File: poly.texi

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (1120 lines) | stat: -rw-r--r-- 37,180 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
@c DO NOT EDIT!  Generated automatically by munge-texi.pl.

@c Copyright (C) 1996-2013 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c 
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
@c for more details.
@c 
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <http://www.gnu.org/licenses/>.

@node Polynomial Manipulations
@chapter Polynomial Manipulations

In Octave, a polynomial is represented by its coefficients (arranged
in descending order).  For example, a vector @var{c} of length
@math{N+1} corresponds to the following polynomial of order
@tex
 $N$
$$
 p (x) = c_1 x^N + \ldots + c_N x + c_{N+1}.
$$
@end tex
@ifnottex
 @var{N}

@example
p(x) = @var{c}(1) x^@var{N} + @dots{} + @var{c}(@var{N}) x + @var{c}(@var{N}+1).
@end example

@end ifnottex

@menu
* Evaluating Polynomials::
* Finding Roots::
* Products of Polynomials::
* Derivatives / Integrals / Transforms::
* Polynomial Interpolation::
* Miscellaneous Functions::
@end menu

@node Evaluating Polynomials
@section Evaluating Polynomials

The value of a polynomial represented by the vector @var{c} can be evaluated
at the point @var{x} very easily, as the following example shows:

@example
@group
N = length (c) - 1;
val = dot (x.^(N:-1:0), c);
@end group
@end example

@noindent
While the above example shows how easy it is to compute the value of a
polynomial, it isn't the most stable algorithm.  With larger polynomials
you should use more elegant algorithms, such as Horner's Method, which
is exactly what the Octave function @code{polyval} does.

In the case where @var{x} is a square matrix, the polynomial given by
@var{c} is still well-defined.  As when @var{x} is a scalar the obvious
implementation is easily expressed in Octave, but also in this case
more elegant algorithms perform better.  The @code{polyvalm} function
provides such an algorithm.

@c polyval scripts/polynomial/polyval.m
@anchor{XREFpolyval}
@deftypefn  {Function File} {@var{y} =} polyval (@var{p}, @var{x})
@deftypefnx {Function File} {@var{y} =} polyval (@var{p}, @var{x}, [], @var{mu})
@deftypefnx {Function File} {[@var{y}, @var{dy}] =} polyval (@var{p}, @var{x}, @var{s})
@deftypefnx {Function File} {[@var{y}, @var{dy}] =} polyval (@var{p}, @var{x}, @var{s}, @var{mu})

Evaluate the polynomial @var{p} at the specified values of @var{x}.  When
@var{mu} is present, evaluate the polynomial for
(@var{x}-@var{mu}(1))/@var{mu}(2).
If @var{x} is a vector or matrix, the polynomial is evaluated for each of
the elements of @var{x}.

In addition to evaluating the polynomial, the second output
represents the prediction interval, @var{y} +/- @var{dy}, which
contains at least 50% of the future predictions.  To calculate the
prediction interval, the structured variable @var{s}, originating
from @code{polyfit}, must be supplied.

@seealso{@ref{XREFpolyvalm,,polyvalm}, @ref{XREFpolyaffine,,polyaffine}, @ref{XREFpolyfit,,polyfit}, @ref{XREFroots,,roots}, @ref{XREFpoly,,poly}}
@end deftypefn


@c polyvalm scripts/polynomial/polyvalm.m
@anchor{XREFpolyvalm}
@deftypefn {Function File} {} polyvalm (@var{c}, @var{x})
Evaluate a polynomial in the matrix sense.

@code{polyvalm (@var{c}, @var{x})} will evaluate the polynomial in the
matrix sense, i.e., matrix multiplication is used instead of element by
element multiplication as used in @code{polyval}.

The argument @var{x} must be a square matrix.
@seealso{@ref{XREFpolyval,,polyval}, @ref{XREFroots,,roots}, @ref{XREFpoly,,poly}}
@end deftypefn


@node Finding Roots
@section Finding Roots

Octave can find the roots of a given polynomial.  This is done by computing
the companion matrix of the polynomial (see the @code{compan} function
for a definition), and then finding its eigenvalues.

@c roots scripts/polynomial/roots.m
@anchor{XREFroots}
@deftypefn {Function File} {} roots (@var{v})

For a vector @var{v} with @math{N} components, return
the roots of the polynomial
@tex
$$
v_1 z^{N-1} + \cdots + v_{N-1} z + v_N.
$$
@end tex
@ifnottex

@example
v(1) * z^(N-1) + @dots{} + v(N-1) * z + v(N)
@end example

@end ifnottex

As an example, the following code finds the roots of the quadratic
polynomial
@tex
$$ p(x) = x^2 - 5. $$
@end tex
@ifnottex

@example
p(x) = x^2 - 5.
@end example

@end ifnottex

@example
@group
c = [1, 0, -5];
roots (c)
@result{}  2.2361
@result{} -2.2361
@end group
@end example

Note that the true result is
@tex
$\pm \sqrt{5}$
@end tex
@ifnottex
@math{+/- sqrt(5)}
@end ifnottex
which is roughly
@tex
$\pm 2.2361$.
@end tex
@ifnottex
@math{+/- 2.2361}.
@end ifnottex
@seealso{@ref{XREFpoly,,poly}, @ref{XREFcompan,,compan}, @ref{XREFfzero,,fzero}}
@end deftypefn


@c polyeig scripts/polynomial/polyeig.m
@anchor{XREFpolyeig}
@deftypefn  {Function File} {@var{z} =} polyeig (@var{C0}, @var{C1}, @dots{}, @var{Cl})
@deftypefnx {Function File} {[@var{v}, @var{z}] =} polyeig (@var{C0}, @var{C1}, @dots{}, @var{Cl})

Solve the polynomial eigenvalue problem of degree @var{l}.

