1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 2008-2013 David Bateman
@c Copyright (C) 2009 VZLU Prague
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
@c for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <http://www.gnu.org/licenses/>.
@c FIXME
@c For now can't include "@" character in the path name, and so name
@c the example directory without the "@"!!
@node Object Oriented Programming
@chapter Object Oriented Programming
Octave includes the capability to include user classes, including the
features of operator and function overloading. Equally a user class
can be used to encapsulate certain properties of the class so that
they cannot be altered accidentally and can be set up to address the
issue of class precedence in mixed class operations.
This chapter discussions the means of constructing a user class with
the example of a polynomial class, how to query and set the properties
of this class, together with the means to overload operators and
functions.
@menu
* Creating a Class::
* Manipulating Classes::
* Indexing Objects::
* Overloading Objects::
* Inheritance and Aggregation::
@end menu
@node Creating a Class
@section Creating a Class
We use in the following text a polynomial class to demonstrate the use
of object oriented programming within Octave. This class was chosen as
it is simple, and so doesn't distract unnecessarily from the
discussion of the programming features of Octave. However, even still
a small understand of the polynomial class itself is necessary to
fully grasp the techniques described.
The polynomial class is used to represent polynomials of the form
@tex
$$
a_0 + a_1 x + a_2 x^2 + \ldots a_n x^n
$$
@end tex
@ifnottex
@example
a0 + a1 * x + a2 * x^2 + @dots{} + an * x^n
@end example
@end ifnottex
@noindent
where
@tex
$a_0$, $a_1$, etc. are elements of $\Re$.
@end tex
@ifnottex
a0, a1, etc. are real scalars.
@end ifnottex
Thus the polynomial can be represented by a vector
@example
a = [a0, a1, a2, @dots{}, an];
@end example
We therefore now have sufficient information about the requirements of
the class constructor for our polynomial class to write it. All object
oriented classes in Octave, must be contained with a directory taking
the name of the class, prepended with the @@ symbol. For example, with
our polynomial class, we would place the methods defining the class in
the @@polynomial directory.
The constructor of the class, must have the name of the class itself
and so in our example the constructor with have the name
@file{@@polynomial/polynomial.m}. Also ideally when the constructor is
called with no arguments to should return a value object. So for example
our polynomial might look like
@example
@verbatim
## -*- texinfo -*-
## @deftypefn {Function File} {} polynomial ()
## @deftypefnx {Function File} {} polynomial (@var{a})
## Create a polynomial object representing the polynomial
##
## @example
## a0 + a1 * x + a2 * x^2 + @dots{} + an * x^n
## @end example
##
## @noindent
## from a vector of coefficients [a0 a1 a2 @dots{} an].
## @end deftypefn
function p = polynomial (a)
if (nargin == 0)
p.poly = [0];
p = class (p, "polynomial");
elseif (nargin == 1)
if (strcmp (class (a), "polynomial"))
p = a;
elseif (isvector (a) && isreal (a))
p.poly = a(:).';
p = class (p, "polynomial");
else
error ("polynomial: expecting real vector");
endif
else
print_usage ();
endif
endfunction
@end verbatim
@end example
Note that the return value of the constructor must be the output of
the @code{class} function called with the first argument being a
structure and the second argument being the class name. An example of
the call to this constructor function is then
@example
p = polynomial ([1, 0, 1]);
@end example
Note that methods of a class can be documented. The help for the
constructor itself can be obtained with the constructor name, that is
for the polynomial constructor @code{help polynomial} will return the
help string. Also the help can be obtained by restricting the search
for the help to a particular class, for example @code{help
@@polynomial/polynomial}. This second method is the only means of
getting help for the overloaded methods and functions of the class.
The same is true for other Octave functions that take a function name
as an argument. For example @code{type @@polynomial/display} will
print the code of the display method of the polynomial class to the
screen, and @code{dbstop @@polynomial/display} will set a breakpoint
at the first executable line of the display method of the polynomial
class.
To check where a variable is a user class, the @code{isobject} and
@code{isa} functions can be used. For example:
@example
@group
p = polynomial ([1, 0, 1]);
isobject (p)
@result{} 1
isa (p, "polynomial")
@result{} 1
@end group
@end example
@c isobject libinterp/octave-value/ov-class.cc
@anchor{XREFisobject}
@deftypefn {Built-in Function} {} isobject (@var{x})
Return true if @var{x} is a class object.
@seealso{@ref{XREFclass,,class}, @ref{XREFtypeinfo,,typeinfo}, @ref{XREFisa,,isa}, @ref{XREFismethod,,ismethod}}
@end deftypefn
@noindent
The available methods of a class can be displayed with the
@code{methods} function.
@c methods scripts/general/methods.m
@anchor{XREFmethods}
@deftypefn {Function File} {} methods (@var{obj})
@deftypefnx {Function File} {} methods ("@var{classname}")
@deftypefnx {Function File} {@var{mtds} =} methods (@dots{})
Return a cell array containing the names of the methods for the
object @var{obj} or the named class @var{classname}.
