003aplot3"></a>
<div align="center"><img src="plot3.png" alt="plot3">
</div>
<div class="float-caption"><p><strong>Figure 15.6: </strong>Three-dimensional spiral.</p></div></div>
<p>Finally, the <code>view</code> function changes the viewpoint for
three-dimensional plots.
</p>
<a name="XREFmesh"></a><dl>
<dt><a name="index-mesh"></a>Function File: <em></em> <strong>mesh</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-mesh-1"></a>Function File: <em></em> <strong>mesh</strong> <em>(<var>z</var>)</em></dt>
<dt><a name="index-mesh-2"></a>Function File: <em></em> <strong>mesh</strong> <em>(…, <var>c</var>)</em></dt>
<dt><a name="index-mesh-3"></a>Function File: <em></em> <strong>mesh</strong> <em>(…, <var>prop</var>, <var>val</var>, …)</em></dt>
<dt><a name="index-mesh-4"></a>Function File: <em></em> <strong>mesh</strong> <em>(<var>hax</var>, …)</em></dt>
<dt><a name="index-mesh-5"></a>Function File: <em><var>h</var> =</em> <strong>mesh</strong> <em>(…)</em></dt>
<dd><p>Plot a 3-D wireframe mesh.
</p>
<p>The wireframe mesh is plotted using rectangles. The vertices of the
rectangles [<var>x</var>, <var>y</var>] are typically the output of <code>meshgrid</code>.
over a 2-D rectangular region in the x-y plane. <var>z</var> determines the
height above the plane of each vertex. If only a single <var>z</var> matrix is
given, then it is plotted over the meshgrid
<code><var>x</var> = 1:columns (<var>z</var>), <var>y</var> = 1:rows (<var>z</var>)</code>.
Thus, columns of <var>z</var> correspond to different <var>x</var> values and rows
of <var>z</var> correspond to different <var>y</var> values.
</p>
<p>The color of the mesh is computed by linearly scaling the <var>z</var> values
to fit the range of the current colormap. Use <code>caxis</code> and/or
change the colormap to control the appearance.
</p>
<p>Optionally, the color of the mesh can be specified independently of <var>z</var>
by supplying a color matrix, <var>c</var>.
</p>
<p>Any property/value pairs are passed directly to the underlying surface
object.
</p>
<p>If the first argument <var>hax</var> is an axes handle, then plot into this axis,
rather than the current axes returned by <code>gca</code>.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the created
surface object.
</p>
<p><strong>See also:</strong> <a href="Three_002ddimensional-Function-Plotting.html#XREFezmesh">ezmesh</a>, <a href="#XREFmeshc">meshc</a>, <a href="#XREFmeshz">meshz</a>, <a href="Plotting-the-Triangulation.html#XREFtrimesh">trimesh</a>, <a href="Two_002dDimensional-Plots.html#XREFcontour">contour</a>, <a href="#XREFsurf">surf</a>, <a href="Graphics-Objects.html#XREFsurface">surface</a>, <a href="#XREFmeshgrid">meshgrid</a>, <a href="#XREFhidden">hidden</a>, <a href="#XREFshading">shading</a>, <a href="Representing-Images.html#XREFcolormap">colormap</a>, <a href="Axis-Configuration.html#XREFcaxis">caxis</a>.
</p></dd></dl>
<a name="XREFmeshc"></a><dl>
<dt><a name="index-meshc"></a>Function File: <em></em> <strong>meshc</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-meshc-1"></a>Function File: <em></em> <strong>meshc</strong> <em>(<var>z</var>)</em></dt>
<dt><a name="index-meshc-2"></a>Function File: <em></em> <strong>meshc</strong> <em>(…, <var>c</var>)</em></dt>
<dt><a name="index-meshc-3"></a>Function File: <em></em> <strong>meshc</strong> <em>(…, <var>prop</var>, <var>val</var>, …)</em></dt>
<dt><a name="index-meshc-4"></a>Function File: <em></em> <strong>meshc</strong> <em>(<var>hax</var>, …)</em></dt>
<dt><a name="index-meshc-5"></a>Function File: <em><var>h</var> =</em> <strong>meshc</strong> <em>(…)</em></dt>
<dd><p>Plot a 3-D wireframe mesh with underlying contour lines.
</p>
<p>The wireframe mesh is plotted using rectangles. The vertices of the
rectangles [<var>x</var>, <var>y</var>] are typically the output of <code>meshgrid</code>.
over a 2-D rectangular region in the x-y plane. <var>z</var> determines the
height above the plane of each vertex. If only a single <var>z</var> matrix is
given, then it is plotted over the meshgrid
<code><var>x</var> = 1:columns (<var>z</var>), <var>y</var> = 1:rows (<var>z</var>)</code>.
Thus, columns of <var>z</var> correspond to different <var>x</var> values and rows
of <var>z</var> correspond to different <var>y</var> values.
</p>
<p>The color of the mesh is computed by linearly scaling the <var>z</var> values
to fit the range of the current colormap. Use <code>caxis</code> and/or
change the colormap to control the appearance.
</p>
<p>Optionally the color of the mesh can be specified independently of <var>z</var>
by supplying a color matrix, <var>c</var>.
</p>
<p>Any property/value pairs are passed directly to the underlying surface
object.
</p>
<p>If the first argument <var>hax</var> is an axes handle, then plot into this axis,
rather than the current axes returned by <code>gca</code>.
</p>
<p>The optional return value <var>h</var> is a 2-element vector with a graphics
handle to the created surface object and to the created contour plot.
</p>
<p><strong>See also:</strong> <a href="Three_002ddimensional-Function-Plotting.html#XREFezmeshc">ezmeshc</a>, <a href="#XREFmesh">mesh</a>, <a href="#XREFmeshz">meshz</a>, <a href="Two_002dDimensional-Plots.html#XREFcontour">contour</a>, <a href="#XREFsurfc">surfc</a>, <a href="Graphics-Objects.html#XREFsurface">surface</a>, <a href="#XREFmeshgrid">meshgrid</a>, <a href="#XREFhidden">hidden</a>, <a href="#XREFshading">shading</a>, <a href="Representing-Images.html#XREFcolormap">colormap</a>, <a href="Axis-Configuration.html#XREFcaxis">caxis</a>.
</p></dd></dl>
<a name="XREFmeshz"></a><dl>
<dt><a name="index-meshz"></a>Function File: <em></em> <strong>meshz</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-meshz-1"></a>Function File: <em></em> <strong>meshz</strong> <em>(<var>z</var>)</em></dt>
<dt><a name="index-meshz-2"></a>Function File: <em></em> <strong>meshz</strong> <em>(…, <var>c</var>)</em></dt>
<dt><a name="index-meshz-3"></a>Function File: <em></em> <strong>meshz</strong> <em>(…, <var>prop</var>, <var>val</var>, …)</em></dt>
<dt><a name="index-meshz-4"></a>Function File: <em></em> <strong>meshz</strong> <em>(<var>hax</var>, …)</em></dt>
<dt><a name="index-meshz-5"></a>Function File: <em><var>h</var> =</em> <strong>meshz</strong> <em>(…)</em></dt>
<dd><p>Plot a 3-D wireframe mesh with a surrounding curtain.
</p>
<p>The wireframe mesh is plotted using rectangles. The vertices of the
rectangles [<var>x</var>, <var>y</var>] are typically the output of <code>meshgrid</code>.
over a 2-D rectangular region in the x-y plane. <var>z</var> determines the
height above the plane of each vertex. If only a single <var>z</var> matrix is
given, then it is plotted over the meshgrid
<code><var>x</var> = 1:columns (<var>z</var>), <var>y</var> = 1:rows (<var>z</var>)</code>.
Thus, columns of <var>z</var> correspond to different <var>x</var> values and rows
of <var>z</var> correspond to different <var>y</var> values.