Given an @var{n*n} matrix polynomial
@code{@var{C}(s) = @var{C0} + @var{C1} s + @dots{} + @var{Cl} s^l}
polyeig solves the eigenvalue problem
@code{(@var{C0} + @var{C1} + @dots{} + @var{Cl})v = 0}.
Note that the eigenvalues @var{z} are the zeros of the matrix polynomial.
@var{z} is an @var{lxn} vector and @var{v} is an (@var{n} x @var{n})l matrix
with columns that correspond to the eigenvectors.

@seealso{@ref{XREFeig,,eig}, @ref{XREFeigs,,eigs}, @ref{XREFcompan,,compan}}
@end deftypefn


@c compan scripts/polynomial/compan.m
@anchor{XREFcompan}
@deftypefn {Function File} {} compan (@var{c})
Compute the companion matrix corresponding to polynomial coefficient
vector @var{c}.

The companion matrix is
@tex
$$
A = \left[\matrix{
 -c_2/c_1 & -c_3/c_1 & \cdots & -c_N/c_1 & -c_{N+1}/c_1\cr
     1    &     0    & \cdots &     0    &         0   \cr
     0    &     1    & \cdots &     0    &         0   \cr
  \vdots  &   \vdots & \ddots &  \vdots  &      \vdots \cr
     0    &     0    & \cdots &     1    &         0}\right].
$$
@end tex
@ifnottex
@c Set example in small font to prevent overfull line

@smallexample
@group
     _                                                        _
    |  -c(2)/c(1)   -c(3)/c(1)  @dots{}  -c(N)/c(1)  -c(N+1)/c(1)  |
    |       1            0      @dots{}       0             0      |
    |       0            1      @dots{}       0             0      |
A = |       .            .      .         .             .      |
    |       .            .       .        .             .      |
    |       .            .        .       .             .      |
    |_      0            0      @dots{}       1             0     _|
@end group
@end smallexample

@end ifnottex
The eigenvalues of the companion matrix are equal to the roots of the
polynomial.
@seealso{@ref{XREFroots,,roots}, @ref{XREFpoly,,poly}, @ref{XREFeig,,eig}}
@end deftypefn


@c mpoles scripts/polynomial/mpoles.m
@anchor{XREFmpoles}
@deftypefn  {Function File} {[@var{multp}, @var{idxp}] =} mpoles (@var{p})
@deftypefnx {Function File} {[@var{multp}, @var{idxp}] =} mpoles (@var{p}, @var{tol})
@deftypefnx {Function File} {[@var{multp}, @var{idxp}] =} mpoles (@var{p}, @var{tol}, @var{reorder})
Identify unique poles in @var{p} and their associated multiplicity.  The
output is ordered from largest pole to smallest pole.

If the relative difference of two poles is less than @var{tol} then
they are considered to be multiples.  The default value for @var{tol}
is 0.001.

If the optional parameter @var{reorder} is zero, poles are not sorted.

The output @var{multp} is a vector specifying the multiplicity of the
poles.  @code{@var{multp}(n)} refers to the multiplicity of the Nth pole
@code{@var{p}(@var{idxp}(n))}.

For example:

@example
@group
p = [2 3 1 1 2];
[m, n] = mpoles (p)
   @result{} m = [1; 1; 2; 1; 2]
   @result{} n = [2; 5; 1; 4; 3]
   @result{} p(n) = [3, 2, 2, 1, 1]
@end group
@end example

@seealso{@ref{XREFresidue,,residue}, @ref{XREFpoly,,poly}, @ref{XREFroots,,roots}, @ref{XREFconv,,conv}, @ref{XREFdeconv,,deconv}}
@end deftypefn


@node Products of Polynomials
@section Products of Polynomials

@c conv scripts/polynomial/conv.m
@anchor{XREFconv}
@deftypefn  {Function File} {} conv (@var{a}, @var{b})
@deftypefnx {Function File} {} conv (@var{a}, @var{b}, @var{shape})
Convolve two vectors @var{a} and @var{b}.

The output convolution is a vector with length equal to
@code{length (@var{a}) + length (@var{b}) - 1}.
When @var{a} and @var{b} are the coefficient vectors of two polynomials, the
convolution represents the coefficient vector of the product polynomial.

The optional @var{shape} argument may be

@table @asis
@item @var{shape} = @qcode{"full"}
Return the full convolution.  (default)

@item @var{shape} = @qcode{"same"}
Return the central part of the convolution with the same size as @var{a}.
@end table

@seealso{@ref{XREFdeconv,,deconv}, @ref{XREFconv2,,conv2}, @ref{XREFconvn,,convn}, @ref{XREFfftconv,,fftconv}}
@end deftypefn


@c convn libinterp/corefcn/conv2.cc
@anchor{XREFconvn}
@deftypefn  {Built-in Function} {@var{C} =} convn (@var{A}, @var{B})
@deftypefnx {Built-in Function} {@var{C} =} convn (@var{A}, @var{B}, @var{shape})
Return the n-D convolution of @var{A} and @var{B}.  The size of the result
is determined by the optional @var{shape} argument which takes the following
values

@table @asis
@item @var{shape} = @qcode{"full"}
Return the full convolution.  (default)

@item @var{shape} = @qcode{"same"}
Return central part of the convolution with the same size as @var{A}.
The central part of the convolution begins at the indices
@code{floor ([size(@var{B})/2] + 1)}.