@var{obj} may be an Octave class object or a Java object.
@seealso{@ref{XREFfieldnames,,fieldnames}}
@end deftypefn
@noindent
To inquire whether a particular method is available to a user class, the
@code{ismethod} function can be used.
@c ismethod libinterp/octave-value/ov-class.cc
@anchor{XREFismethod}
@deftypefn {Built-in Function} {} ismethod (@var{x}, @var{method})
Return true if @var{x} is a class object and the string @var{method}
is a method of this class.
@seealso{@ref{XREFisprop,,isprop}, @ref{XREFisobject,,isobject}}
@end deftypefn
@noindent
For example:
@example
@group
p = polynomial ([1, 0, 1]);
ismethod (p, "roots")
@result{} 1
@end group
@end example
@node Manipulating Classes
@section Manipulating Classes
There are a number of basic classes methods that can be defined to allow
the contents of the classes to be queried and set. The most basic of
these is the @code{display} method. The @code{display} method is used
by Octave when displaying a class on the screen, due to an expression
that is not terminated with a semicolon. If this method is not defined,
then Octave will printed nothing when displaying the contents of a class.
@c display scripts/general/display.m
@anchor{XREFdisplay}
@deftypefn {Function File} {} display (@var{a})
Display the contents of an object. If @var{a} is an object of the
class @qcode{"myclass"}, then @code{display} is called in a case like
@example
myclass (@dots{})
@end example
@noindent
where Octave is required to display the contents of a variable of the
type @qcode{"myclass"}.
@seealso{@ref{XREFclass,,class}, @ref{XREFsubsref,,subsref}, @ref{XREFsubsasgn,,subsasgn}}
@end deftypefn
@noindent
An example of a display method for the polynomial class might be
@example
@verbatim
function display (p)
a = p.poly;
first = true;
fprintf ("%s =", inputname (1));
for i = 1 : length (a);
if (a(i) != 0)
if (first)
first = false;
elseif (a(i) > 0)
fprintf (" +");
endif
if (a(i) < 0)
fprintf (" -");
endif
if (i == 1)
fprintf (" %g", abs (a(i)));
elseif (abs(a(i)) != 1)
fprintf (" %g *", abs (a(i)));
endif
if (i > 1)
fprintf (" X");
endif
if (i > 2)
fprintf (" ^ %d", i - 1);
endif
endif
endfor
if (first)
fprintf (" 0");
endif
fprintf ("\n");
endfunction
@end verbatim
@end example
@noindent
Note that in the display method, it makes sense to start the method
with the line @code{fprintf ("%s =", inputname (1))} to be consistent
with the rest of Octave and print the variable name to be displayed
when displaying the class.
To be consistent with the Octave graphic handle classes, a class
should also define the @code{get} and @code{set} methods. The
@code{get} method should accept one or two arguments, and given one
argument of the appropriate class it should return a structure with
all of the properties of the class. For example:
@example
@verbatim
function s = get (p, f)
if (nargin == 1)
s.poly = p.poly;
elseif (nargin == 2)
if (ischar (f))
switch (f)
case "poly"
s = p.poly;
otherwise
error ("get: invalid property %s", f);
endswitch
else
error ("get: expecting the property to be a string");
endif
else
print_usage ();
endif
endfunction
@end verbatim
@end example
@noindent
Similarly, the @code{set} method should taken as its first argument an
object to modify, and then take property/value pairs to be modified.
@example
@verbatim
function s = set (p, varargin)
s = p;
if (length (varargin) < 2 || rem (length (varargin), 2) != 0)
error ("set: expecting property/value pairs");
endif
while (length (varargin) > 1)
prop = varargin{1};
val = varargin{2};
varargin(1:2) = [];
if (ischar (prop) && strcmp (prop, "poly"))
if (isvector (val) && isreal (val))
s.poly = val(:).';
else
error ("set: expecting the value to be a real vector");
endif
else
error ("set: invalid property of polynomial class");
endif
endwhile
endfunction
@end verbatim
@end example
@noindent
Note that as Octave does not implement pass by reference, than the
modified object is the return value of the @code{set} method and it
must be called like
@example
p = set (p, "a", [1, 0, 0, 0, 1]);
@end example
@noindent
Also the @code{set} method makes use of the @code{subsasgn} method of
the class, and this method must be defined. The @code{subsasgn} method
is discussed in the next section.
Finally, user classes can be considered as a special type of a
structure, and so they can be saved to a file in the same manner as a
structure. For example:
@example
@group
p = polynomial ([1, 0, 1]);
save userclass.mat p
clear p
load userclass.mat
@end group
@end example
@noindent
All of the file formats supported by @code{save} and @code{load} are
supported. In certain circumstances, a user class might either contain
a field that it makes no sense to save or a field that needs to be
initialized before it is saved. This can be done with the
@code{saveobj} method of the class
@c saveobj scripts/general/saveobj.m
@anchor{XREFsaveobj}
@deftypefn {Function File} {@var{b} =} saveobj (@var{a})
Method of a class to manipulate an object prior to saving it to a file.
