File: oop.texi

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (1366 lines) | stat: -rw-r--r-- 41,965 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
@c DO NOT EDIT!  Generated automatically by munge-texi.pl.

@c Copyright (C) 2008-2013 David Bateman
@c Copyright (C) 2009 VZLU Prague
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c 
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
@c for more details.
@c 
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <http://www.gnu.org/licenses/>.

@c FIXME
@c For now can't include "@" character in the path name, and so name
@c the example directory without the "@"!!

@node Object Oriented Programming
@chapter Object Oriented Programming

Octave includes the capability to include user classes, including the
features of operator and function overloading.  Equally a user class
can be used to encapsulate certain properties of the class so that
they cannot be altered accidentally and can be set up to address the
issue of class precedence in mixed class operations.

This chapter discussions the means of constructing a user class with
the example of a polynomial class, how to query and set the properties
of this class, together with the means to overload operators and
functions.

@menu
* Creating a Class::
* Manipulating Classes::
* Indexing Objects::
* Overloading Objects::
* Inheritance and Aggregation::
@end menu

@node Creating a Class
@section Creating a Class

We use in the following text a polynomial class to demonstrate the use
of object oriented programming within Octave.  This class was chosen as
it is simple, and so doesn't distract unnecessarily from the
discussion of the programming features of Octave.  However, even still
a small understand of the polynomial class itself is necessary to
fully grasp the techniques described.

The polynomial class is used to represent polynomials of the form
@tex
$$
a_0 + a_1 x + a_2 x^2 + \ldots a_n x^n
$$
@end tex
@ifnottex

@example
a0 + a1 * x + a2 * x^2 + @dots{} + an * x^n
@end example

@end ifnottex
@noindent
where
@tex
$a_0$, $a_1$, etc. are elements of $\Re$.
@end tex
@ifnottex
a0, a1, etc. are real scalars.
@end ifnottex
Thus the polynomial can be represented by a vector

@example
a = [a0, a1, a2, @dots{}, an];
@end example

We therefore now have sufficient information about the requirements of
the class constructor for our polynomial class to write it.  All object
oriented classes in Octave, must be contained with a directory taking
the name of the class, prepended with the @@ symbol.  For example, with
our polynomial class, we would place the methods defining the class in
the @@polynomial directory.

The constructor of the class, must have the name of the class itself
and so in our example the constructor with have the name
@file{@@polynomial/polynomial.m}.  Also ideally when the constructor is
called with no arguments to should return a value object.  So for example
our polynomial might look like

@example
@verbatim
## -*- texinfo -*-
## @deftypefn  {Function File} {} polynomial ()
## @deftypefnx {Function File} {} polynomial (@var{a})
## Create a polynomial object representing the polynomial
##
## @example
## a0 + a1 * x + a2 * x^2 + @dots{} + an * x^n
## @end example
##
## @noindent
## from a vector of coefficients [a0 a1 a2 @dots{} an].
## @end deftypefn

function p = polynomial (a)
  if (nargin == 0)
    p.poly = [0];
    p = class (p, "polynomial");
  elseif (nargin == 1)
    if (strcmp (class (a), "polynomial"))
      p = a;
    elseif (isvector (a) && isreal (a))
      p.poly = a(:).';
      p = class (p, "polynomial");
    else
      error ("polynomial: expecting real vector");
    endif
  else
    print_usage ();
  endif
endfunction
@end verbatim

@end example

Note that the return value of the constructor must be the output of
the @code{class} function called with the first argument being a
structure and the second argument being the class name.  An example of
the call to this constructor function is then

@example
p = polynomial ([1, 0, 1]);
@end example

Note that methods of a class can be documented.  The help for the
constructor itself can be obtained with the constructor name, that is
for the polynomial constructor @code{help polynomial} will return the
help string.  Also the help can be obtained by restricting the search
for the help to a particular class, for example @code{help
@@polynomial/polynomial}.  This second method is the only means of
getting help for the overloaded methods and functions of the class.

The same is true for other Octave functions that take a function name
as an argument.  For example @code{type @@polynomial/display} will
print the code of the display method of the polynomial class to the
screen, and @code{dbstop @@polynomial/display} will set a breakpoint
at the first executable line of the display method of the polynomial
class.

To check where a variable is a user class, the @code{isobject} and
@code{isa} functions can be used.  For example:

@example
@group
p = polynomial ([1, 0, 1]);
isobject (p)
  @result{} 1
isa (p, "polynomial")
  @result{} 1
@end group
@end example

@c isobject libinterp/octave-value/ov-class.cc
@anchor{XREFisobject}
@deftypefn {Built-in Function} {} isobject (@var{x})
Return true if @var{x} is a class object.
@seealso{@ref{XREFclass,,class}, @ref{XREFtypeinfo,,typeinfo}, @ref{XREFisa,,isa}, @ref{XREFismethod,,ismethod}}
@end deftypefn


@noindent
The available methods of a class can be displayed with the
@code{methods} function.

@c methods scripts/general/methods.m
@anchor{XREFmethods}
@deftypefn  {Function File} {} methods (@var{obj})
@deftypefnx {Function File} {} methods ("@var{classname}")
@deftypefnx {Function File} {@var{mtds} =} methods (@dots{})

Return a cell array containing the names of the methods for the
object @var{obj} or the named class @var{classname}.
@var{obj} may be an Octave class object or a Java object.