@item @var{shape} = @qcode{"valid"}
Return only the parts which do not include zero-padded edges.
The size of the result is @code{max (size (A) - size (B) + 1, 0)}.
@end table

@seealso{@ref{XREFconv2,,conv2}, @ref{XREFconv,,conv}}
@end deftypefn


@c deconv scripts/polynomial/deconv.m
@anchor{XREFdeconv}
@deftypefn {Function File} {} deconv (@var{y}, @var{a})
Deconvolve two vectors.

@code{[b, r] = deconv (y, a)} solves for @var{b} and @var{r} such that
@code{y = conv (a, b) + r}.

If @var{y} and @var{a} are polynomial coefficient vectors, @var{b} will
contain the coefficients of the polynomial quotient and @var{r} will be
a remainder polynomial of lowest order.
@seealso{@ref{XREFconv,,conv}, @ref{XREFresidue,,residue}}
@end deftypefn


@c conv2 libinterp/corefcn/conv2.cc
@anchor{XREFconv2}
@deftypefn  {Built-in Function} {} conv2 (@var{A}, @var{B})
@deftypefnx {Built-in Function} {} conv2 (@var{v1}, @var{v2}, @var{m})
@deftypefnx {Built-in Function} {} conv2 (@dots{}, @var{shape})
Return the 2-D convolution of @var{A} and @var{B}.  The size of the result
is determined by the optional @var{shape} argument which takes the following
values

@table @asis
@item @var{shape} = @qcode{"full"}
Return the full convolution.  (default)

@item @var{shape} = @qcode{"same"}
Return the central part of the convolution with the same size as @var{A}.
The central part of the convolution begins at the indices
@code{floor ([size(@var{B})/2] + 1)}.

@item @var{shape} = @qcode{"valid"}
Return only the parts which do not include zero-padded edges.
The size of the result is @code{max (size (A) - size (B) + 1, 0)}.
@end table

When the third argument is a matrix, return the convolution of the matrix
@var{m} by the vector @var{v1} in the column direction and by the vector
@var{v2} in the row direction.
@seealso{@ref{XREFconv,,conv}, @ref{XREFconvn,,convn}}
@end deftypefn


@c polygcd scripts/polynomial/polygcd.m
@anchor{XREFpolygcd}
@deftypefn  {Function File} {@var{q} =} polygcd (@var{b}, @var{a})
@deftypefnx {Function File} {@var{q} =} polygcd (@var{b}, @var{a}, @var{tol})

Find the greatest common divisor of two polynomials.  This is equivalent
to the polynomial found by multiplying together all the common roots.
Together with deconv, you can reduce a ratio of two polynomials.
The tolerance @var{tol} defaults to @code{sqrt (eps)}.

@strong{Caution:} This is a numerically unstable algorithm and should not
be used on large polynomials.

Example code:

@example
@group
polygcd (poly (1:8), poly (3:12)) - poly (3:8)
@result{} [ 0, 0, 0, 0, 0, 0, 0 ]
deconv (poly (1:8), polygcd (poly (1:8), poly (3:12))) - poly (1:2)
@result{} [ 0, 0, 0 ]
@end group
@end example
@seealso{@ref{XREFpoly,,poly}, @ref{XREFroots,,roots}, @ref{XREFconv,,conv}, @ref{XREFdeconv,,deconv}, @ref{XREFresidue,,residue}}
@end deftypefn


@c residue scripts/polynomial/residue.m
@anchor{XREFresidue}
@deftypefn  {Function File} {[@var{r}, @var{p}, @var{k}, @var{e}] =} residue (@var{b}, @var{a})
@deftypefnx {Function File} {[@var{b}, @var{a}] =} residue (@var{r}, @var{p}, @var{k})
@deftypefnx {Function File} {[@var{b}, @var{a}] =} residue (@var{r}, @var{p}, @var{k}, @var{e})
The first calling form computes the partial fraction expansion for the
quotient of the polynomials, @var{b} and @var{a}.
@tex
$$
{B(s)\over A(s)} = \sum_{m=1}^M {r_m\over (s-p_m)^e_m}
  + \sum_{i=1}^N k_i s^{N-i}.
$$
@end tex
@ifnottex

@example
@group
B(s)    M       r(m)         N
---- = SUM -------------  + SUM k(i)*s^(N-i)
A(s)   m=1 (s-p(m))^e(m)    i=1
@end group
@end example

@end ifnottex
@noindent
where @math{M} is the number of poles (the length of the @var{r},
@var{p}, and @var{e}), the @var{k} vector is a polynomial of order @math{N-1}
representing the direct contribution, and the @var{e} vector specifies
the multiplicity of the m-th residue's pole.