</p>
<p>The color of the mesh is computed by linearly scaling the <var>z</var> values
to fit the range of the current colormap. Use <code>caxis</code> and/or
change the colormap to control the appearance.
</p>
<p>Optionally the color of the mesh can be specified independently of <var>z</var>
by supplying a color matrix, <var>c</var>.
</p>
<p>Any property/value pairs are passed directly to the underlying surface
object.
</p>
<p>If the first argument <var>hax</var> is an axes handle, then plot into this axis,
rather than the current axes returned by <code>gca</code>.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the created
surface object.
</p>
<p><strong>See also:</strong> <a href="#XREFmesh">mesh</a>, <a href="#XREFmeshc">meshc</a>, <a href="Two_002dDimensional-Plots.html#XREFcontour">contour</a>, <a href="#XREFsurf">surf</a>, <a href="Graphics-Objects.html#XREFsurface">surface</a>, <a href="#XREFwaterfall">waterfall</a>, <a href="#XREFmeshgrid">meshgrid</a>, <a href="#XREFhidden">hidden</a>, <a href="#XREFshading">shading</a>, <a href="Representing-Images.html#XREFcolormap">colormap</a>, <a href="Axis-Configuration.html#XREFcaxis">caxis</a>.
</p></dd></dl>
<a name="XREFhidden"></a><dl>
<dt><a name="index-hidden"></a>Command: <em></em> <strong>hidden</strong></dt>
<dt><a name="index-hidden-1"></a>Command: <em></em> <strong>hidden</strong> <em>"on"</em></dt>
<dt><a name="index-hidden-2"></a>Command: <em></em> <strong>hidden</strong> <em>"off"</em></dt>
<dt><a name="index-hidden-3"></a>Function File: <em><var>mode</var> =</em> <strong>hidden</strong> <em>(…)</em></dt>
<dd><p>Control mesh hidden line removal.
</p>
<p>When called with no argument the hidden line removal state is toggled.
When called with one of the modes <code>"on"</code> or <code>"off"</code> the state
is set accordingly.
</p>
<p>The optional output argument <var>mode</var> is the current state.
</p>
<p>Hidden Line Removal determines what graphic objects behind a mesh plot
are visible. The default is for the mesh to be opaque and lines behind
the mesh are not visible. If hidden line removal is turned off then
objects behind the mesh can be seen through the faces (openings) of the
mesh, although the mesh grid lines are still opaque.
</p>
<p><strong>See also:</strong> <a href="#XREFmesh">mesh</a>, <a href="#XREFmeshc">meshc</a>, <a href="#XREFmeshz">meshz</a>, <a href="Three_002ddimensional-Function-Plotting.html#XREFezmesh">ezmesh</a>, <a href="Three_002ddimensional-Function-Plotting.html#XREFezmeshc">ezmeshc</a>, <a href="Plotting-the-Triangulation.html#XREFtrimesh">trimesh</a>, <a href="#XREFwaterfall">waterfall</a>.
</p></dd></dl>
<a name="XREFsurf"></a><dl>
<dt><a name="index-surf"></a>Function File: <em></em> <strong>surf</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-surf-1"></a>Function File: <em></em> <strong>surf</strong> <em>(<var>z</var>)</em></dt>
<dt><a name="index-surf-2"></a>Function File: <em></em> <strong>surf</strong> <em>(…, <var>c</var>)</em></dt>
<dt><a name="index-surf-3"></a>Function File: <em></em> <strong>surf</strong> <em>(…, <var>prop</var>, <var>val</var>, …)</em></dt>
<dt><a name="index-surf-4"></a>Function File: <em></em> <strong>surf</strong> <em>(<var>hax</var>, …)</em></dt>
<dt><a name="index-surf-5"></a>Function File: <em><var>h</var> =</em> <strong>surf</strong> <em>(…)</em></dt>
<dd><p>Plot a 3-D surface mesh.
</p>
<p>The surface mesh is plotted using shaded rectangles. The vertices of the
rectangles [<var>x</var>, <var>y</var>] are typically the output of <code>meshgrid</code>.
over a 2-D rectangular region in the x-y plane. <var>z</var> determines the
height above the plane of each vertex. If only a single <var>z</var> matrix is
given, then it is plotted over the meshgrid
<code><var>x</var> = 1:columns (<var>z</var>), <var>y</var> = 1:rows (<var>z</var>)</code>.
Thus, columns of <var>z</var> correspond to different <var>x</var> values and rows
of <var>z</var> correspond to different <var>y</var> values.
</p>
<p>The color of the surface is computed by linearly scaling the <var>z</var> values
to fit the range of the current colormap. Use <code>caxis</code> and/or
change the colormap to control the appearance.
</p>
<p>Optionally, the color of the surface can be specified independently of
<var>z</var> by supplying a color matrix, <var>c</var>.
</p>
<p>Any property/value pairs are passed directly to the underlying surface
object.
</p>
<p>If the first argument <var>hax</var> is an axes handle, then plot into this axis,
rather than the current axes returned by <code>gca</code>.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the created
surface object.
</p>
<p>Note: The exact appearance of the surface can be controlled with the
<code>shading</code> command or by using <code>set</code> to control surface object
properties.
</p>
<p><strong>See also:</strong> <a href="Three_002ddimensional-Function-Plotting.html#XREFezsurf">ezsurf</a>, <a href="#XREFsurfc">surfc</a>, <a href="#XREFsurfl">surfl</a>, <a href="#XREFsurfnorm">surfnorm</a>, <a href="Plotting-the-Triangulation.html#XREFtrisurf">trisurf</a>, <a href="Two_002dDimensional-Plots.html#XREFcontour">contour</a>, <a href="#XREFmesh">mesh</a>, <a href="Graphics-Objects.html#XREFsurface">surface</a>, <a href="#XREFmeshgrid">meshgrid</a>, <a href="#XREFhidden">hidden</a>, <a href="#XREFshading">shading</a>, <a href="Representing-Images.html#XREFcolormap">colormap</a>, <a href="Axis-Configuration.html#XREFcaxis">caxis</a>.
</p></dd></dl>
<a name="XREFsurfc"></a><dl>
<dt><a name="index-surfc"></a>Function File: <em></em> <strong>surfc</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-surfc-1"></a>Function File: <em></em> <strong>surfc</strong> <em>(<var>z</var>)</em></dt>
<dt><a name="index-surfc-2"></a>Function File: <em></em> <strong>surfc</strong> <em>(…, <var>c</var>)</em></dt>
<dt><a name="index-surfc-3"></a>Function File: <em></em> <strong>surfc</strong> <em>(…, <var>prop</var>, <var>val</var>, …)</em></dt>
<dt><a name="index-surfc-4"></a>Function File: <em></em> <strong>surfc</strong> <em>(<var>hax</var>, …)</em></dt>
<dt><a name="index-surfc-5"></a>Function File: <em><var>h</var> =</em> <strong>surfc</strong> <em>(…)</em></dt>
<dd><p>Plot a 3-D surface mesh with underlying contour lines.
</p>
<p>The surface mesh is plotted using shaded rectangles. The vertices of the
rectangles [<var>x</var>, <var>y</var>] are typically the output of <code>meshgrid</code>.
over a 2-D rectangular region in the x-y plane. <var>z</var> determines the
height above the plane of each vertex. If only a single <var>z</var> matrix is
given, then it is plotted over the meshgrid
<code><var>x</var> = 1:columns (<var>z</var>), <var>y</var> = 1:rows (<var>z</var>)</code>.
Thus, columns of <var>z</var> correspond to different <var>x</var> values and rows
of <var>z</var> correspond to different <var>y</var> values.
</p>
<p>The color of the surface is computed by linearly scaling the <var>z</var> values
to fit the range of the current colormap. Use <code>caxis</code> and/or
change the colormap to control the appearance.
</p>
<p>Optionally, the color of the surface can be specified independently of
<var>z</var> by supplying a color matrix, <var>c</var>.