@seealso{@ref{XREFfieldnames,,fieldnames}}
@end deftypefn


@noindent
To inquire whether a particular method is available to a user class, the
@code{ismethod} function can be used.

@c ismethod libinterp/octave-value/ov-class.cc
@anchor{XREFismethod}
@deftypefn {Built-in Function} {} ismethod (@var{x}, @var{method})
Return true if @var{x} is a class object and the string @var{method}
is a method of this class.
@seealso{@ref{XREFisprop,,isprop}, @ref{XREFisobject,,isobject}}
@end deftypefn


@noindent
For example:

@example
@group
p = polynomial ([1, 0, 1]);
ismethod (p, "roots")
  @result{} 1
@end group
@end example

@node Manipulating Classes
@section Manipulating Classes

There are a number of basic classes methods that can be defined to allow
the contents of the classes to be queried and set.  The most basic of
these is the @code{display} method.  The @code{display} method is used
by Octave when displaying a class on the screen, due to an expression
that is not terminated with a semicolon.  If this method is not defined,
then Octave will printed nothing when displaying the contents of a class.

@c display scripts/general/display.m
@anchor{XREFdisplay}
@deftypefn {Function File} {} display (@var{a})
Display the contents of an object.  If @var{a} is an object of the
class @qcode{"myclass"}, then @code{display} is called in a case like

@example
myclass (@dots{})
@end example

@noindent
where Octave is required to display the contents of a variable of the
type @qcode{"myclass"}.

@seealso{@ref{XREFclass,,class}, @ref{XREFsubsref,,subsref}, @ref{XREFsubsasgn,,subsasgn}}
@end deftypefn


@noindent
An example of a display method for the polynomial class might be

@example
@verbatim
function display (p)
  a = p.poly;
  first = true;
  fprintf ("%s =", inputname (1));
  for i = 1 : length (a);
    if (a(i) != 0)
      if (first)
        first = false;
      elseif (a(i) > 0)
        fprintf (" +");
      endif
      if (a(i) < 0)
        fprintf (" -");
      endif
      if (i == 1)
        fprintf (" %g", abs (a(i)));
      elseif (abs(a(i)) != 1)
        fprintf (" %g *", abs (a(i)));
      endif
      if (i > 1)
        fprintf (" X");
      endif
      if (i > 2)
        fprintf (" ^ %d", i - 1);
      endif
    endif
  endfor
  if (first)
    fprintf (" 0");
  endif
  fprintf ("\n");
endfunction
@end verbatim

@end example

@noindent
Note that in the display method, it makes sense to start the method
with the line @code{fprintf ("%s =", inputname (1))} to be consistent
with the rest of Octave and print the variable name to be displayed
when displaying the class. 

To be consistent with the Octave graphic handle classes, a class
should also define the @code{get} and @code{set} methods.  The
@code{get} method should accept one or two arguments, and given one
argument of the appropriate class it should return a structure with
all of the properties of the class.  For example:

@example
@verbatim
function s = get (p, f)
  if (nargin == 1)
    s.poly = p.poly;
  elseif (nargin == 2)
    if (ischar (f))
      switch (f)
        case "poly"
          s = p.poly;
        otherwise
          error ("get: invalid property %s", f);
      endswitch
    else
      error ("get: expecting the property to be a string");
    endif
  else
    print_usage ();
  endif
endfunction
@end verbatim

@end example

@noindent
Similarly, the @code{set} method should taken as its first argument an
object to modify, and then take property/value pairs to be modified. 

@example
@verbatim
function s = set (p, varargin)
  s = p;
  if (length (varargin) < 2 || rem (length (varargin), 2) != 0)
    error ("set: expecting property/value pairs");
  endif
  while (length (varargin) > 1)
    prop = varargin{1};
    val = varargin{2};
    varargin(1:2) = [];
    if (ischar (prop) && strcmp (prop, "poly"))
      if (isvector (val) && isreal (val))
        s.poly = val(:).';
      else
        error ("set: expecting the value to be a real vector");
      endif
    else
      error ("set: invalid property of polynomial class");
    endif
  endwhile
endfunction
@end verbatim

@end example

@noindent
Note that as Octave does not implement pass by reference, than the
modified object is the return value of the @code{set} method and it
must be called like

@example
p = set (p, "a", [1, 0, 0, 0, 1]);
@end example

@noindent
Also the @code{set} method makes use of the @code{subsasgn} method of
the class, and this method must be defined.  The @code{subsasgn} method
is discussed in the next section.