For example,

@example
@group
b = [1, 1, 1];
a = [1, -5, 8, -4];
[r, p, k, e] = residue (b, a)
   @result{} r = [-2; 7; 3]
   @result{} p = [2; 2; 1]
   @result{} k = [](0x0)
   @result{} e = [1; 2; 1]
@end group
@end example

@noindent
which represents the following partial fraction expansion
@tex
$$
{s^2+s+1\over s^3-5s^2+8s-4} = {-2\over s-2} + {7\over (s-2)^2} + {3\over s-1}
$$
@end tex
@ifnottex

@example
@group
        s^2 + s + 1       -2        7        3
   ------------------- = ----- + ------- + -----
   s^3 - 5s^2 + 8s - 4   (s-2)   (s-2)^2   (s-1)
@end group
@end example

@end ifnottex

The second calling form performs the inverse operation and computes
the reconstituted quotient of polynomials, @var{b}(s)/@var{a}(s),
from the partial fraction expansion; represented by the residues,
poles, and a direct polynomial specified by @var{r}, @var{p} and
@var{k}, and the pole multiplicity @var{e}.

If the multiplicity, @var{e}, is not explicitly specified the multiplicity is
determined by the function @code{mpoles}.

For example:

@example
@group
r = [-2; 7; 3];
p = [2; 2; 1];
k = [1, 0];
[b, a] = residue (r, p, k)
   @result{} b = [1, -5, 9, -3, 1]
   @result{} a = [1, -5, 8, -4]

where mpoles is used to determine e = [1; 2; 1]
@end group
@end example

Alternatively the multiplicity may be defined explicitly, for example,

@example
@group
r = [7; 3; -2];
p = [2; 1; 2];
k = [1, 0];
e = [2; 1; 1];
[b, a] = residue (r, p, k, e)
   @result{} b = [1, -5, 9, -3, 1]
   @result{} a = [1, -5, 8, -4]
@end group
@end example

@noindent
which represents the following partial fraction expansion
@tex
$$
{-2\over s-2} + {7\over (s-2)^2} + {3\over s-1} + s = {s^4-5s^3+9s^2-3s+1\over s^3-5s^2+8s-4}
$$
@end tex
@ifnottex

@example
@group
 -2        7        3         s^4 - 5s^3 + 9s^2 - 3s + 1
----- + ------- + ----- + s = --------------------------
(s-2)   (s-2)^2   (s-1)          s^3 - 5s^2 + 8s - 4
@end group
@end example

@end ifnottex
@seealso{@ref{XREFmpoles,,mpoles}, @ref{XREFpoly,,poly}, @ref{XREFroots,,roots}, @ref{XREFconv,,conv}, @ref{XREFdeconv,,deconv}}
@end deftypefn


@node Derivatives / Integrals / Transforms
@section Derivatives / Integrals / Transforms

Octave comes with functions for computing the derivative and the integral
of a polynomial.  The functions @code{polyder} and @code{polyint}
both return new polynomials describing the result.  As an example we'll
compute the definite integral of @math{p(x) = x^2 + 1} from 0 to 3.

@example
@group
c = [1, 0, 1];
integral = polyint (c);
area = polyval (integral, 3) - polyval (integral, 0)
@result{} 12
@end group
@end example

@c polyder scripts/polynomial/polyder.m
@anchor{XREFpolyder}
@deftypefn  {Function File} {} polyder (@var{p})
@deftypefnx {Function File} {[@var{k}] =} polyder (@var{a}, @var{b})
@deftypefnx {Function File} {[@var{q}, @var{d}] =} polyder (@var{b}, @var{a})
Return the coefficients of the derivative of the polynomial whose
coefficients are given by the vector @var{p}.  If a pair of polynomials
is given, return the derivative of the product @math{@var{a}*@var{b}}.
If two inputs and two outputs are given, return the derivative of the
polynomial quotient @math{@var{b}/@var{a}}.  The quotient numerator is
in @var{q} and the denominator in @var{d}.
@seealso{@ref{XREFpolyint,,polyint}, @ref{XREFpolyval,,polyval}, @ref{XREFpolyreduce,,polyreduce}}
@end deftypefn


@c polyint scripts/polynomial/polyint.m
@anchor{XREFpolyint}
@deftypefn  {Function File} {} polyint (@var{p})
@deftypefnx {Function File} {} polyint (@var{p}, @var{k})
Return the coefficients of the integral of the polynomial whose
coefficients are represented by the vector @var{p}.  The variable
@var{k} is the constant of integration, which by default is set to zero.
@seealso{@ref{XREFpolyder,,polyder}, @ref{XREFpolyval,,polyval}}
@end deftypefn


@c polyaffine scripts/polynomial/polyaffine.m
@anchor{XREFpolyaffine}
@deftypefn {Function File} {} polyaffine (@var{f}, @var{mu})
Return the coefficients of the polynomial vector @var{f} after an affine
transformation.  If @var{f} is the vector representing the polynomial f(x),
then @code{@var{g} = polyaffine (@var{f}, @var{mu})} is the vector
representing:

@example
g(x) = f( (x - @var{mu}(1)) / @var{mu}(2) )
@end example

@seealso{@ref{XREFpolyval,,polyval}, @ref{XREFpolyfit,,polyfit}}
@end deftypefn


@node Polynomial Interpolation
@section Polynomial Interpolation

Octave comes with good support for various kinds of interpolation,
most of which are described in @ref{Interpolation}.  One simple alternative
to the functions described in the aforementioned chapter, is to fit
a single polynomial, or a piecewise polynomial (spline) to some given
data points.  To avoid a highly fluctuating polynomial, one most often
wants to fit a low-order polynomial to data.  This usually means that it
is necessary to fit the polynomial in a least-squares sense, which just
is what the @code{polyfit} function does.