</p>
<p>Any property/value pairs are passed directly to the underlying surface
object.
</p>
<p>If the first argument <var>hax</var> is an axes handle, then plot into this axis,
rather than the current axes returned by <code>gca</code>.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the created
surface object.
</p>
<p>Note: The exact appearance of the surface can be controlled with the
<code>shading</code> command or by using <code>set</code> to control surface object
properties.
</p>
<p><strong>See also:</strong> <a href="Three_002ddimensional-Function-Plotting.html#XREFezsurfc">ezsurfc</a>, <a href="#XREFsurf">surf</a>, <a href="#XREFsurfl">surfl</a>, <a href="#XREFsurfnorm">surfnorm</a>, <a href="Plotting-the-Triangulation.html#XREFtrisurf">trisurf</a>, <a href="Two_002dDimensional-Plots.html#XREFcontour">contour</a>, <a href="#XREFmesh">mesh</a>, <a href="Graphics-Objects.html#XREFsurface">surface</a>, <a href="#XREFmeshgrid">meshgrid</a>, <a href="#XREFhidden">hidden</a>, <a href="#XREFshading">shading</a>, <a href="Representing-Images.html#XREFcolormap">colormap</a>, <a href="Axis-Configuration.html#XREFcaxis">caxis</a>.
</p></dd></dl>
<a name="XREFsurfl"></a><dl>
<dt><a name="index-surfl"></a>Function File: <em></em> <strong>surfl</strong> <em>(<var>z</var>)</em></dt>
<dt><a name="index-surfl-1"></a>Function File: <em></em> <strong>surfl</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-surfl-2"></a>Function File: <em></em> <strong>surfl</strong> <em>(…, <var>lsrc</var>)</em></dt>
<dt><a name="index-surfl-3"></a>Function File: <em></em> <strong>surfl</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>lsrc</var>, <var>P</var>)</em></dt>
<dt><a name="index-surfl-4"></a>Function File: <em></em> <strong>surfl</strong> <em>(…, "cdata")</em></dt>
<dt><a name="index-surfl-5"></a>Function File: <em></em> <strong>surfl</strong> <em>(…, "light")</em></dt>
<dt><a name="index-surfl-6"></a>Function File: <em></em> <strong>surfl</strong> <em>(<var>hax</var>, …)</em></dt>
<dt><a name="index-surfl-7"></a>Function File: <em><var>h</var> =</em> <strong>surfl</strong> <em>(…)</em></dt>
<dd>
<p>Plot a 3-D surface using shading based on various lighting models.
</p>
<p>The surface mesh is plotted using shaded rectangles. The vertices of the
rectangles [<var>x</var>, <var>y</var>] are typically the output of <code>meshgrid</code>.
over a 2-D rectangular region in the x-y plane. <var>z</var> determines the
height above the plane of each vertex. If only a single <var>z</var> matrix is
given, then it is plotted over the meshgrid
<code><var>x</var> = 1:columns (<var>z</var>), <var>y</var> = 1:rows (<var>z</var>)</code>.
Thus, columns of <var>z</var> correspond to different <var>x</var> values and rows
of <var>z</var> correspond to different <var>y</var> values.
</p>
<p>The default lighting mode <code>"cdata"</code>, changes the cdata property of the
surface object to give the impression of a lighted surface.
<strong>Warning:</strong> The alternative mode <code>"light"</code> mode which creates a
light object to illuminate the surface is not implemented (yet).
</p>
<p>The light source location can be specified using <var>lsrc</var>. It can be given
as a 2-element vector [azimuth, elevation] in degrees, or as a 3-element
vector [lx, ly, lz]. The default value is rotated 45 degrees
counterclockwise to the current view.
</p>
<p>The material properties of the surface can specified using a 4-element
vector <var>P</var> = [<var>AM</var> <var>D</var> <var>SP</var> <var>exp</var>] which defaults to
<var>p</var> = [0.55 0.6 0.4 10].
</p>
<dl compact="compact">
<dt><code>"AM"</code> strength of ambient light</dt>
<dt><code>"D"</code> strength of diffuse reflection</dt>
<dt><code>"SP"</code> strength of specular reflection</dt>
<dt><code>"EXP"</code> specular exponent</dt>
</dl>
<p>If the first argument <var>hax</var> is an axes handle, then plot into this axis,
rather than the current axes returned by <code>gca</code>.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the created
surface object.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">colormap (bone (64));
surfl (peaks);
shading interp;
</pre></div>
<p><strong>See also:</strong> <a href="#XREFdiffuse">diffuse</a>, <a href="#XREFspecular">specular</a>, <a href="#XREFsurf">surf</a>, <a href="#XREFshading">shading</a>, <a href="Representing-Images.html#XREFcolormap">colormap</a>, <a href="Axis-Configuration.html#XREFcaxis">caxis</a>.
</p></dd></dl>
<a name="XREFsurfnorm"></a><dl>
<dt><a name="index-surfnorm"></a>Function File: <em></em> <strong>surfnorm</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-surfnorm-1"></a>Function File: <em></em> <strong>surfnorm</strong> <em>(<var>z</var>)</em></dt>
<dt><a name="index-surfnorm-2"></a>Function File: <em>[<var>nx</var>, <var>ny</var>, <var>nz</var>] =</em> <strong>surfnorm</strong> <em>(…)</em></dt>
<dt><a name="index-surfnorm-3"></a>Function File: <em></em> <strong>surfnorm</strong> <em>(<var>h</var>, …)</em></dt>
<dd><p>Find the vectors normal to a meshgridded surface. The meshed gridded
surface is defined by <var>x</var>, <var>y</var>, and <var>z</var>. If <var>x</var> and
<var>y</var> are not defined, then it is assumed that they are given by
</p>
<div class="example">
<pre class="example">[<var>x</var>, <var>y</var>] = meshgrid (1:rows (<var>z</var>),
1:columns (<var>z</var>));
</pre></div>
<p>If no return arguments are requested, a surface plot with the normal
vectors to the surface is plotted. Otherwise the components of the normal
vectors at the mesh gridded points are returned in <var>nx</var>, <var>ny</var>,
and <var>nz</var>.
</p>
<p>The normal vectors are calculated by taking the cross product of the
diagonals of each of the quadrilaterals in the meshgrid to find the
normal vectors of the centers of these quadrilaterals. The four nearest
normal vectors to the meshgrid points are then averaged to obtain the
normal to the surface at the meshgridded points.
</p>
<p>An example of the use of <code>surfnorm</code> is
</p>
<div class="example">
<pre class="example">surfnorm (peaks (25));
</pre></div>
<p><strong>See also:</strong> <a href="#XREFsurf">surf</a>, <a href="Two_002dDimensional-Plots.html#XREFquiver3">quiver3</a>.
</p></dd></dl>
<a name="XREFisosurface"></a><dl>
<dt><a name="index-isosurface"></a>Function File: <em>[<var>fv</var>] =</em> <strong>isosurface</strong> <em>(<var>val</var>, <var>iso</var>)</em></dt>
<dt><a name="index-isosurface-1"></a>Function File: <em>[<var>fv</var>] =</em> <strong>isosurface</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>val</var>, <var>iso</var>)</em></dt>
<dt><a name="index-isosurface-2"></a>Function File: <em>[<var>fv</var>] =</em> <strong>isosurface</strong> <em>(…, "noshare", "verbose")</em></dt>
<dt><a name="index-isosurface-3"></a>Function File: <em>[<var>fvc</var>] =</em> <strong>isosurface</strong> <em>(…, <var>col</var>)</em></dt>
<dt><a name="index-isosurface-4"></a>Function File: <em>[<var>f</var>, <var>v</var>] =</em> <strong>isosurface</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>val</var>, <var>iso</var>)</em></dt>
<dt><a name="index-isosurface-5"></a>Function File: <em>[<var>f</var>, <var>v</var>, <var>c</var>] =</em> <strong>isosurface</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>val</var>, <var>iso</var>, <var>col</var>)</em></dt>
<dt><a name="index-isosurface-6"></a>Function File: <em></em> <strong>isosurface</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>val</var>, <var>iso</var>, <var>col</var>, <var>opt</var>)</em></dt>
<dd>
<p>If called with one output argument and the first input argument
<var>val</var> is a three-dimensional array that contains the data of an
isosurface geometry and the second input argument <var>iso</var> keeps the
isovalue as a scalar value then return a structure array <var>fv</var>
that contains the fields <var>Faces</var> and <var>Vertices</var> at computed
points <code>[x, y, z] = meshgrid (1:l, 1:m, 1:n)</code>. The output
argument <var>fv</var> can directly be taken as an input argument for the
<code>patch</code> function.