Finally, user classes can be considered as a special type of a
structure, and so they can be saved to a file in the same manner as a
structure.  For example:

@example
@group
p = polynomial ([1, 0, 1]);
save userclass.mat p
clear p
load userclass.mat
@end group
@end example

@noindent
All of the file formats supported by @code{save} and @code{load} are
supported.  In certain circumstances, a user class might either contain
a field that it makes no sense to save or a field that needs to be
initialized before it is saved.  This can be done with the
@code{saveobj} method of the class

@c saveobj scripts/general/saveobj.m
@anchor{XREFsaveobj}
@deftypefn {Function File} {@var{b} =} saveobj (@var{a})
Method of a class to manipulate an object prior to saving it to a file.
The function @code{saveobj} is called when the object @var{a} is saved
using the @code{save} function.  An example of the use of @code{saveobj}
might be to remove fields of the object that don't make sense to be saved
or it might be used to ensure that certain fields of the object are
initialized before the object is saved.  For example:

@example
@group
function b = saveobj (a)
  b = a;
  if (isempty (b.field))
     b.field = initfield (b);
  endif
endfunction
@end group
@end example

@seealso{@ref{XREFloadobj,,loadobj}, @ref{XREFclass,,class}}
@end deftypefn


@noindent
@code{saveobj} is called just prior to saving the class to a
file.  Likely, the @code{loadobj} method is called just after a class
is loaded from a file, and can be used to ensure that any removed
fields are reinserted into the user object.

@c loadobj scripts/general/loadobj.m
@anchor{XREFloadobj}
@deftypefn {Function File} {@var{b} =} loadobj (@var{a})
Method of a class to manipulate an object after loading it from a file.
The function @code{loadobj} is called when the object @var{a} is loaded
using the @code{load} function.  An example of the use of @code{saveobj}
might be to add fields to an object that don't make sense to be saved.
For example:

@example
@group
function b = loadobj (a)
  b = a;
  b.addmissingfield = addfield (b);
endfunction
@end group
@end example

@seealso{@ref{XREFsaveobj,,saveobj}, @ref{XREFclass,,class}}
@end deftypefn


@node Indexing Objects
@section Indexing Objects

@menu
* Defining Indexing And Indexed Assignment::
* Indexed Assignment Optimization::
@end menu

@node Defining Indexing And Indexed Assignment
@subsection Defining Indexing And Indexed Assignment

Objects can be indexed with parentheses, either like 
@code{@var{a} (@var{idx})} or like @code{@var{a} @{@var{idx}@}}, or even
like @code{@var{a} (@var{idx}).@var{field}}.  However, it is up to the user
to decide what this indexing actually means.  In the case of our polynomial
class @code{@var{p} (@var{n})} might mean either the coefficient of the 
@var{n}-th power of the polynomial, or it might be the evaluation of the 
polynomial at @var{n}.  The meaning of this subscripted referencing is 
determined by the @code{subsref} method.

@c subsref libinterp/octave-value/ov.cc
@anchor{XREFsubsref}
@deftypefn {Built-in Function} {} subsref (@var{val}, @var{idx})
Perform the subscripted element selection operation according to
the subscript specified by @var{idx}.

The subscript @var{idx} is expected to be a structure array with
fields @samp{type} and @samp{subs}.  Valid values for @samp{type}
are @samp{"()"}, @samp{"@{@}"}, and @samp{"."}.
The @samp{subs} field may be either @samp{":"} or a cell array
of index values.

The following example shows how to extract the first two columns of
a matrix

@example
@group
val = magic (3)
    @result{} val = [ 8   1   6
               3   5   7
               4   9   2 ]
idx.type = "()";
idx.subs = @{":", 1:2@};
subsref (val, idx)
     @result{} [ 8   1
          3   5
          4   9 ]
@end group
@end example

@noindent
Note that this is the same as writing @code{val(:,1:2)}.

If @var{idx} is an empty structure array with fields @samp{type}
and @samp{subs}, return @var{val}.
@seealso{@ref{XREFsubsasgn,,subsasgn}, @ref{XREFsubstruct,,substruct}}
@end deftypefn


For example we might decide that indexing with @qcode{"()"} evaluates the
polynomial and indexing with @qcode{"@{@}"} returns the @var{n}-th coefficient
(of @var{n}-th power).  In this case the @code{subsref} method of our
polynomial class might look like

@example
@verbatim
function b = subsref (a, s)
  if (isempty (s))
    error ("polynomial: missing index");
  endif
  switch (s(1).type)
    case "()"
      ind = s(1).subs;
      if (numel (ind) != 1)
        error ("polynomial: need exactly one index");
      else
        b = polyval (fliplr (a.poly), ind{1});
      endif
    case "{}"
      ind = s(1).subs;
      if (numel (ind) != 1)
        error ("polynomial: need exactly one index");
      else
        if (isnumeric (ind{1}))
          b = a.poly(ind{1}+1);
        else
          b = a.poly(ind{1});
        endif
      endif
    case "."
      fld = s.subs;
      if (strcmp (fld, "poly"))
        b = a.poly;
      else
        error ("@polynomial/subsref: invalid property \"%s\"", fld);
      endif
    otherwise
      error ("invalid subscript type");
  endswitch
  if (numel (s) > 1)
    b = subsref (b, s(2:end));
  endif
endfunction
@end verbatim

@end example

The equivalent functionality for subscripted assignments uses the 
@code{subsasgn} method.

@c subsasgn libinterp/octave-value/ov.cc
@anchor{XREFsubsasgn}
@deftypefn {Built-in Function} {} subsasgn (@var{val}, @var{idx}, @var{rhs})
Perform the subscripted assignment operation according to
the subscript specified by @var{idx}.