@c polyfit scripts/polynomial/polyfit.m
@anchor{XREFpolyfit}
@deftypefn  {Function File} {@var{p} =} polyfit (@var{x}, @var{y}, @var{n})
@deftypefnx {Function File} {[@var{p}, @var{s}] =} polyfit (@var{x}, @var{y}, @var{n})
@deftypefnx {Function File} {[@var{p}, @var{s}, @var{mu}] =} polyfit (@var{x}, @var{y}, @var{n})
Return the coefficients of a polynomial @var{p}(@var{x}) of degree
@var{n} that minimizes the least-squares-error of the fit to the points
@code{[@var{x}, @var{y}]}.  If @var{n} is a logical vector, it is used
as a mask to selectively force the corresponding polynomial
coefficients to be used or ignored.

The polynomial coefficients are returned in a row vector.

The optional output @var{s} is a structure containing the following fields:

@table @samp
@item R
Triangular factor R from the QR@tie{}decomposition.

@item X
The Vandermonde matrix used to compute the polynomial coefficients.

@item C
The unscaled covariance matrix, formally equal to the inverse of
@var{x'}*@var{x}, but computed in a way minimizing roundoff error
propagation.

@item df
The degrees of freedom.

@item normr
The norm of the residuals.

@item yf
The values of the polynomial for each value of @var{x}.
@end table

The second output may be used by @code{polyval} to calculate the
statistical error limits of the predicted values.  In particular, the
standard deviation of @var{p} coefficients is given by @*
@code{sqrt (diag (s.C)/s.df)*s.normr}.

When the third output, @var{mu}, is present the
coefficients, @var{p}, are associated with a polynomial in
@var{xhat} = (@var{x}-@var{mu}(1))/@var{mu}(2).
Where @var{mu}(1) = mean (@var{x}), and @var{mu}(2) = std (@var{x}).
This linear transformation of @var{x} improves the numerical
stability of the fit.
@seealso{@ref{XREFpolyval,,polyval}, @ref{XREFpolyaffine,,polyaffine}, @ref{XREFroots,,roots}, @ref{XREFvander,,vander}, @ref{XREFzscore,,zscore}}
@end deftypefn


In situations where a single polynomial isn't good enough, a solution
is to use several polynomials pieced together.  The function
@code{splinefit} fits a peicewise polynomial (spline) to a set of
data.

@c splinefit scripts/polynomial/splinefit.m
@anchor{XREFsplinefit}
@deftypefn  {Function File} {@var{pp} =} splinefit (@var{x}, @var{y}, @var{breaks})
@deftypefnx {Function File} {@var{pp} =} splinefit (@var{x}, @var{y}, @var{p})
@deftypefnx {Function File} {@var{pp} =} splinefit (@dots{}, "periodic", @var{periodic})
@deftypefnx {Function File} {@var{pp} =} splinefit (@dots{}, "robust", @var{robust})
@deftypefnx {Function File} {@var{pp} =} splinefit (@dots{}, "beta", @var{beta})
@deftypefnx {Function File} {@var{pp} =} splinefit (@dots{}, "order", @var{order})
@deftypefnx {Function File} {@var{pp} =} splinefit (@dots{}, "constraints", @var{constraints})

Fit a piecewise cubic spline with breaks (knots) @var{breaks} to the
noisy data, @var{x} and @var{y}.  @var{x} is a vector, and @var{y}
is a vector or N-D array.  If @var{y} is an N-D array, then @var{x}(j)
is matched to @var{y}(:,@dots{},:,j).

The fitted spline is returned as a piecewise polynomial, @var{pp}, and
may be evaluated using @code{ppval}.

@var{p} is a positive integer defining the number of intervals along @var{x},
and @var{p}+1 is the number of breaks.  The number of points in each interval
differ by no more than 1.

The optional property @var{periodic} is a logical value which specifies
whether a periodic boundary condition is applied to the spline.  The
length of the period is @code{max (@var{breaks}) - min (@var{breaks})}.
The default value is @code{false}.

The optional property @var{robust} is a logical value which specifies
if robust fitting is to be applied to reduce the influence of outlying
data points.  Three iterations of weighted least squares are performed.
Weights are computed from previous residuals.  The sensitivity of outlier
identification is controlled by the property @var{beta}.  The value of
@var{beta} is stricted to the range, 0 < @var{beta} < 1.  The default
value is @var{beta} = 1/2.  Values close to 0 give all data equal
weighting.  Increasing values of @var{beta} reduce the influence of
outlying data.  Values close to unity may cause instability or rank
deficiency.

The splines are constructed of polynomials with degree @var{order}.
The default is a cubic, @var{order}=3.  A spline with P pieces has
P+@var{order} degrees of freedom.  With periodic boundary conditions
the degrees of freedom are reduced to P.

The optional property, @var{constaints}, is a structure specifying
linear constraints on the fit.  The structure has three fields, @qcode{"xc"},
@qcode{"yc"}, and @qcode{"cc"}.

