1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 1996-2013 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
@c for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <http://www.gnu.org/licenses/>.
@node Sets
@chapter Sets
Octave has a limited number of functions for managing sets of data, where a
set is defined as a collection of unique elements. In Octave a set is
represented as a vector of numbers.
@c unique scripts/set/unique.m
@anchor{XREFunique}
@deftypefn {Function File} {} unique (@var{x})
@deftypefnx {Function File} {} unique (@var{x}, "rows")
@deftypefnx {Function File} {} unique (@dots{}, "first")
@deftypefnx {Function File} {} unique (@dots{}, "last")
@deftypefnx {Function File} {[@var{y}, @var{i}, @var{j}] =} unique (@dots{})
Return the unique elements of @var{x}, sorted in ascending order.
If the input @var{x} is a vector then the output is also a vector with the
same orientation (row or column) as the input. For a matrix input the
output is always a column vector. @var{x} may also be a cell array of
strings.
If the optional argument @qcode{"rows"} is supplied, return the unique
rows of @var{x}, sorted in ascending order.
If requested, return index vectors @var{i} and @var{j} such that
@code{x(i)==y} and @code{y(j)==x}.
Additionally, if @var{i} is a requested output then one of @qcode{"first"} or
@qcode{"last"} may be given as an input. If @qcode{"last"} is specified,
return the highest possible indices in @var{i}, otherwise, if @qcode{"first"}
is specified, return the lowest. The default is @qcode{"last"}.
@seealso{@ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFsetxor,,setxor}, @ref{XREFismember,,ismember}}
@end deftypefn
@menu
* Set Operations::
@end menu
@node Set Operations
@section Set Operations
Octave supports the basic set operations. That is, Octave can compute
the union, intersection, and difference of two sets.
Octave also supports the @emph{Exclusive Or} set operation, and
membership determination. The functions for set operations all work in
pretty much the same way. As an example, assume that @code{x} and
@code{y} contains two sets, then
@example
union (x, y)
@end example
@noindent
computes the union of the two sets.
@c ismember scripts/set/ismember.m
@anchor{XREFismember}
@deftypefn {Function File} {@var{tf} =} ismember (@var{A}, @var{s})
@deftypefnx {Function File} {[@var{tf}, @var{S_idx}] =} ismember (@var{A}, @var{s})
@deftypefnx {Function File} {[@var{tf}, @var{S_idx}] =} ismember (@var{A}, @var{s}, "rows")
Return a logical matrix @var{tf} with the same shape as @var{A} which is
true (1) if @code{A(i,j)} is in @var{s} and false (0) if it is not. If a
second output argument is requested, the index into @var{s} of each of the
matching elements is also returned.
@example
@group
a = [3, 10, 1];
s = [0:9];
[tf, s_idx] = ismember (a, s)
@result{} tf = [1, 0, 1]
@result{} s_idx = [4, 0, 2]
@end group
@end example
The inputs, @var{A} and @var{s}, may also be cell arrays.
@example
@group
a = @{"abc"@};
s = @{"abc", "def"@};
[tf, s_idx] = ismember (a, s)
@result{} tf = [1, 0]
@result{} s_idx = [1, 0]
@end group
@end example
With the optional third argument @qcode{"rows"}, and matrices
@var{A} and @var{s} with the same number of columns, compare rows in
@var{A} with the rows in @var{s}.
@example
@group
a = [1:3; 5:7; 4:6];
s = [0:2; 1:3; 2:4; 3:5; 4:6];
[tf, s_idx] = ismember (a, s, "rows")
@result{} tf = logical ([1; 0; 1])
@result{} s_idx = [2; 0; 5];
@end group
@end example
@seealso{@ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetxor,,setxor}, @ref{XREFsetdiff,,setdiff}}
@end deftypefn
@c union scripts/set/union.m
@anchor{XREFunion}
@deftypefn {Function File} {} union (@var{a}, @var{b})
@deftypefnx {Function File} {} union (@var{a}, @var{b}, "rows")
@deftypefnx {Function File} {[@var{c}, @var{ia}, @var{ib}] =} union (@var{a}, @var{b})
Return the set of elements that are in either of the sets @var{a} and
@var{b}. @var{a}, @var{b} may be cell arrays of strings.