The subscript @var{idx} is expected to be a structure array with
fields @samp{type} and @samp{subs}.  Valid values for @samp{type}
are @samp{"()"}, @samp{"@{@}"}, and @samp{"."}.
The @samp{subs} field may be either @samp{":"} or a cell array
of index values.

The following example shows how to set the two first columns of a
3-by-3 matrix to zero.

@example
@group
val = magic (3);
idx.type = "()";
idx.subs = @{":", 1:2@};
subsasgn (val, idx, 0)
     @result{}  [ 0   0   6
           0   0   7
           0   0   2 ]
@end group
@end example

Note that this is the same as writing @code{val(:,1:2) = 0}.

If @var{idx} is an empty structure array with fields @samp{type}
and @samp{subs}, return @var{rhs}.
@seealso{@ref{XREFsubsref,,subsref}, @ref{XREFsubstruct,,substruct}}
@end deftypefn


@c optimize_subsasgn_calls libinterp/octave-value/ov-usr-fcn.cc
@anchor{XREFoptimize_subsasgn_calls}
@deftypefn  {Built-in Function} {@var{val} =} optimize_subsasgn_calls ()
@deftypefnx {Built-in Function} {@var{old_val} =} optimize_subsasgn_calls (@var{new_val})
@deftypefnx {Built-in Function} {} optimize_subsasgn_calls (@var{new_val}, "local")
Query or set the internal flag for subsasgn method call optimizations.

If true, Octave will attempt to eliminate the redundant copying when calling
the subsasgn method of a user-defined class.

When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.  
The original variable value is restored when exiting the function.
@end deftypefn


Note that the @code{subsref} and @code{subsasgn} methods always receive the
whole index chain, while they usually handle only the first element.  It is the
responsibility of these methods to handle the rest of the chain (if needed),
usually by forwarding it again to @code{subsref} or @code{subsasgn}.

If you wish to use the @code{end} keyword in subscripted expressions
of an object, then the user needs to define the @code{end} method for 
the class.  For example, the @code{end} method for our polynomial class might
look like

@example
@group
@verbatim
function r = end (obj, index_pos, num_indices)

  if (num_indices != 1)
    error ("polynomial object may only have one index")
  endif
  
  r = length (obj.poly) - 1;

endfunction
@end verbatim

@end group
@end example

@noindent
which is a fairly generic @code{end} method that has a behavior similar to
the @code{end} keyword for Octave Array classes.  It can then be used as 
follows:

@example
@group
p = polynomial ([1,2,3,4]);
p(end-1)
  @result{} 3
@end group
@end example

Objects can also be used as the index in a subscripted expression themselves
and this is controlled with the @code{subsindex} function.

@c subsindex scripts/general/subsindex.m
@anchor{XREFsubsindex}
@deftypefn {Function File} {@var{idx} =} subsindex (@var{a})
Convert an object to an index vector.  When @var{a} is a class object
defined with a class constructor, then @code{subsindex} is the
overloading method that allows the conversion of this class object to
a valid indexing vector.  It is important to note that
@code{subsindex} must return a zero-based real integer vector of the
class @qcode{"double"}.  For example, if the class constructor

@example
@group
function b = myclass (a)
  b = class (struct ("a", a), "myclass");
endfunction
@end group
@end example

@noindent
then the @code{subsindex} function

@example
@group
function idx = subsindex (a)
  idx = double (a.a) - 1.0;
endfunction
@end group
@end example

@noindent
can then be used as follows

@example
@group
a = myclass (1:4);
b = 1:10;
b(a)
@result{} 1  2  3  4
@end group
@end example

@seealso{@ref{XREFclass,,class}, @ref{XREFsubsref,,subsref}, @ref{XREFsubsasgn,,subsasgn}}
@end deftypefn


Finally, objects can equally be used like ranges, using the @code{colon}
method

@c colon scripts/miscellaneous/colon.m
@anchor{XREFcolon}
@deftypefn  {Function File} {@var{r} =} colon (@var{a}, @var{b})
@deftypefnx {Function File} {@var{r} =} colon (@var{a}, @var{b}, @var{c})
Method of a class to construct a range with the @code{:} operator.  For
example:

@example
@group
a = myclass (@dots{});
b = myclass (@dots{});
c = a : b
@end group
@end example

@seealso{@ref{XREFclass,,class}, @ref{XREFsubsref,,subsref}, @ref{XREFsubsasgn,,subsasgn}}
@end deftypefn


@node Indexed Assignment Optimization
@subsection Indexed Assignment Optimization

Octave's ubiquitous lazily-copied pass-by-value semantics implies 
a problem for performance of user-defined subsasgn methods.  Imagine
a call to subsasgn:

@example
@group
  ss = substruct ("()",@{1@});
  x = subsasgn (x, ss, 1);
@end group
@end example

@noindent
and the corresponding method looking like this:

@example
@group
  function x = subsasgn (x, ss, val)
    @dots{}
    x.myfield (ss.subs@{1@}) = val;
  endfunction
@end group
@end example

The problem is that on entry to the subsasgn method, @code{x} is still
referenced from the caller's scope, which means that the method will 
first need to unshare (copy) @code{x} and @code{x.myfield} before performing
the assignment.  Upon completing the call, unless an error occurs,
the result is immediately assigned to @code{x} in the caller's scope,
so that the previous value of @code{x.myfield} is forgotten.  Hence, the
Octave language implies a copy of N elements (N being the size of
@code{x.myfield}), where modifying just a single element would actually
suffice, i.e., degrades a constant-time operation to linear-time one.
This may be a real problem for user classes that intrinsically store large
arrays.