@table @asis
@item @qcode{"xc"}
Vector of the x-locations of the constraints.

@item @qcode{"yc"}
Constraining values at the locations @var{xc}.
The default is an array of zeros.

@item @qcode{"cc"}
Coefficients (matrix).  The default is an array of ones.  The number of
rows is limited to the order of the piecewise polynomials, @var{order}.
@end table

Constraints are linear combinations of derivatives of order 0 to
@var{order}-1 according to

@example
@group
@tex
$cc(1,j) \cdot y(xc(j)) + cc(2,j) \cdot y\prime(xc(j)) + ... = yc(:,\dots,:,j)$.
@end tex
@ifnottex
cc(1,j) * y(xc(j)) + cc(2,j) * y'(xc(j)) + ... = yc(:,...,:,j).
@end ifnottex
@end group
@end example

@seealso{@ref{XREFinterp1,,interp1}, @ref{XREFunmkpp,,unmkpp}, @ref{XREFppval,,ppval}, @ref{XREFspline,,spline}, @ref{XREFpchip,,pchip}, @ref{XREFppder,,ppder}, @ref{XREFppint,,ppint}, @ref{XREFppjumps,,ppjumps}}
@end deftypefn


The number of @var{breaks} (or knots) used to construct the piecewise
polynomial is a significant factor in suppressing the noise present in
the input data, @var{x} and @var{y}.  This is demonstrated by the example
below.

@example
@group
x = 2 * pi * rand (1, 200);
y = sin (x) + sin (2 * x) + 0.2 * randn (size (x));
## Uniform breaks
breaks = linspace (0, 2 * pi, 41); % 41 breaks, 40 pieces
pp1 = splinefit (x, y, breaks);
## Breaks interpolated from data
pp2 = splinefit (x, y, 10);  % 11 breaks, 10 pieces
## Plot
xx = linspace (0, 2 * pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
plot (x, y, ".", xx, [y1; y2])
axis tight
ylim auto
legend (@{"data", "41 breaks, 40 pieces", "11 breaks, 10 pieces"@})
@end group
@end example

@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:splinefit1}.

@float Figure,fig:splinefit1
@center @image{splinefit1,4in}
@caption{Comparison of a fitting a piecewise polynomial with 41 breaks to one
with 11 breaks.  The fit with the large number of breaks exhibits a fast ripple
that is not present in the underlying function.}
@end float
@end ifnotinfo

The piecewise polynomial fit, provided by @code{splinefit}, has
continuous derivatives up to the @var{order}-1.  For example, a cubic fit
has continuous first and second derivatives.  This is demonstrated by
the code

@example
## Data (200 points)
x = 2 * pi * rand (1, 200);
y = sin (x) + sin (2 * x) + 0.1 * randn (size (x));
## Piecewise constant
pp1 = splinefit (x, y, 8, "order", 0);
## Piecewise linear
pp2 = splinefit (x, y, 8, "order", 1);
## Piecewise quadratic
pp3 = splinefit (x, y, 8, "order", 2);
## Piecewise cubic
pp4 = splinefit (x, y, 8, "order", 3);
## Piecewise quartic
pp5 = splinefit (x, y, 8, "order", 4);
## Plot
xx = linspace (0, 2 * pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
y3 = ppval (pp3, xx);
y4 = ppval (pp4, xx);
y5 = ppval (pp5, xx);
plot (x, y, ".", xx, [y1; y2; y3; y4; y5])
axis tight
ylim auto
legend (@{"data", "order 0", "order 1", "order 2", "order 3", "order 4"@})
@end example

@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:splinefit2}.

@float Figure,fig:splinefit2
@center @image{splinefit2,4in}
@caption{Comparison of a piecewise constant, linear, quadratic, cubic, and
quartic polynomials with 8 breaks to noisy data.  The higher order solutions
more accurately represent the underlying function, but come with the
expense of computational complexity.}
@end float
@end ifnotinfo

When the underlying function to provide a fit to is periodic, @code{splinefit}
is able to apply the boundary conditions needed to manifest a periodic fit.
This is demonstrated by the code below.

@example
@group
## Data (100 points)
x = 2 * pi * [0, (rand (1, 98)), 1];
y = sin (x) - cos (2 * x) + 0.2 * randn (size (x));
## No constraints
pp1 = splinefit (x, y, 10, "order", 5);
## Periodic boundaries
pp2 = splinefit (x, y, 10, "order", 5, "periodic", true);
## Plot
xx = linspace (0, 2 * pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
plot (x, y, ".", xx, [y1; y2])
axis tight
ylim auto
legend (@{"data", "no constraints", "periodic"@})
@end group
@end example

@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:splinefit3}.

@float Figure,fig:splinefit3
@center @image{splinefit3,4in}
@caption{Comparison of piecewise polynomial fits to a noisy periodic
function with, and without, periodic boundary conditions.}
@end float
@end ifnotinfo

More complex constraints may be added as well.  For example, the code below
illustrates a periodic fit with values that have been clamped at the endpoints,
and a second periodic fit which is hinged at the endpoints.

