1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 1996-2013 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
@c for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <http://www.gnu.org/licenses/>.
@node Signal Processing
@chapter Signal Processing
This chapter describes the signal processing and fast Fourier
transform functions available in Octave. Fast Fourier transforms are
computed with the @sc{fftw} or @sc{fftpack} libraries depending on how
Octave is built.
@c fft libinterp/corefcn/fft.cc
@anchor{XREFfft}
@deftypefn {Built-in Function} {} fft (@var{x})
@deftypefnx {Built-in Function} {} fft (@var{x}, @var{n})
@deftypefnx {Built-in Function} {} fft (@var{x}, @var{n}, @var{dim})
Compute the discrete Fourier transform of @var{A} using
a Fast Fourier Transform (FFT) algorithm.
The FFT is calculated along the first non-singleton dimension of the
array. Thus if @var{x} is a matrix, @code{fft (@var{x})} computes the
FFT for each column of @var{x}.
If called with two arguments, @var{n} is expected to be an integer
specifying the number of elements of @var{x} to use, or an empty
matrix to specify that its value should be ignored. If @var{n} is
larger than the dimension along which the FFT is calculated, then
@var{x} is resized and padded with zeros. Otherwise, if @var{n} is
smaller than the dimension along which the FFT is calculated, then
@var{x} is truncated.
If called with three arguments, @var{dim} is an integer specifying the
dimension of the matrix along which the FFT is performed
@seealso{@ref{XREFifft,,ifft}, @ref{XREFfft2,,fft2}, @ref{XREFfftn,,fftn}, @ref{XREFfftw,,fftw}}
@end deftypefn
@c ifft libinterp/corefcn/fft.cc
@anchor{XREFifft}
@deftypefn {Built-in Function} {} ifft (@var{x})
@deftypefnx {Built-in Function} {} ifft (@var{x}, @var{n})
@deftypefnx {Built-in Function} {} ifft (@var{x}, @var{n}, @var{dim})
Compute the inverse discrete Fourier transform of @var{A}
using a Fast Fourier Transform (FFT) algorithm.
The inverse FFT is calculated along the first non-singleton dimension
of the array. Thus if @var{x} is a matrix, @code{fft (@var{x})} computes
the inverse FFT for each column of @var{x}.
If called with two arguments, @var{n} is expected to be an integer
specifying the number of elements of @var{x} to use, or an empty
matrix to specify that its value should be ignored. If @var{n} is
larger than the dimension along which the inverse FFT is calculated, then
@var{x} is resized and padded with zeros. Otherwise, if @var{n} is
smaller than the dimension along which the inverse FFT is calculated,
then @var{x} is truncated.
If called with three arguments, @var{dim} is an integer specifying the
dimension of the matrix along which the inverse FFT is performed
@seealso{@ref{XREFfft,,fft}, @ref{XREFifft2,,ifft2}, @ref{XREFifftn,,ifftn}, @ref{XREFfftw,,fftw}}
@end deftypefn
@c fft2 libinterp/corefcn/fft2.cc
@anchor{XREFfft2}
@deftypefn {Built-in Function} {} fft2 (@var{A})
@deftypefnx {Built-in Function} {} fft2 (@var{A}, @var{m}, @var{n})
Compute the two-dimensional discrete Fourier transform of @var{A} using
a Fast Fourier Transform (FFT) algorithm.
The optional arguments @var{m} and @var{n} may be used specify the
number of rows and columns of @var{A} to use. If either of these is
larger than the size of @var{A}, @var{A} is resized and padded with
zeros.
If @var{A} is a multi-dimensional matrix, each two-dimensional sub-matrix
of @var{A} is treated separately.
@seealso {ifft2, fft, fftn, fftw}
@end deftypefn
@c ifft2 libinterp/corefcn/fft2.cc
@anchor{XREFifft2}
@deftypefn {Built-in Function} {} ifft2 (@var{A})
@deftypefnx {Built-in Function} {} ifft2 (@var{A}, @var{m}, @var{n})
Compute the inverse two-dimensional discrete Fourier transform of @var{A}
using a Fast Fourier Transform (FFT) algorithm.
The optional arguments @var{m} and @var{n} may be used specify the
number of rows and columns of @var{A} to use. If either of these is
larger than the size of @var{A}, @var{A} is resized and padded with
zeros.