To partially solve the problem, Octave uses a special optimization for
user-defined subsasgn methods coded as m-files.  When the method
gets called as a result of the built-in assignment syntax (not direct subsasgn
call as shown above), i.e.

@example
  x(1) = 1;
@end example

@b{AND} if the subsasgn method is declared with identical input and output argument,
like in the example above, then Octave will ignore the copy of @code{x} inside
the caller's scope; therefore, any changes made to @code{x} during the method
execution will directly affect the caller's copy as well.
This allows, for instance, defining a polynomial class where modifying a single
element takes constant time.

It is important to understand the implications that this optimization brings.
Since no extra copy of @code{x} in the caller's scope will exist, it is
@emph{solely} the callee's responsibility to not leave @code{x} in an invalid
state if an error occurs throughout the execution.  Also, if the method
partially changes @code{x} and then errors out, the changes @emph{will} affect
@code{x} in the caller's scope.  Deleting or completely replacing @code{x}
inside subsasgn will not do anything, however, only indexed assignments matter.

Since this optimization may change the way code works (especially if badly
written), a built-in variable @code{optimize_subsasgn_calls} is provided to
control it.  It is on by default.  Another option to avoid the effect is to
declare subsasgn methods with different output and input arguments, like this:

@example
@group
  function y = subsasgn (x, ss, val)
    @dots{}
  endfunction
@end group
@end example

@node Overloading Objects
@section Overloading Objects

@menu
* Function Overloading::
* Operator Overloading::
* Precedence of Objects::
@end menu

@node Function Overloading
@subsection Function Overloading

Any Octave function can be overloaded, and allows an object specific
version of this function to be called as needed.  A pertinent example
for our polynomial class might be to overload the @code{polyval} function
like

@example
@group
@verbatim
function [y, dy] = polyval (p, varargin)
  if (nargout == 2)
    [y, dy] = polyval (fliplr (p.poly), varargin{:});
  else
    y = polyval (fliplr (p.poly), varargin{:});
  endif
endfunction
@end verbatim

@end group
@end example

This function just hands off the work to the normal Octave @code{polyval}
function.  Another interesting example for an overloaded function for our
polynomial class is the @code{plot} function.

@example
@group
@verbatim
function h = plot (p, varargin)
  n = 128;
  rmax = max (abs (roots (p.poly)));
  x = [0 : (n - 1)] / (n - 1) * 2.2 * rmax - 1.1 * rmax;
  if (nargout > 0)
    h = plot (x, p(x), varargin{:});
  else
    plot (x, p(x), varargin{:});
  endif
endfunction
@end verbatim

@end group
@end example

@noindent
which allows polynomials to be plotted in the domain near the region
of the roots of the polynomial.

Functions that are of particular interest to be overloaded are the class
conversion functions such as @code{double}.  Overloading these functions 
allows the @code{cast} function to work with the user class and can aid 
in the use of methods of other classes with the user class.  An example
@code{double} function for our polynomial class might look like.

@example
@group
@verbatim
function b = double (a)
  b = a.poly;
endfunction
@end verbatim

@end group
@end example

@node Operator Overloading
@subsection Operator Overloading
@cindex addition
@cindex and operator
@cindex arithmetic operators
@cindex boolean expressions
@cindex boolean operators
@cindex comparison expressions
@cindex complex-conjugate transpose
@cindex division
@cindex equality operator
@cindex equality, tests for
@cindex exponentiation
@cindex expressions, boolean
@cindex expressions, comparison
@cindex expressions, logical
@cindex greater than operator
@cindex Hermitian operator
@cindex less than operator
@cindex logical expressions
@cindex logical operators
@cindex matrix multiplication
@cindex multiplication
@cindex negation
@cindex not operator
@cindex operators, arithmetic
@cindex operators, boolean
@cindex operators, logical
@cindex operators, relational
@cindex or operator
@cindex quotient
@cindex relational operators
@cindex subtraction
@cindex tests for equality
@cindex transpose
@cindex transpose, complex-conjugate
@cindex unary minus

@c Need at least one plaintext sentence here between the @node and @float
@c table below or the two will overlap due to a bug in Texinfo. 
@c This is not our fault; this *is* a ridiculous kluge.
The following table shows, for each built-in numerical operation, the
corresponding function name to use when providing an overloaded method for a
user class.