</p>
<p>If called with further input arguments <var>x</var>, <var>y</var> and <var>z</var>
which are three–dimensional arrays with the same size than <var>val</var>
then the volume data is taken at those given points.
</p>
<p>The string input argument <code>"noshare"</code> is only for compatibility and
has no effect. If given the string input argument
<code>"verbose"</code> then print messages to the command line interface about the
current progress.
</p>
<p>If called with the input argument <var>col</var> which is a
three-dimensional array of the same size than <var>val</var> then take
those values for the interpolation of coloring the isosurface
geometry. Add the field <var>FaceVertexCData</var> to the structure
array <var>fv</var>.
</p>
<p>If called with two or three output arguments then return the
information about the faces <var>f</var>, vertices <var>v</var> and color data
<var>c</var> as separate arrays instead of a single structure array.
</p>
<p>If called with no output argument then directly process the
isosurface geometry with the <code>patch</code> command.
</p>
<p>For example,
</p>
<div class="example">
<pre class="example">[x, y, z] = meshgrid (1:5, 1:5, 1:5);
val = rand (5, 5, 5);
isosurface (x, y, z, val, .5);
</pre></div>
<p>will directly draw a random isosurface geometry in a graphics window.
Another example for an isosurface geometry with different additional
coloring
</p>
<div class="smallexample">
<pre class="smallexample">N = 15; # Increase number of vertices in each direction
iso = .4; # Change isovalue to .1 to display a sphere
lin = linspace (0, 2, N);
[x, y, z] = meshgrid (lin, lin, lin);
c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
figure (); # Open another figure window
subplot (2,2,1); view (-38, 20);
[f, v] = isosurface (x, y, z, c, iso);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
set (gca, "PlotBoxAspectRatioMode", "manual", ...
"PlotBoxAspectRatio", [1 1 1]);
# set (p, "FaceColor", "green", "FaceLighting", "phong");
# light ("Position", [1 1 5]); # Available with the JHandles package
subplot (2,2,2); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "blue");
set (gca, "PlotBoxAspectRatioMode", "manual", ...
"PlotBoxAspectRatio", [1 1 1]);
# set (p, "FaceColor", "none", "FaceLighting", "phong");
# light ("Position", [1 1 5]);
subplot (2,2,3); view (-38, 20);
[f, v, c] = isosurface (x, y, z, c, iso, y);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", c, ...
"FaceColor", "interp", "EdgeColor", "none");
set (gca, "PlotBoxAspectRatioMode", "manual", ...
"PlotBoxAspectRatio", [1 1 1]);
# set (p, "FaceLighting", "phong");
# light ("Position", [1 1 5]);
subplot (2,2,4); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", c, ...
"FaceColor", "interp", "EdgeColor", "blue");
set (gca, "PlotBoxAspectRatioMode", "manual", ...
"PlotBoxAspectRatio", [1 1 1]);
# set (p, "FaceLighting", "phong");
# light ("Position", [1 1 5]);
</pre></div>
<p><strong>See also:</strong> <a href="#XREFisonormals">isonormals</a>, <a href="#XREFisocolors">isocolors</a>.
</p></dd></dl>
<a name="XREFisonormals"></a><dl>
<dt><a name="index-isonormals"></a>Function File: <em>[<var>n</var>] =</em> <strong>isonormals</strong> <em>(<var>val</var>, <var>v</var>)</em></dt>
<dt><a name="index-isonormals-1"></a>Function File: <em>[<var>n</var>] =</em> <strong>isonormals</strong> <em>(<var>val</var>, <var>p</var>)</em></dt>
<dt><a name="index-isonormals-2"></a>Function File: <em>[<var>n</var>] =</em> <strong>isonormals</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>val</var>, <var>v</var>)</em></dt>
<dt><a name="index-isonormals-3"></a>Function File: <em>[<var>n</var>] =</em> <strong>isonormals</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>val</var>, <var>p</var>)</em></dt>
<dt><a name="index-isonormals-4"></a>Function File: <em>[<var>n</var>] =</em> <strong>isonormals</strong> <em>(…, "negate")</em></dt>
<dt><a name="index-isonormals-5"></a>Function File: <em></em> <strong>isonormals</strong> <em>(…, <var>p</var>)</em></dt>
<dd>
<p>If called with one output argument and the first input argument
<var>val</var> is a three-dimensional array that contains the data for an
isosurface geometry and the second input argument <var>v</var> keeps the
vertices of an isosurface then return the normals <var>n</var> in form of
a matrix with the same size than <var>v</var> at computed points
<code>[x, y, z] = meshgrid (1:l, 1:m, 1:n)</code>. The output argument
<var>n</var> can be taken to manually set <var>VertexNormals</var> of a patch.
</p>
<p>If called with further input arguments <var>x</var>, <var>y</var> and <var>z</var>
which are three–dimensional arrays with the same size than <var>val</var>
then the volume data is taken at those given points. Instead of the
vertices data <var>v</var> a patch handle <var>p</var> can be passed to this
function.
</p>
<p>If given the string input argument <code>"negate"</code> as last input argument
then compute the reverse vector normals of an isosurface geometry.
</p>
<p>If no output argument is given then directly redraw the patch that is
given by the patch handle <var>p</var>.
</p>
<p>For example:
</p>
<div class="smallexample">
<pre class="smallexample">function [] = isofinish (p)
set (gca, "PlotBoxAspectRatioMode", "manual", ...
"PlotBoxAspectRatio", [1 1 1]);
set (p, "VertexNormals", -get (p,"VertexNormals")); # Revert normals
set (p, "FaceColor", "interp");
## set (p, "FaceLighting", "phong");
## light ("Position", [1 1 5]); # Available with JHandles
endfunction
N = 15; # Increase number of vertices in each direction
iso = .4; # Change isovalue to .1 to display a sphere
lin = linspace (0, 2, N);
[x, y, z] = meshgrid (lin, lin, lin);
c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
figure (); # Open another figure window
subplot (2,2,1); view (-38, 20);
[f, v, cdat] = isosurface (x, y, z, c, iso, y);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...
"FaceColor", "interp", "EdgeColor", "none");
isofinish (p); ## Call user function isofinish
subplot (2,2,2); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...
"FaceColor", "interp", "EdgeColor", "none");
isonormals (x, y, z, c, p); # Directly modify patch
isofinish (p);
subplot (2,2,3); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...
"FaceColor", "interp", "EdgeColor", "none");
n = isonormals (x, y, z, c, v); # Compute normals of isosurface
set (p, "VertexNormals", n); # Manually set vertex normals
isofinish (p);
subplot (2,2,4); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, ...
"FaceColor", "interp", "EdgeColor", "none");
isonormals (x, y, z, c, v, "negate"); # Use reverse directly
isofinish (p);
</pre></div>
<p><strong>See also:</strong> <a href="#XREFisosurface">isosurface</a>, <a href="#XREFisocolors">isocolors</a>.