For example:
@example
@group
union ([1, 2, 4], [2, 3, 5])
@result{} [1, 2, 3, 4, 5]
@end group
@end example
If the optional third input argument is the string @qcode{"rows"} then
each row of the matrices @var{a} and @var{b} will be considered as a
single set element. For example:
@example
@group
union ([1, 2; 2, 3], [1, 2; 3, 4], "rows")
@result{} 1 2
2 3
3 4
@end group
@end example
The optional outputs @var{ia} and @var{ib} are index vectors such that
@code{a(ia)} and @code{b(ib)} are disjoint sets whose union is @var{c}.
@seealso{@ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFunique,,unique}}
@end deftypefn
@c intersect scripts/set/intersect.m
@anchor{XREFintersect}
@deftypefn {Function File} {} intersect (@var{a}, @var{b})
@deftypefnx {Function File} {[@var{c}, @var{ia}, @var{ib}] =} intersect (@var{a}, @var{b})
Return the elements in both @var{a} and @var{b}, sorted in ascending
order. If @var{a} and @var{b} are both column vectors return a column
vector, otherwise return a row vector.
@var{a}, @var{b} may be cell arrays of string(s).
Return index vectors @var{ia} and @var{ib} such that @code{a(ia)==c} and
@code{b(ib)==c}.
@end deftypefn
@seealso{@ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFsetxor,,setxor}, @ref{XREFsetdiff,,setdiff}, @ref{XREFismember,,ismember}}
@c setdiff scripts/set/setdiff.m
@anchor{XREFsetdiff}
@deftypefn {Function File} {} setdiff (@var{a}, @var{b})
@deftypefnx {Function File} {} setdiff (@var{a}, @var{b}, "rows")
@deftypefnx {Function File} {[@var{c}, @var{i}] =} setdiff (@var{a}, @var{b})
Return the elements in @var{a} that are not in @var{b}, sorted in
ascending order. If @var{a} and @var{b} are both column vectors
return a column vector, otherwise return a row vector.
@var{a}, @var{b} may be cell arrays of string(s).
Given the optional third argument @qcode{"rows"}, return the rows in
@var{a} that are not in @var{b}, sorted in ascending order by rows.
If requested, return @var{i} such that @code{c = a(i)}.
@seealso{@ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetxor,,setxor}, @ref{XREFismember,,ismember}}
@end deftypefn
@c setxor scripts/set/setxor.m
@anchor{XREFsetxor}
@deftypefn {Function File} {} setxor (@var{a}, @var{b})
@deftypefnx {Function File} {} setxor (@var{a}, @var{b}, "rows")
@deftypefnx {Function File} {[@var{c}, @var{ia}, @var{ib}] =} setxor (@var{a}, @var{b})
Return the elements exclusive to @var{a} or @var{b}, sorted in ascending
order. If @var{a} and @var{b} are both column vectors return a column
vector, otherwise return a row vector.
@var{a}, @var{b} may be cell arrays of string(s).
With three output arguments, return index vectors @var{ia} and @var{ib}
such that @code{a(ia)} and @code{b(ib)} are disjoint sets whose union
is @var{c}.
@seealso{@ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFismember,,ismember}}
@end deftypefn
@c powerset scripts/set/powerset.m
@anchor{XREFpowerset}
@deftypefn {Function File} {} powerset (@var{a})
@deftypefnx {Function File} {} powerset (@var{a}, "rows")
Compute the powerset (all subsets) of the set @var{a}.
The set @var{a} must be a numerical matrix or a cell array of strings. The
output will always be a cell array of either vectors or strings.
With the optional second argument @qcode{"rows"}, each row of the set @var{a}
is considered one element of the set. As a result, @var{a} must then be a
numerical 2-D matrix.
@seealso{@ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFsetxor,,setxor}, @ref{XREFsetdiff,,setdiff}, @ref{XREFismember,,ismember}}
@end deftypefn
|