@float Table,tab:overload_ops
@opindex +
@opindex -
@opindex .*
@opindex *
@opindex ./
@opindex /
@opindex .\
@opindex \
@opindex .^
@opindex ^
@opindex <
@opindex <=
@opindex >
@opindex >=
@opindex ==
@opindex !=
@opindex ~=
@opindex &
@opindex |
@opindex !
@opindex '
@opindex .'
@opindex :
@opindex <

@tex
\vskip 6pt
{\hbox to \hsize {\hfill\vbox{\offinterlineskip \tabskip=0pt 
\halign{
\vrule height2.0ex depth1.ex width 0.6pt #\tabskip=0.3em &
# \hfil & \vrule # & # \hfil & \vrule # & # \hfil & # \vrule 
width 0.6pt \tabskip=0pt\cr
\noalign{\hrule height 0.6pt}
& Operation && Method && Description &\cr
\noalign{\hrule}
& $a + b$ && plus (a, b) && Binary addition operator&\cr
& $a - b$ && minus (a, b) && Binary subtraction operator&\cr
& $+ a$ && uplus (a) && Unary addition operator&\cr
& $- a$ && uminus (a) && Unary subtraction operator&\cr
& $a .* b$ && times (a, b) && Element-wise multiplication operator&\cr
& $a * b$ && mtimes (a, b) && Matrix multiplication operator&\cr
& $a ./ b$ && rdivide (a, b) && Element-wise right division operator&\cr
& $a / b$ && mrdivide (a, b) && Matrix right division operator&\cr
& $a .\backslash b$ && ldivide (a, b) && Element-wise left division operator&\cr
& $a \backslash b$ && mldivide (a, b) && Matrix left division operator&\cr
& $a .\hat b$ && power (a, b) && Element-wise power operator&\cr
& $a \hat b$ && mpower (a, b) && Matrix power operator&\cr
& $a < b$ && lt (a, b) && Less than operator&\cr
& $a <= b$ && le (a, b) && Less than or equal to operator&\cr
& $a > b$ && gt (a, b) && Greater than operator&\cr
& $a >= b$ && ge (a, b) && Greater than or equal to operator&\cr
& $a == b$ && eq (a, b) && Equal to operator&\cr
& $a != b$ && ne (a, b) && Not equal to operator&\cr
& $a \& b$ && and (a, b) && Logical and operator&\cr
& $a | b$ && or (a, b) && Logical or operator&\cr
& $! b$ && not (a) && Logical not operator&\cr
& $a'$ && ctranspose (a) && Complex conjugate transpose operator &\cr
& $a.'$ && transpose (a) && Transpose operator &\cr
& $a : b$ && colon (a, b) && Two element range operator &\cr
& $a : b : c$ && colon (a, b, c) && Three element range operator &\cr
& $[a, b]$ && horzcat (a, b) && Horizontal concatenation operator &\cr
& $[a; b]$ && vertcat (a, b) && Vertical concatenation operator &\cr
& $a(s_1, \ldots, s_n)$ && subsref (a, s) && Subscripted reference &\cr
& $a(s_1, \ldots, s_n) = b$ && subsasgn (a, s, b) && Subscripted assignment &\cr
& $b (a)$ && subsindex (a) && Convert to zero-based index &\cr
& {\it display} && display (a) && Commandline display function &\cr
\noalign{\hrule height 0.6pt}
}}\hfill}}
@end tex
@ifnottex
@multitable @columnfractions .1 .20 .20 .40 .1
@headitem @tab Operation @tab Method @tab Description @tab
@item @tab a + b @tab plus (a, b) @tab Binary addition @tab
@item @tab a - b @tab minus (a, b) @tab Binary subtraction operator @tab
@item @tab + a @tab uplus (a) @tab Unary addition operator @tab
@item @tab - a @tab uminus (a) @tab Unary subtraction operator @tab
@item @tab a .* b @tab times (a, b) @tab Element-wise multiplication operator @tab
@item @tab a * b @tab mtimes (a, b) @tab Matrix multiplication operator @tab
@item @tab a ./ b @tab rdivide (a, b) @tab Element-wise right division operator @tab
@item @tab a / b @tab mrdivide (a, b) @tab Matrix right division operator @tab
@item @tab a .\ b @tab ldivide (a, b) @tab Element-wise left division operator @tab
@item @tab a \ b @tab mldivide (a, b) @tab Matrix left division operator @tab
@item @tab a .^ b @tab power (a, b) @tab Element-wise power operator @tab
@item @tab a ^ b @tab mpower (a, b) @tab Matrix power operator @tab
@item @tab a < b @tab lt (a, b) @tab Less than operator @tab
@item @tab a <= b @tab le (a, b) @tab Less than or equal to operator @tab
@item @tab a > b @tab gt (a, b) @tab Greater than operator @tab
@item @tab a >= b @tab ge (a, b) @tab Greater than or equal to operator @tab
@item @tab a == b @tab eq (a, b) @tab Equal to operator @tab
@item @tab a != b @tab ne (a, b) @tab Not equal to operator @tab
@item @tab a & b @tab and (a, b) @tab Logical and operator @tab
@item @tab a | b @tab or (a, b) @tab Logical or operator @tab
@item @tab ! b @tab not (a) @tab Logical not operator @tab
@item @tab a' @tab ctranspose (a) @tab Complex conjugate transpose operator @tab
@item @tab a.' @tab transpose (a) @tab Transpose operator @tab
@item @tab a : b @tab colon (a, b) @tab Two element range operator @tab
@item @tab a : b : c @tab colon (a, b, c) @tab Three element range operator @tab
@item @tab [a, b] @tab horzcat (a, b) @tab Horizontal concatenation operator @tab
@item @tab [a; b] @tab vertcat (a, b) @tab Vertical concatenation operator @tab
@item @tab a(s_1, @dots{}, s_n) @tab subsref (a, s) @tab Subscripted reference @tab
@item @tab a(s_1, @dots{}, s_n) = b @tab subsasgn (a, s, b) @tab Subscripted assignment @tab
@item @tab b (a) @tab subsindex (a) @tab Convert to zero-based index @tab
@item @tab  @dfn{display} @tab display (a) @tab Commandline display function @tab
@end multitable
@end ifnottex
@caption{Available overloaded operators and their corresponding class method}
@end float