The function @code{saveobj} is called when the object @var{a} is saved
using the @code{save} function. An example of the use of @code{saveobj}
might be to remove fields of the object that don't make sense to be saved
or it might be used to ensure that certain fields of the object are
initialized before the object is saved. For example:
@example
@group
function b = saveobj (a)
b = a;
if (isempty (b.field))
b.field = initfield (b);
endif
endfunction
@end group
@end example
@seealso{@ref{XREFloadobj,,loadobj}, @ref{XREFclass,,class}}
@end deftypefn
@noindent
@code{saveobj} is called just prior to saving the class to a
file. Likely, the @code{loadobj} method is called just after a class
is loaded from a file, and can be used to ensure that any removed
fields are reinserted into the user object.
@c loadobj scripts/general/loadobj.m
@anchor{XREFloadobj}
@deftypefn {Function File} {@var{b} =} loadobj (@var{a})
Method of a class to manipulate an object after loading it from a file.
The function @code{loadobj} is called when the object @var{a} is loaded
using the @code{load} function. An example of the use of @code{saveobj}
might be to add fields to an object that don't make sense to be saved.
For example:
@example
@group
function b = loadobj (a)
b = a;
b.addmissingfield = addfield (b);
endfunction
@end group
@end example
@seealso{@ref{XREFsaveobj,,saveobj}, @ref{XREFclass,,class}}
@end deftypefn
@node Indexing Objects
@section Indexing Objects
@menu
* Defining Indexing And Indexed Assignment::
* Indexed Assignment Optimization::
@end menu
@node Defining Indexing And Indexed Assignment
@subsection Defining Indexing And Indexed Assignment
Objects can be indexed with parentheses, either like
@code{@var{a} (@var{idx})} or like @code{@var{a} @{@var{idx}@}}, or even
like @code{@var{a} (@var{idx}).@var{field}}. However, it is up to the user
to decide what this indexing actually means. In the case of our polynomial
class @code{@var{p} (@var{n})} might mean either the coefficient of the
@var{n}-th power of the polynomial, or it might be the evaluation of the
polynomial at @var{n}. The meaning of this subscripted referencing is
determined by the @code{subsref} method.
@c subsref libinterp/octave-value/ov.cc
@anchor{XREFsubsref}
@deftypefn {Built-in Function} {} subsref (@var{val}, @var{idx})
Perform the subscripted element selection operation according to
the subscript specified by @var{idx}.
The subscript @var{idx} is expected to be a structure array with
fields @samp{type} and @samp{subs}. Valid values for @samp{type}
are @samp{"()"}, @samp{"@{@}"}, and @samp{"."}.
The @samp{subs} field may be either @samp{":"} or a cell array
of index values.
The following example shows how to extract the first two columns of
a matrix
@example
@group
val = magic (3)
@result{} val = [ 8 1 6
3 5 7
4 9 2 ]
idx.type = "()";
idx.subs = @{":", 1:2@};
subsref (val, idx)
@result{} [ 8 1
3 5
4 9 ]
@end group
@end example
@noindent
Note that this is the same as writing @code{val(:,1:2)}.
If @var{idx} is an empty structure array with fields @samp{type}
and @samp{subs}, return @var{val}.
@seealso{@ref{XREFsubsasgn,,subsasgn}, @ref{XREFsubstruct,,substruct}}
@end deftypefn
For example we might decide that indexing with @qcode{"()"} evaluates the
polynomial and indexing with @qcode{"@{@}"} returns the @var{n}-th coefficient
(of @var{n}-th power). In this case the @code{subsref} method of our
polynomial class might look like
@example
@verbatim
function b = subsref (a, s)
if (isempty (s))
error ("polynomial: missing index");
endif
switch (s(1).type)
case "()"
ind = s(1).subs;
if (numel (ind) != 1)
error ("polynomial: need exactly one index");
else
b = polyval (fliplr (a.poly), ind{1});
endif
case "{}"
ind = s(1).subs;
if (numel (ind) != 1)
error ("polynomial: need exactly one index");
else
if (isnumeric (ind{1}))
b = a.poly(ind{1}+1);
else
b = a.poly(ind{1});
endif
endif
case "."
fld = s.subs;
if (strcmp (fld, "poly"))
b = a.poly;
else
error ("@polynomial/subsref: invalid property \"%s\"", fld);
endif
otherwise
error ("invalid subscript type");
endswitch
if (numel (s) > 1)
b = subsref (b, s(2:end));
endif
endfunction
@end verbatim
@end example
The equivalent functionality for subscripted assignments uses the
@code{subsasgn} method.
@c subsasgn libinterp/octave-value/ov.cc
@anchor{XREFsubsasgn}
@deftypefn {Built-in Function} {} subsasgn (@var{val}, @var{idx}, @var{rhs})
Perform the subscripted assignment operation according to
the subscript specified by @var{idx}.
The subscript @var{idx} is expected to be a structure array with
fields @samp{type} and @samp{subs}. Valid values for @samp{type}
are @samp{"()"}, @samp{"@{@}"}, and @samp{"."}.