</p></dd></dl>
<a name="XREFisocolors"></a><dl>
<dt><a name="index-isocolors"></a>Function File: <em>[<var>cd</var>] =</em> <strong>isocolors</strong> <em>(<var>c</var>, <var>v</var>)</em></dt>
<dt><a name="index-isocolors-1"></a>Function File: <em>[<var>cd</var>] =</em> <strong>isocolors</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>c</var>, <var>v</var>)</em></dt>
<dt><a name="index-isocolors-2"></a>Function File: <em>[<var>cd</var>] =</em> <strong>isocolors</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>r</var>, <var>g</var>, <var>b</var>, <var>v</var>)</em></dt>
<dt><a name="index-isocolors-3"></a>Function File: <em>[<var>cd</var>] =</em> <strong>isocolors</strong> <em>(<var>r</var>, <var>g</var>, <var>b</var>, <var>v</var>)</em></dt>
<dt><a name="index-isocolors-4"></a>Function File: <em>[<var>cd</var>] =</em> <strong>isocolors</strong> <em>(…, <var>p</var>)</em></dt>
<dt><a name="index-isocolors-5"></a>Function File: <em></em> <strong>isocolors</strong> <em>(…)</em></dt>
<dd>
<p>If called with one output argument and the first input argument
<var>c</var> is a three-dimensional array that contains color values and
the second input argument <var>v</var> keeps the vertices of a geometry
then return a matrix <var>cd</var> with color data information for the
geometry at computed points
<code>[x, y, z] = meshgrid (1:l, 1:m, 1:n)</code>. The output argument
<var>cd</var> can be taken to manually set FaceVertexCData of a patch.
</p>
<p>If called with further input arguments <var>x</var>, <var>y</var> and <var>z</var>
which are three–dimensional arrays of the same size than <var>c</var>
then the color data is taken at those given points. Instead of the
color data <var>c</var> this function can also be called with RGB values
<var>r</var>, <var>g</var>, <var>b</var>. If input argumnets <var>x</var>, <var>y</var>,
<var>z</var> are not given then again <code>meshgrid</code> computed values
are taken.
</p>
<p>Optionally, the patch handle <var>p</var> can be given as the last input
argument to all variations of function calls instead of the vertices
data <var>v</var>. Finally, if no output argument is given then directly
change the colors of a patch that is given by the patch handle
<var>p</var>.
</p>
<p>For example:
</p>
<div class="example">
<pre class="example">function [] = isofinish (p)
set (gca, "PlotBoxAspectRatioMode", "manual", ...
"PlotBoxAspectRatio", [1 1 1]);
set (p, "FaceColor", "interp");
## set (p, "FaceLighting", "flat");
## light ("Position", [1 1 5]); ## Available with JHandles
endfunction
N = 15; # Increase number of vertices in each direction
iso = .4; # Change isovalue to .1 to display a sphere
lin = linspace (0, 2, N);
[x, y, z] = meshgrid (lin, lin, lin);
c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
figure (); # Open another figure window
subplot (2,2,1); view (-38, 20);
[f, v] = isosurface (x, y, z, c, iso);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
cdat = rand (size (c)); # Compute random patch color data
isocolors (x, y, z, cdat, p); # Directly set colors of patch
isofinish (p); # Call user function isofinish
subplot (2,2,2); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
[r, g, b] = meshgrid (lin, 2-lin, 2-lin);
cdat = isocolors (x, y, z, c, v); # Compute color data vertices
set (p, "FaceVertexCData", cdat); # Set color data manually
isofinish (p);
subplot (2,2,3); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
cdat = isocolors (r, g, b, c, p); # Compute color data patch
set (p, "FaceVertexCData", cdat); # Set color data manually
isofinish (p);
subplot (2,2,4); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
r = g = b = repmat ([1:N] / N, [N, 1, N]); # Black to white
cdat = isocolors (x, y, z, r, g, b, v);
set (p, "FaceVertexCData", cdat);
isofinish (p);
</pre></div>
<p><strong>See also:</strong> <a href="#XREFisosurface">isosurface</a>, <a href="#XREFisonormals">isonormals</a>.
</p></dd></dl>
<a name="XREFshrinkfaces"></a><dl>
<dt><a name="index-shrinkfaces"></a>Function File: <em></em> <strong>shrinkfaces</strong> <em>(<var>p</var>, <var>sf</var>)</em></dt>
<dt><a name="index-shrinkfaces-1"></a>Function File: <em><var>nfv</var> =</em> <strong>shrinkfaces</strong> <em>(<var>p</var>, <var>sf</var>)</em></dt>
<dt><a name="index-shrinkfaces-2"></a>Function File: <em><var>nfv</var> =</em> <strong>shrinkfaces</strong> <em>(<var>fv</var>, <var>sf</var>)</em></dt>
<dt><a name="index-shrinkfaces-3"></a>Function File: <em><var>nfv</var> =</em> <strong>shrinkfaces</strong> <em>(<var>f</var>, <var>v</var>, <var>sf</var>)</em></dt>
<dt><a name="index-shrinkfaces-4"></a>Function File: <em>[<var>nf</var>, <var>nv</var>] =</em> <strong>shrinkfaces</strong> <em>(…)</em></dt>
<dd>
<p>Reduce the faces area for a given patch, structure or explicit faces
and points matrices by a scale factor <var>sf</var>. The structure
<var>fv</var> must contain the fields <code>"faces"</code> and <code>"vertices"</code>.
If the factor <var>sf</var> is omitted then a default of 0.3 is used.
</p>
<p>Given a patch handle as the first input argument and no output
parameters, perform the shrinking of the patch faces in place and
redraw the patch.
</p>
<p>If called with one output argument, return a structure with fields
<code>"faces"</code>, <code>"vertices"</code>, and <code>"facevertexcdata"</code>
containing the data after shrinking which can then directly be used as an
input argument for the <code>patch</code> function.
</p>
<p>Performing the shrinking on faces which are not convex can lead to
undesired results.
</p>
<p>For example,
</p>
<div class="example">
<pre class="example">[phi r] = meshgrid (linspace (0, 1.5*pi, 16), linspace (1, 2, 4));
tri = delaunay (phi(:), r(:));
v = [r(:).*sin(phi(:)) r(:).*cos(phi(:))];
clf ()
p = patch ("Faces", tri, "Vertices", v, "FaceColor", "none");
fv = shrinkfaces (p);
patch (fv)
axis equal
grid on
</pre></div>
<p>draws a triangulated 3/4 circle and the corresponding shrunken
version.
</p>
<p><strong>See also:</strong> <a href="Graphics-Objects.html#XREFpatch">patch</a>.
</p></dd></dl>
<a name="XREFdiffuse"></a><dl>
<dt><a name="index-diffuse"></a>Function File: <em></em> <strong>diffuse</strong> <em>(<var>sx</var>, <var>sy</var>, <var>sz</var>, <var>lv</var>)</em></dt>
<dd><p>Calculate diffuse reflection strength of a surface defined by the normal
vector elements <var>sx</var>, <var>sy</var>, <var>sz</var>.
</p>
<p>The light source location vector <var>lv</var> can be given as 2-element vector
[azimuth, elevation] in degrees or as 3-element vector [lx, ly, lz].
</p>
<p><strong>See also:</strong> <a href="#XREFspecular">specular</a>, <a href="#XREFsurfl">surfl</a>.
</p></dd></dl>
<a name="XREFspecular"></a><dl>
<dt><a name="index-specular"></a>Function File: <em></em> <strong>specular</strong> <em>(<var>sx</var>, <var>sy</var>, <var>sz</var>, <var>lv</var>, <var>vv</var>)</em></dt>
<dt><a name="index-specular-1"></a>Function File: <em></em> <strong>specular</strong> <em>(<var>sx</var>, <var>sy</var>, <var>sz</var>, <var>lv</var>, <var>vv</var>, <var>se</var>)</em></dt>
<dd><p>Calculate specular reflection strength of a surface defined by the normal
vector elements <var>sx</var>, <var>sy</var>, <var>sz</var> using Phong’s approximation.