An example @code{mtimes} method for our polynomial class might look like

@example
@group
@verbatim
function y = mtimes (a, b)
  y = polynomial (conv (double (a), double (b)));
endfunction
@end verbatim

@end group
@end example

@node Precedence of Objects
@subsection Precedence of Objects

Many functions and operators take two or more arguments and so the
case can easily arise that these functions are called with objects of
different classes.  It is therefore necessary to determine the precedence
of which method of which class to call when there are mixed objects given
to a function or operator.  To do this the @code{superiorto} and
@code{inferiorto} functions can be used

@c superiorto libinterp/octave-value/ov-class.cc
@anchor{XREFsuperiorto}
@deftypefn {Built-in Function} {} superiorto (@var{class_name}, @dots{})
When called from a class constructor, mark the object currently
constructed as having a higher precedence than @var{class_name}.
More that one such class can be specified in a single call.
This function may only be called from a class constructor.
@seealso{@ref{XREFinferiorto,,inferiorto}}
@end deftypefn


@c inferiorto libinterp/octave-value/ov-class.cc
@anchor{XREFinferiorto}
@deftypefn {Built-in Function} {} inferiorto (@var{class_name}, @dots{})
When called from a class constructor, mark the object currently
constructed as having a lower precedence than @var{class_name}.
More that one such class can be specified in a single call.
This function may only be called from a class constructor.
@seealso{@ref{XREFsuperiorto,,superiorto}}
@end deftypefn


For example with our polynomial class consider the case

@example
2 * polynomial ([1, 0, 1]);
@end example

@noindent
That mixes an object of the class @qcode{"double"} with an object of the class
@qcode{"polynomial"}.  In this case we like to ensure that the return type of
the above is of the type @qcode{"polynomial"} and so we use the
@code{superiorto} function in the class constructor.  In particular our
polynomial class constructor would be modified to be

@example
@verbatim
## -*- texinfo -*-
## @deftypefn  {Function File} {} polynomial ()
## @deftypefnx {Function File} {} polynomial (@var{a})
## Create a polynomial object representing the polynomial
##
## @example
## a0 + a1 * x + a2 * x^2 + @dots{} + an * x^n
## @end example
##
## @noindent
## from a vector of coefficients [a0 a1 a2 @dots{} an].
## @end deftypefn

function p = polynomial (a)
  if (nargin == 0)
    p.poly = [0];
    p = class (p, "polynomial");
  elseif (nargin == 1)
    if (strcmp (class (a), "polynomial"))
      p = a;
    elseif (isvector (a) && isreal (a))
      p.poly = a(:).';
      p = class (p, "polynomial");
    else
      error ("polynomial: expecting real vector");
    endif
  else
    print_usage ();
  endif
  superiorto ("double");
endfunction
@end verbatim

@end example

Note that user classes always have higher precedence than built-in
Octave types.  So in fact marking our polynomial class higher than the 
@qcode{"double"} class is in fact not necessary.

When faced with two objects that have the same precedence, Octave will use the
method of the object that appears first on the list of arguments.

@node Inheritance and Aggregation
@section Inheritance and Aggregation

Using classes to build new classes is supported by octave through the
use of both inheritance and aggregation.

Class inheritance is provided by octave using the @code{class}
function in the class constructor.  As in the case of the polynomial
class, the octave programmer will create a struct that contains the
data fields required by the class, and then call the class function to
indicate that an object is to be created from the struct.  Creating a
child of an existing object is done by creating an object of the
parent class and providing that object as the third argument of the
class function.

This is easily demonstrated by example.  Suppose the programmer needs
an FIR filter, i.e., a filter with a numerator polynomial but a unity
denominator polynomial.  In traditional octave programming, this would
be performed as follows.

@example
@group
octave:1> x = [some data vector];
octave:2> n = [some coefficient vector];
octave:3> y = filter (n, 1, x);
@end group
@end example

The equivalent class could be implemented in a class directory
@@FIRfilter that is on the octave path.  The constructor is a file
FIRfilter.m in the class directory.