The @samp{subs} field may be either @samp{":"} or a cell array
of index values.
The following example shows how to set the two first columns of a
3-by-3 matrix to zero.
@example
@group
val = magic (3);
idx.type = "()";
idx.subs = @{":", 1:2@};
subsasgn (val, idx, 0)
@result{} [ 0 0 6
0 0 7
0 0 2 ]
@end group
@end example
Note that this is the same as writing @code{val(:,1:2) = 0}.
If @var{idx} is an empty structure array with fields @samp{type}
and @samp{subs}, return @var{rhs}.
@seealso{@ref{XREFsubsref,,subsref}, @ref{XREFsubstruct,,substruct}}
@end deftypefn
@c optimize_subsasgn_calls libinterp/octave-value/ov-usr-fcn.cc
@anchor{XREFoptimize_subsasgn_calls}
@deftypefn {Built-in Function} {@var{val} =} optimize_subsasgn_calls ()
@deftypefnx {Built-in Function} {@var{old_val} =} optimize_subsasgn_calls (@var{new_val})
@deftypefnx {Built-in Function} {} optimize_subsasgn_calls (@var{new_val}, "local")
Query or set the internal flag for subsasgn method call optimizations.
If true, Octave will attempt to eliminate the redundant copying when calling
the subsasgn method of a user-defined class.
When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
@end deftypefn
Note that the @code{subsref} and @code{subsasgn} methods always receive the
whole index chain, while they usually handle only the first element. It is the
responsibility of these methods to handle the rest of the chain (if needed),
usually by forwarding it again to @code{subsref} or @code{subsasgn}.
If you wish to use the @code{end} keyword in subscripted expressions
of an object, then the user needs to define the @code{end} method for
the class. For example, the @code{end} method for our polynomial class might
look like
@example
@group
@verbatim
function r = end (obj, index_pos, num_indices)
if (num_indices != 1)
error ("polynomial object may only have one index")
endif
r = length (obj.poly) - 1;
endfunction
@end verbatim
@end group
@end example
@noindent
which is a fairly generic @code{end} method that has a behavior similar to
the @code{end} keyword for Octave Array classes. It can then be used as
follows:
@example
@group
p = polynomial ([1,2,3,4]);
p(end-1)
@result{} 3
@end group
@end example
Objects can also be used as the index in a subscripted expression themselves
and this is controlled with the @code{subsindex} function.
@c subsindex scripts/general/subsindex.m
@anchor{XREFsubsindex}
@deftypefn {Function File} {@var{idx} =} subsindex (@var{a})
Convert an object to an index vector. When @var{a} is a class object
defined with a class constructor, then @code{subsindex} is the
overloading method that allows the conversion of this class object to
a valid indexing vector. It is important to note that
@code{subsindex} must return a zero-based real integer vector of the
class @qcode{"double"}. For example, if the class constructor
@example
@group
function b = myclass (a)
b = class (struct ("a", a), "myclass");
endfunction
@end group
@end example
@noindent
then the @code{subsindex} function
@example
@group
function idx = subsindex (a)
idx = double (a.a) - 1.0;
endfunction
@end group
@end example
@noindent
can then be used as follows
@example
@group
a = myclass (1:4);
b = 1:10;
b(a)
@result{} 1 2 3 4
@end group
@end example
@seealso{@ref{XREFclass,,class}, @ref{XREFsubsref,,subsref}, @ref{XREFsubsasgn,,subsasgn}}
@end deftypefn
Finally, objects can equally be used like ranges, using the @code{colon}
method
@c colon scripts/miscellaneous/colon.m
@anchor{XREFcolon}
@deftypefn {Function File} {@var{r} =} colon (@var{a}, @var{b})
@deftypefnx {Function File} {@var{r} =} colon (@var{a}, @var{b}, @var{c})
Method of a class to construct a range with the @code{:} operator. For
example:
@example
@group
a = myclass (@dots{});
b = myclass (@dots{});
c = a : b
@end group
@end example
@seealso{@ref{XREFclass,,class}, @ref{XREFsubsref,,subsref}, @ref{XREFsubsasgn,,subsasgn}}
@end deftypefn
@node Indexed Assignment Optimization
@subsection Indexed Assignment Optimization
Octave's ubiquitous lazily-copied pass-by-value semantics implies
a problem for performance of user-defined subsasgn methods. Imagine
a call to subsasgn:
@example
@group
ss = substruct ("()",@{1@});
x = subsasgn (x, ss, 1);
@end group
@end example
@noindent
and the corresponding method looking like this:
@example
@group
function x = subsasgn (x, ss, val)
@dots{}
x.myfield (ss.subs@{1@}) = val;
endfunction
@end group
@end example
The problem is that on entry to the subsasgn method, @code{x} is still
referenced from the caller's scope, which means that the method will
first need to unshare (copy) @code{x} and @code{x.myfield} before performing
the assignment. Upon completing the call, unless an error occurs,
the result is immediately assigned to @code{x} in the caller's scope,
so that the previous value of @code{x.myfield} is forgotten. Hence, the
Octave language implies a copy of N elements (N being the size of
@code{x.myfield}), where modifying just a single element would actually
suffice, i.e., degrades a constant-time operation to linear-time one.