</p>
<p>The light source location and viewer location vectors can be specified using
parameter <var>lv</var> and <var>vv</var> respectively. The location vectors can
given as 2-element vectors [azimuth, elevation] in degrees or as 3-element
vectors [x, y, z].
</p>
<p>An optional sixth argument describes the specular exponent (spread) <var>se</var>.
</p>
<p><strong>See also:</strong> <a href="#XREFdiffuse">diffuse</a>, <a href="#XREFsurfl">surfl</a>.
</p></dd></dl>
<a name="XREFmeshgrid"></a><dl>
<dt><a name="index-meshgrid"></a>Function File: <em>[<var>xx</var>, <var>yy</var>] =</em> <strong>meshgrid</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-meshgrid-1"></a>Function File: <em>[<var>xx</var>, <var>yy</var>, <var>zz</var>] =</em> <strong>meshgrid</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-meshgrid-2"></a>Function File: <em>[<var>xx</var>, <var>yy</var>] =</em> <strong>meshgrid</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-meshgrid-3"></a>Function File: <em>[<var>xx</var>, <var>yy</var>, <var>zz</var>] =</em> <strong>meshgrid</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Given vectors of <var>x</var> and <var>y</var> coordinates, return matrices <var>xx</var>
and <var>yy</var> corresponding to a full 2-D grid.
</p>
<p>The rows of <var>xx</var> are copies of <var>x</var>, and the columns of <var>yy</var> are
copies of <var>y</var>. If <var>y</var> is omitted, then it is assumed to be the same
as <var>x</var>.
</p>
<p>If the optional <var>z</var> input is given, or <var>zz</var> is requested, then the
output will be a full 3-D grid.
</p>
<p><code>meshgrid</code> is most frequently used to produce input for a 2-D or 3-D
function that will be plotted. The following example creates a surface
plot of the “sombrero” function.
</p>
<div class="example">
<pre class="example">f = @(x,y) sin (sqrt (x.^2 + y.^2)) ./ sqrt (x.^2 + y.^2);
range = linspace (-8, 8, 41);
[<var>X</var>, <var>Y</var>] = meshgrid (range, range);
Z = f (X, Y);
surf (X, Y, Z);
</pre></div>
<p>Programming Note: <code>meshgrid</code> is restricted to 2-D or 3-D grid
generation. The <code>ndgrid</code> function will generate 1-D through N-D
grids. However, the functions are not completely equivalent. If <var>x</var>
is a vector of length M and <var>y</var> is a vector of length N, then
<code>meshgrid</code> will produce an output grid which is NxM. <code>ndgrid</code>
will produce an output which is MxN (transpose) for the same
input. Some core functions expect <code>meshgrid</code> input and others expect
<code>ndgrid</code> input. Check the documentation for the function in question
to determine the proper input format.
</p>
<p><strong>See also:</strong> <a href="#XREFndgrid">ndgrid</a>, <a href="#XREFmesh">mesh</a>, <a href="Two_002dDimensional-Plots.html#XREFcontour">contour</a>, <a href="#XREFsurf">surf</a>.
</p></dd></dl>
<a name="XREFndgrid"></a><dl>
<dt><a name="index-ndgrid"></a>Function File: <em>[<var>y1</var>, <var>y2</var>, …, <var>y</var>n] =</em> <strong>ndgrid</strong> <em>(<var>x1</var>, <var>x2</var>, …, <var>x</var>n)</em></dt>
<dt><a name="index-ndgrid-1"></a>Function File: <em>[<var>y1</var>, <var>y2</var>, …, <var>y</var>n] =</em> <strong>ndgrid</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Given n vectors <var>x1</var>, …, <var>x</var>n, <code>ndgrid</code> returns
n arrays of dimension n. The elements of the i-th output argument
contains the elements of the vector <var>x</var>i repeated over all
dimensions different from the i-th dimension. Calling ndgrid with
only one input argument <var>x</var> is equivalent to calling ndgrid with
all n input arguments equal to <var>x</var>:
</p>
<p>[<var>y1</var>, <var>y2</var>, …, <var>y</var>n] = ndgrid (<var>x</var>, …, <var>x</var>)
</p>
<p>Programming Note: <code>ndgrid</code> is very similar to the function
<code>meshgrid</code> except that the first two dimensions are transposed in
comparison to <code>meshgrid</code>. Some core functions expect <code>meshgrid</code>
input and others expect <code>ndgrid</code> input. Check the documentation for
the function in question to determine the proper input format.
</p>
<p><strong>See also:</strong> <a href="#XREFmeshgrid">meshgrid</a>.
</p></dd></dl>
<a name="XREFplot3"></a><dl>
<dt><a name="index-plot3"></a>Function File: <em></em> <strong>plot3</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-plot3-1"></a>Function File: <em></em> <strong>plot3</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>prop</var>, <var>value</var>, …)</em></dt>
<dt><a name="index-plot3-2"></a>Function File: <em></em> <strong>plot3</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>fmt</var>)</em></dt>
<dt><a name="index-plot3-3"></a>Function File: <em></em> <strong>plot3</strong> <em>(<var>x</var>, <var>cplx</var>)</em></dt>
<dt><a name="index-plot3-4"></a>Function File: <em></em> <strong>plot3</strong> <em>(<var>cplx</var>)</em></dt>
<dt><a name="index-plot3-5"></a>Function File: <em></em> <strong>plot3</strong> <em>(<var>hax</var>, …)</em></dt>
<dt><a name="index-plot3-6"></a>Function File: <em><var>h</var> =</em> <strong>plot3</strong> <em>(…)</em></dt>
<dd><p>Produce 3-D plots.
</p>
<p>Many different combinations of arguments are possible. The simplest
form is
</p>
<div class="example">
<pre class="example">plot3 (<var>x</var>, <var>y</var>, <var>z</var>)
</pre></div>
<p>in which the arguments are taken to be the vertices of the points to
be plotted in three dimensions. If all arguments are vectors of the
same length, then a single continuous line is drawn. If all arguments
are matrices, then each column of is treated as a separate line. No attempt
is made to transpose the arguments to make the number of rows match.
</p>
<p>If only two arguments are given, as
</p>
<div class="example">
<pre class="example">plot3 (<var>x</var>, <var>cplx</var>)
</pre></div>
<p>the real and imaginary parts of the second argument are used
as the <var>y</var> and <var>z</var> coordinates, respectively.
</p>
<p>If only one argument is given, as
</p>
<div class="example">
<pre class="example">plot3 (<var>cplx</var>)
</pre></div>
<p>the real and imaginary parts of the argument are used as the <var>y</var>
and <var>z</var> values, and they are plotted versus their index.
</p>
<p>Arguments may also be given in groups of three as
</p>
<div class="example">
<pre class="example">plot3 (<var>x1</var>, <var>y1</var>, <var>z1</var>, <var>x2</var>, <var>y2</var>, <var>z2</var>, …)
</pre></div>
<p>in which each set of three arguments is treated as a separate line or
set of lines in three dimensions.
</p>
<p>To plot multiple one- or two-argument groups, separate each group
with an empty format string, as
</p>
<div class="example">
<pre class="example">plot3 (<var>x1</var>, <var>c1</var>, "", <var>c2</var>, "", …)
</pre></div>
<p>Multiple property-value pairs may be specified which will affect the line
objects drawn by <code>plot3</code>. If the <var>fmt</var> argument is supplied it
will format the line objects in the same manner as <code>plot</code>.
</p>
<p>If the first argument <var>hax</var> is an axes handle, then plot into this axis,
rather than the current axes returned by <code>gca</code>.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the created plot.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">z = [0:0.05:5];
plot3 (cos (2*pi*z), sin (2*pi*z), z, ";helix;");
plot3 (z, exp (2i*pi*z), ";complex sinusoid;");
</pre></div>
<p><strong>See also:</strong> <a href="Three_002ddimensional-Function-Plotting.html#XREFezplot3">ezplot3</a>, <a href="Two_002dDimensional-Plots.html#XREFplot">plot</a>.