@example
@verbatim
## -*- texinfo -*-
## @deftypefn  {Function File} {} FIRfilter ()
## @deftypefnx {Function File} {} FIRfilter (@var{p})
## Create a FIR filter with polynomial @var{p} as coefficient vector.
## @end deftypefn

function f = FIRfilter (p)

  f.polynomial = [];
  if (nargin == 0)
    p = @polynomial ([1]);
  elseif (nargin == 1)
    if (!isa (p, "polynomial"))
      error ("FIRfilter: expecting polynomial as input argument");
    endif
  else
    print_usage ();
  endif
  f = class (f, "FIRfilter", p);
endfunction
@end verbatim

@end example

As before, the leading comments provide command-line documentation for
the class constructor.  This constructor is very similar to the
polynomial class constructor, except that we pass a polynomial object
as the third argument to the class function, telling octave that the
FIRfilter class will be derived from the polynomial class.  Our FIR
filter does not have any data fields, but we must provide a struct to
the @code{class} function.  The @code{class} function will add an
element named polynomial to the object struct, so we simply add a
dummy element named polynomial as the first line of the constructor.
This dummy element will be overwritten by the class function.

Note further that all our examples provide for the case in which no
arguments are supplied.  This is important since octave will call the
constructor with no arguments when loading objects from save files to
determine the inheritance structure.

A class may be a child of more than one class (see the documentation
for the @code{class} function), and inheritance may be nested.  There
is no limitation to the number of parents or the level of nesting
other than memory or other physical issues.

As before, we need a @code{display} method.  A simple example might be

@example
@group
@verbatim
function display (f)

  display (f.polynomial);

endfunction

@end verbatim

@end group
@end example

Note that we have used the polynomial field of the struct to display
the filter coefficients.

Once we have the class constructor and display method, we may create
an object by calling the class constructor.  We may also check the
class type and examine the underlying structure.

@example
@group
octave:1> f = FIRfilter (polynomial ([1 1 1]/3))
f.polynomial = 0.333333 + 0.333333 * X + 0.333333 * X ^ 2
octave:2> class (f)
ans = FIRfilter
octave:3> isa (f,"FIRfilter")
ans =  1
octave:4> isa (f,"polynomial")
ans =  1
octave:5> struct (f)
ans = 
@{
polynomial = 0.333333 + 0.333333 * X + 0.333333 * X ^ 2
@}
@end group
@end example

We only need to define a method to actually process data with our
filter and our class is usable.  It is also useful to provide a means
of changing the data stored in the class.  Since the fields in the
underlying struct are private by default, we could provide a mechanism
to access the fields.  The @code{subsref} method may be used for both.

@example
@verbatim
function out = subsref (f, x)
  switch (x.type)
    case "()"
      n = f.polynomial;
      out = filter (n.poly, 1, x.subs{1});
    case "."
      fld = x.subs;
      if (strcmp (fld, "polynomial"))
        out = f.polynomial;
      else
        error ("@FIRfilter/subsref: invalid property \"%s\"", fld);
      endif
    otherwise
      error ("@FIRfilter/subsref: invalid subscript type for FIR filter");
  endswitch
endfunction
@end verbatim

@end example

The @qcode{"()"} case allows us to filter data using the polynomial provided
to the constructor.

@example
@group
octave:2> f = FIRfilter (polynomial ([1 1 1]/3));
octave:3> x = ones (5,1);
octave:4> y = f(x)
y =

   0.33333
   0.66667
   1.00000
   1.00000
   1.00000
@end group
@end example

The @qcode{"."} case allows us to view the contents of the polynomial field.

@example
@group
octave:1> f = FIRfilter (polynomial ([1 1 1]/3));
octave:2> f.polynomial
ans = 0.333333 + 0.333333 * X + 0.333333 * X ^ 2
@end group
@end example

In order to change the contents of the object, we need to define a
@code{subsasgn} method.  For example, we may make the polynomial field
publicly writable.

@example
@group
@verbatim
function out = subsasgn (f, index, val)
  switch (index.type)
    case "."
      fld = index.subs;
      if (strcmp (fld, "polynomial"))
        out = f;
        out.polynomial = val;
      else
        error ("@FIRfilter/subsref: invalid property \"%s\"", fld);
      endif
    otherwise
      error ("FIRfilter/subsagn: Invalid index type")
  endswitch
endfunction
@end verbatim

@end group
@end example

So that

@example
@group
octave:6> f = FIRfilter ();
octave:7> f.polynomial = polynomial ([1 2 3]);
f.polynomial = 1 + 2 * X + 3 * X ^ 2
@end group
@end example

Defining the FIRfilter class as a child of the polynomial class
implies that and FIRfilter object may be used any place that a
polynomial may be used.  This is not a normal use of a filter, so that
aggregation may be a more sensible design approach.  In this case, the
polynomial is simply a field in the class structure.  A class
constructor for this case might be

@example
@verbatim
## -*- texinfo -*-
## @deftypefn  {Function File} {} FIRfilter ()
## @deftypefnx {Function File} {} FIRfilter (@var{p})
## Create a FIR filter with polynomial @var{p} as coefficient vector.
## @end deftypefn

function f = FIRfilter (p)

  if (nargin == 0)
    f.polynomial = @polynomial ([1]);
  elseif (nargin == 1)
    if (isa (p, "polynomial"))
      f.polynomial = p;
    else
      error ("FIRfilter: expecting polynomial as input argument");
    endif
  else
    print_usage ();
  endif
  f = class (f, "FIRfilter");
endfunction
@end verbatim

@end example

For our example, the remaining class methods remain unchanged.