This may be a real problem for user classes that intrinsically store large
arrays.
To partially solve the problem, Octave uses a special optimization for
user-defined subsasgn methods coded as m-files. When the method
gets called as a result of the built-in assignment syntax (not direct subsasgn
call as shown above), i.e.
@example
x(1) = 1;
@end example
@b{AND} if the subsasgn method is declared with identical input and output argument,
like in the example above, then Octave will ignore the copy of @code{x} inside
the caller's scope; therefore, any changes made to @code{x} during the method
execution will directly affect the caller's copy as well.
This allows, for instance, defining a polynomial class where modifying a single
element takes constant time.
It is important to understand the implications that this optimization brings.
Since no extra copy of @code{x} in the caller's scope will exist, it is
@emph{solely} the callee's responsibility to not leave @code{x} in an invalid
state if an error occurs throughout the execution. Also, if the method
partially changes @code{x} and then errors out, the changes @emph{will} affect
@code{x} in the caller's scope. Deleting or completely replacing @code{x}
inside subsasgn will not do anything, however, only indexed assignments matter.
Since this optimization may change the way code works (especially if badly
written), a built-in variable @code{optimize_subsasgn_calls} is provided to
control it. It is on by default. Another option to avoid the effect is to
declare subsasgn methods with different output and input arguments, like this:
@example
@group
function y = subsasgn (x, ss, val)
@dots{}
endfunction
@end group
@end example
@node Overloading Objects
@section Overloading Objects
@menu
* Function Overloading::
* Operator Overloading::
* Precedence of Objects::
@end menu
@node Function Overloading
@subsection Function Overloading
Any Octave function can be overloaded, and allows an object specific
version of this function to be called as needed. A pertinent example
for our polynomial class might be to overload the @code{polyval} function
like
@example
@group
@verbatim
function [y, dy] = polyval (p, varargin)
if (nargout == 2)
[y, dy] = polyval (fliplr (p.poly), varargin{:});
else
y = polyval (fliplr (p.poly), varargin{:});
endif
endfunction
@end verbatim
@end group
@end example
This function just hands off the work to the normal Octave @code{polyval}
function. Another interesting example for an overloaded function for our
polynomial class is the @code{plot} function.
@example
@group
@verbatim
function h = plot (p, varargin)
n = 128;
rmax = max (abs (roots (p.poly)));
x = [0 : (n - 1)] / (n - 1) * 2.2 * rmax - 1.1 * rmax;
if (nargout > 0)
h = plot (x, p(x), varargin{:});
else
plot (x, p(x), varargin{:});
endif
endfunction
@end verbatim
@end group
@end example
@noindent
which allows polynomials to be plotted in the domain near the region
of the roots of the polynomial.
Functions that are of particular interest to be overloaded are the class
conversion functions such as @code{double}. Overloading these functions
allows the @code{cast} function to work with the user class and can aid
in the use of methods of other classes with the user class. An example
@code{double} function for our polynomial class might look like.
@example
@group
@verbatim
function b = double (a)
b = a.poly;
endfunction
@end verbatim
@end group
@end example
@node Operator Overloading
@subsection Operator Overloading
@cindex addition
@cindex and operator
@cindex arithmetic operators
@cindex boolean expressions
@cindex boolean operators
@cindex comparison expressions
@cindex complex-conjugate transpose
@cindex division
@cindex equality operator
@cindex equality, tests for
@cindex exponentiation
@cindex expressions, boolean
@cindex expressions, comparison
@cindex expressions, logical
@cindex greater than operator
@cindex Hermitian operator
@cindex less than operator
@cindex logical expressions
@cindex logical operators
@cindex matrix multiplication
@cindex multiplication
@cindex negation
@cindex not operator
@cindex operators, arithmetic
@cindex operators, boolean
@cindex operators, logical
@cindex operators, relational
@cindex or operator
@cindex quotient
@cindex relational operators
@cindex subtraction
@cindex tests for equality
@cindex transpose
@cindex transpose, complex-conjugate
@cindex unary minus
@c Need at least one plaintext sentence here between the @node and @float
@c table below or the two will overlap due to a bug in Texinfo.
@c This is not our fault; this *is* a ridiculous kluge.
The following table shows, for each built-in numerical operation, the
corresponding function name to use when providing an overloaded method for a
user class.
@float Table,tab:overload_ops
@opindex +
@opindex -
@opindex .*
@opindex *
@opindex ./
@opindex /
@opindex .\
@opindex \
@opindex .^
@opindex ^
@opindex <
@opindex <=
@opindex >
@opindex >=
@opindex ==
@opindex !=
@opindex ~=
@opindex &
@opindex |
@opindex !
@opindex '
@opindex .'