</p></dd></dl>
<a name="XREFview"></a><dl>
<dt><a name="index-view"></a>Function File: <em></em> <strong>view</strong> <em>(<var>azimuth</var>, <var>elevation</var>)</em></dt>
<dt><a name="index-view-1"></a>Function File: <em></em> <strong>view</strong> <em>([<var>azimuth</var> <var>elevation</var>])</em></dt>
<dt><a name="index-view-2"></a>Function File: <em></em> <strong>view</strong> <em>([<var>x</var> <var>y</var> <var>z</var>])</em></dt>
<dt><a name="index-view-3"></a>Function File: <em></em> <strong>view</strong> <em>(2)</em></dt>
<dt><a name="index-view-4"></a>Function File: <em></em> <strong>view</strong> <em>(3)</em></dt>
<dt><a name="index-view-5"></a>Function File: <em></em> <strong>view</strong> <em>(<var>hax</var>, …)</em></dt>
<dt><a name="index-view-6"></a>Function File: <em>[<var>azimuth</var>, <var>elevation</var>] =</em> <strong>view</strong> <em>()</em></dt>
<dd><p>Query or set the viewpoint for the current axes.
</p>
<p>The parameters <var>azimuth</var> and <var>elevation</var> can be given as two
arguments or as 2-element vector. The viewpoint can also be specified with
Cartesian coordinates <var>x</var>, <var>y</var>, and <var>z</var>.
</p>
<p>The call <code>view (2)</code> sets the viewpoint to <var>azimuth</var> = 0<!-- /@w -->
and <var>elevation</var> = 90<!-- /@w -->, which is the default for 2-D graphs.
</p>
<p>The call <code>view (3)</code> sets the viewpoint to <var>azimuth</var> = <span class="nolinebreak">-37.5</span><!-- /@w -->
and <var>elevation</var> = 30<!-- /@w -->, which is the default for 3-D graphs.
</p>
<p>If the first argument <var>hax</var> is an axes handle, then operate on
this axis rather than the current axes returned by <code>gca</code>.
</p>
<p>If no inputs are given, return the current <var>azimuth</var> and <var>elevation</var>.
</p></dd></dl>
<a name="XREFslice"></a><dl>
<dt><a name="index-slice"></a>Function File: <em></em> <strong>slice</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>v</var>, <var>sx</var>, <var>sy</var>, <var>sz</var>)</em></dt>
<dt><a name="index-slice-1"></a>Function File: <em></em> <strong>slice</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>v</var>, <var>xi</var>, <var>yi</var>, <var>zi</var>)</em></dt>
<dt><a name="index-slice-2"></a>Function File: <em></em> <strong>slice</strong> <em>(<var>v</var>, <var>sx</var>, <var>sy</var>, <var>sz</var>)</em></dt>
<dt><a name="index-slice-3"></a>Function File: <em></em> <strong>slice</strong> <em>(<var>v</var>, <var>xi</var>, <var>yi</var>, <var>zi</var>)</em></dt>
<dt><a name="index-slice-4"></a>Function File: <em></em> <strong>slice</strong> <em>(…, <var>method</var>)</em></dt>
<dt><a name="index-slice-5"></a>Function File: <em></em> <strong>slice</strong> <em>(<var>hax</var>, …)</em></dt>
<dt><a name="index-slice-6"></a>Function File: <em><var>h</var> =</em> <strong>slice</strong> <em>(…)</em></dt>
<dd><p>Plot slices of 3-D data/scalar fields.
</p>
<p>Each element of the 3-dimensional array <var>v</var> represents a scalar value at
a location given by the parameters <var>x</var>, <var>y</var>, and <var>z</var>. The
parameters <var>x</var>, <var>x</var>, and <var>z</var> are either 3-dimensional arrays of
the same size as the array <var>v</var> in the <code>"meshgrid"</code> format or
vectors. The parameters <var>xi</var>, etc. respect a similar format to
<var>x</var>, etc., and they represent the points at which the array <var>vi</var>
is interpolated using interp3. The vectors <var>sx</var>, <var>sy</var>, and
<var>sz</var> contain points of orthogonal slices of the respective axes.
</p>
<p>If <var>x</var>, <var>y</var>, <var>z</var> are omitted, they are assumed to be
<code>x = 1:size (<var>v</var>, 2)</code>, <code>y = 1:size (<var>v</var>, 1)</code> and
<code>z = 1:size (<var>v</var>, 3)</code>.
</p>
<p><var>method</var> is one of:
</p>
<dl compact="compact">
<dt><code>"nearest"</code></dt>
<dd><p>Return the nearest neighbor.
</p>
</dd>
<dt><code>"linear"</code></dt>
<dd><p>Linear interpolation from nearest neighbors.
</p>
</dd>
<dt><code>"cubic"</code></dt>
<dd><p>Cubic interpolation from four nearest neighbors (not implemented yet).
</p>
</dd>
<dt><code>"spline"</code></dt>
<dd><p>Cubic spline interpolation—smooth first and second derivatives
throughout the curve.
</p></dd>
</dl>
<p>The default method is <code>"linear"</code>.
</p>
<p>If the first argument <var>hax</var> is an axes handle, then plot into this axis,
rather than the current axes returned by <code>gca</code>.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the created
surface object.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">[x, y, z] = meshgrid (linspace (-8, 8, 32));
v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
slice (x, y, z, v, [], 0, []);
[xi, yi] = meshgrid (linspace (-7, 7));
zi = xi + yi;
slice (x, y, z, v, xi, yi, zi);
</pre></div>
<p><strong>See also:</strong> <a href="Multi_002ddimensional-Interpolation.html#XREFinterp3">interp3</a>, <a href="Graphics-Objects.html#XREFsurface">surface</a>, <a href="Two_002dDimensional-Plots.html#XREFpcolor">pcolor</a>.
</p></dd></dl>
<a name="XREFribbon"></a><dl>
<dt><a name="index-ribbon"></a>Function File: <em></em> <strong>ribbon</strong> <em>(<var>y</var>)</em></dt>
<dt><a name="index-ribbon-1"></a>Function File: <em></em> <strong>ribbon</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-ribbon-2"></a>Function File: <em></em> <strong>ribbon</strong> <em>(<var>x</var>, <var>y</var>, <var>width</var>)</em></dt>
<dt><a name="index-ribbon-3"></a>Function File: <em></em> <strong>ribbon</strong> <em>(<var>hax</var>, …)</em></dt>
<dt><a name="index-ribbon-4"></a>Function File: <em><var>h</var> =</em> <strong>ribbon</strong> <em>(…)</em></dt>
<dd><p>Plot a ribbon plot for the columns of <var>y</var> vs. <var>x</var>.
</p>
<p>The optional parameter <var>width</var> specifies the width of a single ribbon
(default is 0.75). If <var>x</var> is omitted, a vector containing the
row numbers is assumed (<code>1:rows (Y)</code>).
</p>
<p>If the first argument <var>hax</var> is an axes handle, then plot into this axis,
rather than the current axes returned by <code>gca</code>.
</p>
<p>The optional return value <var>h</var> is a vector of graphics handles to
the surface objects representing each ribbon.
</p>
<p><strong>See also:</strong> <a href="Graphics-Objects.html#XREFsurface">surface</a>, <a href="#XREFwaterfall">waterfall</a>.
</p></dd></dl>
<a name="XREFshading"></a><dl>
<dt><a name="index-shading"></a>Function File: <em></em> <strong>shading</strong> <em>(<var>type</var>)</em></dt>
<dt><a name="index-shading-1"></a>Function File: <em></em> <strong>shading</strong> <em>(<var>hax</var>, <var>type</var>)</em></dt>
<dd><p>Set the shading of patch or surface graphic objects.