@example
## Data (200 points)
x = 2 * pi * rand (1, 200);
y = sin (2 * x) + 0.1 * randn (size (x));
## Breaks
breaks = linspace (0, 2 * pi, 10);
## Clamped endpoints, y = y' = 0
xc = [0, 0, 2*pi, 2*pi];
cc = [(eye (2)), (eye (2))];
con = struct ("xc", xc, "cc", cc);
pp1 = splinefit (x, y, breaks, "constraints", con);
## Hinged periodic endpoints, y = 0
con = struct ("xc", 0);
pp2 = splinefit (x, y, breaks, "constraints", con, "periodic", true);
## Plot
xx = linspace (0, 2 * pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
plot (x, y, ".", xx, [y1; y2])
axis tight
ylim auto
legend (@{"data", "clamped", "hinged periodic"@})
@end example

@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:splinefit4}.

@float Figure,fig:splinefit4
@center @image{splinefit4,4in}
@caption{Comparison of two periodic piecewise cubic fits to a noisy periodic
signal.  One fit has its endpoints clamped and the second has its endpoints
hinged.}
@end float
@end ifnotinfo

The @code{splinefit} function also provides the convenience of a @var{robust}
fitting, where the effect of outlying data is reduced.  In the example below,
three different fits are provided.  Two with differing levels of outlier
suppression and a third illustrating the non-robust solution.

@example
## Data
x = linspace (0, 2*pi, 200);
y = sin (x) + sin (2 * x) + 0.05 * randn (size (x));
## Add outliers
x = [x, linspace(0,2*pi,60)];
y = [y, -ones(1,60)];
## Fit splines with hinged conditions
con = struct ("xc", [0, 2*pi]);
## Robust fitting, beta = 0.25
pp1 = splinefit (x, y, 8, "constraints", con, "beta", 0.25);
## Robust fitting, beta = 0.75
pp2 = splinefit (x, y, 8, "constraints", con, "beta", 0.75);
## No robust fitting
pp3 = splinefit (x, y, 8, "constraints", con);
## Plot
xx = linspace (0, 2*pi, 400);
y1 = ppval (pp1, xx);
y2 = ppval (pp2, xx);
y3 = ppval (pp3, xx);
plot (x, y, ".", xx, [y1; y2; y3])
legend (@{"data with outliers","robust, beta = 0.25", ...
         "robust, beta = 0.75", "no robust fitting"@})
axis tight
ylim auto
@end example

@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:splinefit6}.

@float Figure,fig:splinefit6
@center @image{splinefit6,4in}
@caption{Comparison of two different levels of robust fitting (@var{beta} = 0.25 and 0.75) to noisy data combined with outlying data.  A conventional fit, without
robust fitting (@var{beta} = 0) is also included.}
@end float
@end ifnotinfo

The function, @code{ppval}, evaluates the piecewise polynomials, created
by @code{mkpp} or other means, and @code{unmkpp} returns detailed
information about the piecewise polynomial.

The following example shows how to combine two linear functions and a
quadratic into one function.  Each of these functions is expressed
on adjoined intervals.

@example
@group
x = [-2, -1, 1, 2];
p = [ 0,  1, 0;
      1, -2, 1;
      0, -1, 1 ];
pp = mkpp (x, p);
xi = linspace (-2, 2, 50);
yi = ppval (pp, xi);
plot (xi, yi);
@end group
@end example

@c mkpp scripts/polynomial/mkpp.m
@anchor{XREFmkpp}
@deftypefn  {Function File} {@var{pp} =} mkpp (@var{breaks}, @var{coefs})
@deftypefnx {Function File} {@var{pp} =} mkpp (@var{breaks}, @var{coefs}, @var{d})

Construct a piecewise polynomial (pp) structure from sample points
@var{breaks} and coefficients @var{coefs}.  @var{breaks} must be a vector of
strictly increasing values.  The number of intervals is given by
@code{@var{ni} = length (@var{breaks}) - 1}.
When @var{m} is the polynomial order @var{coefs} must be of
size: @var{ni} x @var{m} + 1.

The i-th row of @var{coefs},
@code{@var{coefs} (@var{i},:)}, contains the coefficients for the polynomial
over the @var{i}-th interval, ordered from highest (@var{m}) to
lowest (@var{0}).

@var{coefs} may also be a multi-dimensional array, specifying a vector-valued
or array-valued polynomial.  In that case the polynomial order is defined
by the length of the last dimension of @var{coefs}.
The size of first dimension(s) are given by the scalar or
vector @var{d}.  If @var{d} is not given it is set to @code{1}.
In any case @var{coefs} is reshaped to a 2-D matrix of
size @code{[@var{ni}*prod(@var{d} @var{m})] }

@seealso{@ref{XREFunmkpp,,unmkpp}, @ref{XREFppval,,ppval}, @ref{XREFspline,,spline}, @ref{XREFpchip,,pchip}, @ref{XREFppder,,ppder}, @ref{XREFppint,,ppint}, @ref{XREFppjumps,,ppjumps}}
@end deftypefn


@c unmkpp scripts/polynomial/unmkpp.m
@anchor{XREFunmkpp}
@deftypefn {Function File} {[@var{x}, @var{p}, @var{n}, @var{k}, @var{d}] =} unmkpp (@var{pp})

Extract the components of a piecewise polynomial structure @var{pp}.
The components are:

@table @asis
@item @var{x}
Sample points.

@item @var{p}
Polynomial coefficients for points in sample interval.  @code{@var{p}
(@var{i}, :)} contains the coefficients for the polynomial over
interval @var{i} ordered from highest to lowest.  If @code{@var{d} >
1}, @code{@var{p} (@var{r}, @var{i}, :)} contains the coefficients for
the r-th polynomial defined on interval @var{i}.