@opindex :
@opindex <
@tex
\vskip 6pt
{\hbox to \hsize {\hfill\vbox{\offinterlineskip \tabskip=0pt
\halign{
\vrule height2.0ex depth1.ex width 0.6pt #\tabskip=0.3em &
# \hfil & \vrule # & # \hfil & \vrule # & # \hfil & # \vrule
width 0.6pt \tabskip=0pt\cr
\noalign{\hrule height 0.6pt}
& Operation && Method && Description &\cr
\noalign{\hrule}
& $a + b$ && plus (a, b) && Binary addition operator&\cr
& $a - b$ && minus (a, b) && Binary subtraction operator&\cr
& $+ a$ && uplus (a) && Unary addition operator&\cr
& $- a$ && uminus (a) && Unary subtraction operator&\cr
& $a .* b$ && times (a, b) && Element-wise multiplication operator&\cr
& $a * b$ && mtimes (a, b) && Matrix multiplication operator&\cr
& $a ./ b$ && rdivide (a, b) && Element-wise right division operator&\cr
& $a / b$ && mrdivide (a, b) && Matrix right division operator&\cr
& $a .\backslash b$ && ldivide (a, b) && Element-wise left division operator&\cr
& $a \backslash b$ && mldivide (a, b) && Matrix left division operator&\cr
& $a .\hat b$ && power (a, b) && Element-wise power operator&\cr
& $a \hat b$ && mpower (a, b) && Matrix power operator&\cr
& $a < b$ && lt (a, b) && Less than operator&\cr
& $a <= b$ && le (a, b) && Less than or equal to operator&\cr
& $a > b$ && gt (a, b) && Greater than operator&\cr
& $a >= b$ && ge (a, b) && Greater than or equal to operator&\cr
& $a == b$ && eq (a, b) && Equal to operator&\cr
& $a != b$ && ne (a, b) && Not equal to operator&\cr
& $a \& b$ && and (a, b) && Logical and operator&\cr
& $a | b$ && or (a, b) && Logical or operator&\cr
& $! b$ && not (a) && Logical not operator&\cr
& $a'$ && ctranspose (a) && Complex conjugate transpose operator &\cr
& $a.'$ && transpose (a) && Transpose operator &\cr
& $a : b$ && colon (a, b) && Two element range operator &\cr
& $a : b : c$ && colon (a, b, c) && Three element range operator &\cr
& $[a, b]$ && horzcat (a, b) && Horizontal concatenation operator &\cr
& $[a; b]$ && vertcat (a, b) && Vertical concatenation operator &\cr
& $a(s_1, \ldots, s_n)$ && subsref (a, s) && Subscripted reference &\cr
& $a(s_1, \ldots, s_n) = b$ && subsasgn (a, s, b) && Subscripted assignment &\cr
& $b (a)$ && subsindex (a) && Convert to zero-based index &\cr
& {\it display} && display (a) && Commandline display function &\cr
\noalign{\hrule height 0.6pt}
}}\hfill}}
@end tex
@ifnottex
@multitable @columnfractions .1 .20 .20 .40 .1
@headitem @tab Operation @tab Method @tab Description @tab
@item @tab a + b @tab plus (a, b) @tab Binary addition @tab
@item @tab a - b @tab minus (a, b) @tab Binary subtraction operator @tab
@item @tab + a @tab uplus (a) @tab Unary addition operator @tab
@item @tab - a @tab uminus (a) @tab Unary subtraction operator @tab
@item @tab a .* b @tab times (a, b) @tab Element-wise multiplication operator @tab
@item @tab a * b @tab mtimes (a, b) @tab Matrix multiplication operator @tab
@item @tab a ./ b @tab rdivide (a, b) @tab Element-wise right division operator @tab
@item @tab a / b @tab mrdivide (a, b) @tab Matrix right division operator @tab
@item @tab a .\ b @tab ldivide (a, b) @tab Element-wise left division operator @tab
@item @tab a \ b @tab mldivide (a, b) @tab Matrix left division operator @tab
@item @tab a .^ b @tab power (a, b) @tab Element-wise power operator @tab
@item @tab a ^ b @tab mpower (a, b) @tab Matrix power operator @tab
@item @tab a < b @tab lt (a, b) @tab Less than operator @tab
@item @tab a <= b @tab le (a, b) @tab Less than or equal to operator @tab
@item @tab a > b @tab gt (a, b) @tab Greater than operator @tab
@item @tab a >= b @tab ge (a, b) @tab Greater than or equal to operator @tab
@item @tab a == b @tab eq (a, b) @tab Equal to operator @tab
@item @tab a != b @tab ne (a, b) @tab Not equal to operator @tab
@item @tab a & b @tab and (a, b) @tab Logical and operator @tab
@item @tab a | b @tab or (a, b) @tab Logical or operator @tab
@item @tab ! b @tab not (a) @tab Logical not operator @tab
@item @tab a' @tab ctranspose (a) @tab Complex conjugate transpose operator @tab
@item @tab a.' @tab transpose (a) @tab Transpose operator @tab
@item @tab a : b @tab colon (a, b) @tab Two element range operator @tab
@item @tab a : b : c @tab colon (a, b, c) @tab Three element range operator @tab
@item @tab [a, b] @tab horzcat (a, b) @tab Horizontal concatenation operator @tab
@item @tab [a; b] @tab vertcat (a, b) @tab Vertical concatenation operator @tab
@item @tab a(s_1, @dots{}, s_n) @tab subsref (a, s) @tab Subscripted reference @tab
@item @tab a(s_1, @dots{}, s_n) = b @tab subsasgn (a, s, b) @tab Subscripted assignment @tab