</p>
<p>Valid arguments for <var>type</var> are
</p>
<dl compact="compact">
<dt><code>"flat"</code></dt>
<dd><p>Single colored patches with invisible edges.
</p>
</dd>
<dt><code>"faceted"</code></dt>
<dd><p>Single colored patches with visible edges.
</p>
</dd>
<dt><code>"interp"</code></dt>
<dd><p>Color between patch vertices are interpolated and the patch edges are
invisible.
</p></dd>
</dl>
<p>If the first argument <var>hax</var> is an axes handle, then plot into this axis,
rather than the current axes returned by <code>gca</code>.
</p>
<p><strong>See also:</strong> <a href="Graphics-Objects.html#XREFfill">fill</a>, <a href="#XREFmesh">mesh</a>, <a href="Graphics-Objects.html#XREFpatch">patch</a>, <a href="Two_002dDimensional-Plots.html#XREFpcolor">pcolor</a>, <a href="#XREFsurf">surf</a>, <a href="Graphics-Objects.html#XREFsurface">surface</a>, <a href="#XREFhidden">hidden</a>.
</p></dd></dl>
<a name="XREFscatter3"></a><dl>
<dt><a name="index-scatter3"></a>Function File: <em></em> <strong>scatter3</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-scatter3-1"></a>Function File: <em></em> <strong>scatter3</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>s</var>)</em></dt>
<dt><a name="index-scatter3-2"></a>Function File: <em></em> <strong>scatter3</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>s</var>, <var>c</var>)</em></dt>
<dt><a name="index-scatter3-3"></a>Function File: <em></em> <strong>scatter3</strong> <em>(…, <var>style</var>)</em></dt>
<dt><a name="index-scatter3-4"></a>Function File: <em></em> <strong>scatter3</strong> <em>(…, "filled")</em></dt>
<dt><a name="index-scatter3-5"></a>Function File: <em></em> <strong>scatter3</strong> <em>(…, <var>prop</var>, <var>val</var>)</em></dt>
<dt><a name="index-scatter3-6"></a>Function File: <em></em> <strong>scatter3</strong> <em>(<var>hax</var>, …)</em></dt>
<dt><a name="index-scatter3-7"></a>Function File: <em><var>h</var> =</em> <strong>scatter3</strong> <em>(…)</em></dt>
<dd><p>Draw a 3-D scatter plot.
</p>
<p>A marker is plotted at each point defined by the coordinates in the vectors
<var>x</var>, <var>y</var>, and <var>z</var>.
</p>
<p>The size of the markers is determined by <var>s</var>, which can be a scalar
or a vector of the same length as <var>x</var>, <var>y</var>, and <var>z</var>. If <var>s</var>
is not given, or is an empty matrix, then a default value of 8 points is
used.
</p>
<p>The color of the markers is determined by <var>c</var>, which can be a string
defining a fixed color; a 3-element vector giving the red, green, and blue
components of the color; a vector of the same length as <var>x</var> that gives
a scaled index into the current colormap; or an Nx3 matrix defining
the RGB color of each marker individually.
</p>
<p>The marker to use can be changed with the <var>style</var> argument, that is a
string defining a marker in the same manner as the <code>plot</code> command.
If no marker is specified it defaults to <code>"o"</code> or circles.
If the argument <code>"filled"</code> is given then the markers are filled.
</p>
<p>Additional property/value pairs are passed directly to the underlying
patch object.
</p>
<p>If the first argument <var>hax</var> is an axes handle, then plot into this axis,
rather than the current axes returned by <code>gca</code>.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the hggroup
object representing the points.
</p>
<div class="example">
<pre class="example">[x, y, z] = peaks (20);
scatter3 (x(:), y(:), z(:), [], z(:));
</pre></div>
<p><strong>See also:</strong> <a href="Two_002dDimensional-Plots.html#XREFscatter">scatter</a>, <a href="Graphics-Objects.html#XREFpatch">patch</a>, <a href="Two_002dDimensional-Plots.html#XREFplot">plot</a>.
</p></dd></dl>
<a name="XREFwaterfall"></a><dl>
<dt><a name="index-waterfall"></a>Function File: <em></em> <strong>waterfall</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-waterfall-1"></a>Function File: <em></em> <strong>waterfall</strong> <em>(<var>z</var>)</em></dt>
<dt><a name="index-waterfall-2"></a>Function File: <em></em> <strong>waterfall</strong> <em>(…, <var>c</var>)</em></dt>
<dt><a name="index-waterfall-3"></a>Function File: <em></em> <strong>waterfall</strong> <em>(…, <var>prop</var>, <var>val</var>, …)</em></dt>
<dt><a name="index-waterfall-4"></a>Function File: <em></em> <strong>waterfall</strong> <em>(<var>hax</var>, …)</em></dt>
<dt><a name="index-waterfall-5"></a>Function File: <em><var>h</var> =</em> <strong>waterfall</strong> <em>(…)</em></dt>
<dd><p>Plot a 3-D waterfall plot.
</p>
<p>A waterfall plot is similar to a <code>meshz</code> plot except only
mesh lines for the rows of <var>z</var> (x-values) are shown.
</p>
<p>The wireframe mesh is plotted using rectangles. The vertices of the
rectangles [<var>x</var>, <var>y</var>] are typically the output of <code>meshgrid</code>.
over a 2-D rectangular region in the x-y plane. <var>z</var> determines the
height above the plane of each vertex. If only a single <var>z</var> matrix is
given, then it is plotted over the meshgrid
<code><var>x</var> = 1:columns (<var>z</var>), <var>y</var> = 1:rows (<var>z</var>)</code>.
Thus, columns of <var>z</var> correspond to different <var>x</var> values and rows
of <var>z</var> correspond to different <var>y</var> values.
</p>
<p>The color of the mesh is computed by linearly scaling the <var>z</var> values
to fit the range of the current colormap. Use <code>caxis</code> and/or
change the colormap to control the appearance.
</p>
<p>Optionally the color of the mesh can be specified independently of <var>z</var>
by supplying a color matrix, <var>c</var>.
</p>
<p>Any property/value pairs are passed directly to the underlying surface
object.
</p>
<p>If the first argument <var>hax</var> is an axes handle, then plot into this axis,
rather than the current axes returned by <code>gca</code>.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the created
surface object.
</p>
<p><strong>See also:</strong> <a href="#XREFmeshz">meshz</a>, <a href="#XREFmesh">mesh</a>, <a href="#XREFmeshc">meshc</a>, <a href="Two_002dDimensional-Plots.html#XREFcontour">contour</a>, <a href="#XREFsurf">surf</a>, <a href="Graphics-Objects.html#XREFsurface">surface</a>, <a href="#XREFribbon">ribbon</a>, <a href="#XREFmeshgrid">meshgrid</a>, <a href="#XREFhidden">hidden</a>, <a href="#XREFshading">shading</a>, <a href="Representing-Images.html#XREFcolormap">colormap</a>, <a href="Axis-Configuration.html#XREFcaxis">caxis</a>.
</p></dd></dl>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="Aspect-Ratio.html#Aspect-Ratio" accesskey="1">Aspect Ratio</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Three_002ddimensional-Function-Plotting.html#Three_002ddimensional-Function-Plotting" accesskey="2">Three-dimensional Function Plotting</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Three_002ddimensional-Geometric-Shapes.html#Three_002ddimensional-Geometric-Shapes" accesskey="3">Three-dimensional Geometric Shapes</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<div class="header">
<p>
Next: <a href="Plot-Annotations.html#Plot-Annotations" accesskey="n" rel="next">Plot Annotations</a>, Previous: <a href="Two_002dDimensional-Plots.html#Two_002dDimensional-Plots" accesskey="p" rel="prev">Two-Dimensional Plots</a>, Up: <a href="High_002dLevel-Plotting.html#High_002dLevel-Plotting" accesskey="u" rel="up">High-Level Plotting</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|