@item @var{n}
Number of polynomial pieces.

@item @var{k}
Order of the polynomial plus 1.

@item @var{d}
Number of polynomials defined for each interval.
@end table

@seealso{@ref{XREFmkpp,,mkpp}, @ref{XREFppval,,ppval}, @ref{XREFspline,,spline}, @ref{XREFpchip,,pchip}}
@end deftypefn


@c ppval scripts/polynomial/ppval.m
@anchor{XREFppval}
@deftypefn {Function File} {@var{yi} =} ppval (@var{pp}, @var{xi})
Evaluate the piecewise polynomial structure @var{pp} at the points @var{xi}.
If @var{pp} describes a scalar polynomial function, the result is an
array of the same shape as @var{xi}.
Otherwise, the size of the result is @code{[pp.dim, length(@var{xi})]} if
@var{xi} is a vector, or @code{[pp.dim, size(@var{xi})]} if it is a
multi-dimensional array.
@seealso{@ref{XREFmkpp,,mkpp}, @ref{XREFunmkpp,,unmkpp}, @ref{XREFspline,,spline}, @ref{XREFpchip,,pchip}}
@end deftypefn


@c ppder scripts/polynomial/ppder.m
@anchor{XREFppder}
@deftypefn  {Function File} {ppd =} ppder (pp)
@deftypefnx {Function File} {ppd =} ppder (pp, m)
Compute the piecewise @var{m}-th derivative of a piecewise polynomial
struct @var{pp}.  If @var{m} is omitted the first derivative is calculated.
@seealso{@ref{XREFmkpp,,mkpp}, @ref{XREFppval,,ppval}, @ref{XREFppint,,ppint}}
@end deftypefn


@c ppint scripts/polynomial/ppint.m
@anchor{XREFppint}
@deftypefn  {Function File} {@var{ppi} =} ppint (@var{pp})
@deftypefnx {Function File} {@var{ppi} =} ppint (@var{pp}, @var{c})
Compute the integral of the piecewise polynomial struct @var{pp}.
@var{c}, if given, is the constant of integration.
@seealso{@ref{XREFmkpp,,mkpp}, @ref{XREFppval,,ppval}, @ref{XREFppder,,ppder}}
@end deftypefn


@c ppjumps scripts/polynomial/ppjumps.m
@anchor{XREFppjumps}
@deftypefn {Function File} {@var{jumps} =} ppjumps (@var{pp})
Evaluate the boundary jumps of a piecewise polynomial.
If there are @math{n} intervals, and the dimensionality of @var{pp} is
@math{d}, the resulting array has dimensions @code{[d, n-1]}.
@seealso{@ref{XREFmkpp,,mkpp}}
@end deftypefn


@node Miscellaneous Functions
@section Miscellaneous Functions

@c poly scripts/polynomial/poly.m
@anchor{XREFpoly}
@deftypefn  {Function File} {} poly (@var{A})
@deftypefnx {Function File} {} poly (@var{x})
If @var{A} is a square @math{N}-by-@math{N} matrix, @code{poly (@var{A})}
is the row vector of the coefficients of @code{det (z * eye (N) - A)},
the characteristic polynomial of @var{A}.  For example,
the following code finds the eigenvalues of @var{A} which are the roots of
@code{poly (@var{A})}.

@example
@group
roots (poly (eye (3)))
    @result{} 1.00001 + 0.00001i
       1.00001 - 0.00001i
       0.99999 + 0.00000i
@end group
@end example

In fact, all three eigenvalues are exactly 1 which emphasizes that for
numerical performance the @code{eig} function should be used to compute
eigenvalues.

If @var{x} is a vector, @code{poly (@var{x})} is a vector of the
coefficients of the polynomial whose roots are the elements of @var{x}. 
That is, if @var{c} is a polynomial, then the elements of @code{@var{d} =
roots (poly (@var{c}))} are contained in @var{c}.  The vectors @var{c} and
@var{d} are not identical, however, due to sorting and numerical errors.
@seealso{@ref{XREFroots,,roots}, @ref{XREFeig,,eig}}
@end deftypefn


@c polyout scripts/polynomial/polyout.m
@anchor{XREFpolyout}
@deftypefn  {Function File} {} polyout (@var{c})
@deftypefnx {Function File} {} polyout (@var{c}, @var{x})
@deftypefnx {Function File} {@var{str} =} polyout (@dots{})
Write formatted polynomial
@tex
$$ c(x) = c_1 x^n + \ldots + c_n x + c_{n+1} $$
@end tex
@ifnottex

@example
c(x) = c(1) * x^n + @dots{} + c(n) x + c(n+1)
@end example

@end ifnottex
and return it as a string or write it to the screen (if @var{nargout} is
zero).  @var{x} defaults to the string @qcode{"s"}.
@seealso{@ref{XREFpolyreduce,,polyreduce}}
@end deftypefn


@c polyreduce scripts/polynomial/polyreduce.m
@anchor{XREFpolyreduce}
@deftypefn {Function File} {} polyreduce (@var{c})
Reduce a polynomial coefficient vector to a minimum number of terms by
stripping off any leading zeros.
@seealso{@ref{XREFpolyout,,polyout}}
@end deftypefn