@item @tab b (a) @tab subsindex (a) @tab Convert to zero-based index @tab
@item @tab @dfn{display} @tab display (a) @tab Commandline display function @tab
@end multitable
@end ifnottex
@caption{Available overloaded operators and their corresponding class method}
@end float
An example @code{mtimes} method for our polynomial class might look like
@example
@group
@verbatim
function y = mtimes (a, b)
y = polynomial (conv (double (a), double (b)));
endfunction
@end verbatim
@end group
@end example
@node Precedence of Objects
@subsection Precedence of Objects
Many functions and operators take two or more arguments and so the
case can easily arise that these functions are called with objects of
different classes. It is therefore necessary to determine the precedence
of which method of which class to call when there are mixed objects given
to a function or operator. To do this the @code{superiorto} and
@code{inferiorto} functions can be used
@c superiorto libinterp/octave-value/ov-class.cc
@anchor{XREFsuperiorto}
@deftypefn {Built-in Function} {} superiorto (@var{class_name}, @dots{})
When called from a class constructor, mark the object currently
constructed as having a higher precedence than @var{class_name}.
More that one such class can be specified in a single call.
This function may only be called from a class constructor.
@seealso{@ref{XREFinferiorto,,inferiorto}}
@end deftypefn
@c inferiorto libinterp/octave-value/ov-class.cc
@anchor{XREFinferiorto}
@deftypefn {Built-in Function} {} inferiorto (@var{class_name}, @dots{})
When called from a class constructor, mark the object currently
constructed as having a lower precedence than @var{class_name}.
More that one such class can be specified in a single call.
This function may only be called from a class constructor.
@seealso{@ref{XREFsuperiorto,,superiorto}}
@end deftypefn
For example with our polynomial class consider the case
@example
2 * polynomial ([1, 0, 1]);
@end example
@noindent
That mixes an object of the class @qcode{"double"} with an object of the class
@qcode{"polynomial"}. In this case we like to ensure that the return type of
the above is of the type @qcode{"polynomial"} and so we use the
@code{superiorto} function in the class constructor. In particular our
polynomial class constructor would be modified to be
@example
@verbatim
## -*- texinfo -*-
## @deftypefn {Function File} {} polynomial ()
## @deftypefnx {Function File} {} polynomial (@var{a})
## Create a polynomial object representing the polynomial
##
## @example
## a0 + a1 * x + a2 * x^2 + @dots{} + an * x^n
## @end example
##
## @noindent
## from a vector of coefficients [a0 a1 a2 @dots{} an].
## @end deftypefn
function p = polynomial (a)
if (nargin == 0)
p.poly = [0];
p = class (p, "polynomial");
elseif (nargin == 1)
if (strcmp (class (a), "polynomial"))
p = a;
elseif (isvector (a) && isreal (a))
p.poly = a(:).';
p = class (p, "polynomial");
else
error ("polynomial: expecting real vector");
endif
else
print_usage ();
endif
superiorto ("double");
endfunction
@end verbatim
@end example
Note that user classes always have higher precedence than built-in
Octave types. So in fact marking our polynomial class higher than the
@qcode{"double"} class is in fact not necessary.
When faced with two objects that have the same precedence, Octave will use the
method of the object that appears first on the list of arguments.
@node Inheritance and Aggregation
@section Inheritance and Aggregation
Using classes to build new classes is supported by octave through the
use of both inheritance and aggregation.
Class inheritance is provided by octave using the @code{class}
function in the class constructor. As in the case of the polynomial
class, the octave programmer will create a struct that contains the
data fields required by the class, and then call the class function to
indicate that an object is to be created from the struct. Creating a
child of an existing object is done by creating an object of the
parent class and providing that object as the third argument of the
class function.
This is easily demonstrated by example. Suppose the programmer needs
an FIR filter, i.e., a filter with a numerator polynomial but a unity
denominator polynomial. In traditional octave programming, this would
be performed as follows.
@example
@group
octave:1> x = [some data vector];
octave:2> n = [some coefficient vector];
octave:3> y = filter (n, 1, x);
@end group
@end example
The equivalent class could be implemented in a class directory
@@FIRfilter that is on the octave path. The constructor is a file
FIRfilter.m in the class directory.
@example
@verbatim
## -*- texinfo -*-
## @deftypefn {Function File} {} FIRfilter ()
## @deftypefnx {Function File} {} FIRfilter (@var{p})
## Create a FIR filter with polynomial @var{p} as coefficient vector.
## @end deftypefn
function f = FIRfilter (p)
f.polynomial = [];
if (nargin == 0)
p = @polynomial ([1]);
elseif (nargin == 1)
if (!isa (p, "polynomial"))
error ("FIRfilter: expecting polynomial as input argument");
endif
else
print_usage ();
endif
f = class (f, "FIRfilter", p);
endfunction
@end verbatim
@end example
As before, the leading comments provide command-line documentation for
the class constructor. This constructor is very similar to the
polynomial class constructor, except that we pass a polynomial object
as the third argument to the class function, telling octave that the
FIRfilter class will be derived from the polynomial class. Our FIR
filter does not have any data fields, but we must provide a struct to
the @code{class} function. The @code{class} function will add an
element named polynomial to the object struct, so we simply add a
dummy element named polynomial as the first line of the constructor.
This dummy element will be overwritten by the class function.
Note further that all our examples provide for the case in which no
arguments are supplied. This is important since octave will call the
constructor with no arguments when loading objects from save files to
determine the inheritance structure.
A class may be a child of more than one class (see the documentation
for the @code{class} function), and inheritance may be nested. There
is no limitation to the number of parents or the level of nesting
other than memory or other physical issues.
As before, we need a @code{display} method. A simple example might be
@example
@group
@verbatim
function display (f)
display (f.polynomial);
endfunction
@end verbatim
@end group
@end example
Note that we have used the polynomial field of the struct to display
the filter coefficients.
Once we have the class constructor and display method, we may create
an object by calling the class constructor. We may also check the
class type and examine the underlying structure.
@example
@group
octave:1> f = FIRfilter (polynomial ([1 1 1]/3))
f.polynomial = 0.333333 + 0.333333 * X + 0.333333 * X ^ 2
octave:2> class (f)
ans = FIRfilter
octave:3> isa (f,"FIRfilter")
ans = 1
octave:4> isa (f,"polynomial")
ans = 1
octave:5> struct (f)
ans =
@{
polynomial = 0.333333 + 0.333333 * X + 0.333333 * X ^ 2
@}
@end group
@end example
We only need to define a method to actually process data with our
filter and our class is usable. It is also useful to provide a means
of changing the data stored in the class. Since the fields in the
underlying struct are private by default, we could provide a mechanism
to access the fields. The @code{subsref} method may be used for both.
@example
@verbatim
function out = subsref (f, x)
switch (x.type)
case "()"
n = f.polynomial;
out = filter (n.poly, 1, x.subs{1});
case "."
fld = x.subs;
if (strcmp (fld, "polynomial"))
out = f.polynomial;
else
error ("@FIRfilter/subsref: invalid property \"%s\"", fld);
endif
otherwise
error ("@FIRfilter/subsref: invalid subscript type for FIR filter");
endswitch
endfunction
@end verbatim
@end example
The @qcode{"()"} case allows us to filter data using the polynomial provided
to the constructor.
@example
@group
octave:2> f = FIRfilter (polynomial ([1 1 1]/3));
octave:3> x = ones (5,1);
octave:4> y = f(x)
y =
0.33333
0.66667
1.00000
1.00000
1.00000
@end group
@end example
The @qcode{"."} case allows us to view the contents of the polynomial field.
@example
@group
octave:1> f = FIRfilter (polynomial ([1 1 1]/3));
octave:2> f.polynomial
ans = 0.333333 + 0.333333 * X + 0.333333 * X ^ 2
@end group
@end example
In order to change the contents of the object, we need to define a
@code{subsasgn} method. For example, we may make the polynomial field
publicly writable.
@example
@group
@verbatim
function out = subsasgn (f, index, val)
switch (index.type)
case "."
fld = index.subs;
if (strcmp (fld, "polynomial"))
out = f;
out.polynomial = val;
else
error ("@FIRfilter/subsref: invalid property \"%s\"", fld);
endif
otherwise
error ("FIRfilter/subsagn: Invalid index type")
endswitch
endfunction
@end verbatim
@end group
@end example
So that
@example
@group
octave:6> f = FIRfilter ();
octave:7> f.polynomial = polynomial ([1 2 3]);
f.polynomial = 1 + 2 * X + 3 * X ^ 2
@end group
@end example
Defining the FIRfilter class as a child of the polynomial class
implies that and FIRfilter object may be used any place that a
polynomial may be used. This is not a normal use of a filter, so that
aggregation may be a more sensible design approach. In this case, the
polynomial is simply a field in the class structure. A class
constructor for this case might be
@example
@verbatim
## -*- texinfo -*-
## @deftypefn {Function File} {} FIRfilter ()
## @deftypefnx {Function File} {} FIRfilter (@var{p})
## Create a FIR filter with polynomial @var{p} as coefficient vector.
## @end deftypefn
function f = FIRfilter (p)
if (nargin == 0)
f.polynomial = @polynomial ([1]);
elseif (nargin == 1)
if (isa (p, "polynomial"))
f.polynomial = p;
else
error ("FIRfilter: expecting polynomial as input argument");
endif
else
print_usage ();
endif
f = class (f, "FIRfilter");
endfunction
@end verbatim
@end example
For our example, the remaining class methods remain unchanged.
|