If @var{A} is a multi-dimensional matrix, each two-dimensional sub-matrix
of @var{A} is treated separately
@seealso {fft2, ifft, ifftn, fftw}
@end deftypefn
@c fftn libinterp/corefcn/fftn.cc
@anchor{XREFfftn}
@deftypefn {Built-in Function} {} fftn (@var{A})
@deftypefnx {Built-in Function} {} fftn (@var{A}, @var{size})
Compute the N-dimensional discrete Fourier transform of @var{A} using
a Fast Fourier Transform (FFT) algorithm.
The optional vector argument @var{size} may be used specify the
dimensions of the array to be used. If an element of @var{size} is
smaller than the corresponding dimension of @var{A}, then the dimension of
@var{A} is truncated prior to performing the FFT@. Otherwise, if an element
of @var{size} is larger than the corresponding dimension then @var{A}
is resized and padded with zeros.
@seealso{@ref{XREFifftn,,ifftn}, @ref{XREFfft,,fft}, @ref{XREFfft2,,fft2}, @ref{XREFfftw,,fftw}}
@end deftypefn
@c ifftn libinterp/corefcn/fftn.cc
@anchor{XREFifftn}
@deftypefn {Built-in Function} {} ifftn (@var{A})
@deftypefnx {Built-in Function} {} ifftn (@var{A}, @var{size})
Compute the inverse N-dimensional discrete Fourier transform of @var{A}
using a Fast Fourier Transform (FFT) algorithm.
The optional vector argument @var{size} may be used specify the
dimensions of the array to be used. If an element of @var{size} is
smaller than the corresponding dimension of @var{A}, then the dimension of
@var{A} is truncated prior to performing the inverse FFT@. Otherwise, if an
element of @var{size} is larger than the corresponding dimension then @var{A}
is resized and padded with zeros.
@seealso{@ref{XREFfftn,,fftn}, @ref{XREFifft,,ifft}, @ref{XREFifft2,,ifft2}, @ref{XREFfftw,,fftw}}
@end deftypefn
Octave uses the @sc{fftw} libraries to perform FFT computations. When Octave
starts up and initializes the @sc{fftw} libraries, they read a system wide
file (on a Unix system, it is typically @file{/etc/fftw/wisdom}) that
contains information useful to speed up FFT computations. This
information is called the @emph{wisdom}. The system-wide file allows
wisdom to be shared between all applications using the @sc{fftw} libraries.
Use the @code{fftw} function to generate and save wisdom. Using the
utilities provided together with the @sc{fftw} libraries
(@command{fftw-wisdom} on Unix systems), you can even add wisdom
generated by Octave to the system-wide wisdom file.
@c fftw libinterp/dldfcn/fftw.cc
@anchor{XREFfftw}
@deftypefn {Loadable Function} {@var{method} =} fftw ("planner")
@deftypefnx {Loadable Function} {} fftw ("planner", @var{method})
@deftypefnx {Loadable Function} {@var{wisdom} =} fftw ("dwisdom")
@deftypefnx {Loadable Function} {} fftw ("dwisdom", @var{wisdom})
@deftypefnx {Loadable Function} {} fftw ("threads", @var{nthreads})
@deftypefnx {Loadable Function} {@var{nthreads} =} fftw ("threads")
Manage @sc{fftw} wisdom data. Wisdom data can be used to significantly
accelerate the calculation of the FFTs, but implies an initial cost
in its calculation. When the @sc{fftw} libraries are initialized, they read
a system wide wisdom file (typically in @file{/etc/fftw/wisdom}), allowing
wisdom to be shared between applications other than Octave. Alternatively,
the @code{fftw} function can be used to import wisdom. For example,
@example
@var{wisdom} = fftw ("dwisdom")
@end example
@noindent
will save the existing wisdom used by Octave to the string @var{wisdom}.
This string can then be saved to a file and restored using the @code{save}
and @code{load} commands respectively. This existing wisdom can be
re-imported as follows
@example
fftw ("dwisdom", @var{wisdom})
@end example
If @var{wisdom} is an empty string, then the wisdom used is cleared.
During the calculation of Fourier transforms further wisdom is generated.
The fashion in which this wisdom is generated is also controlled by
the @code{fftw} function. There are five different manners in which the
wisdom can be treated:
@table @asis
@item @qcode{"estimate"}
Specifies that no run-time measurement of the optimal means of
calculating a particular is performed, and a simple heuristic is used
to pick a (probably sub-optimal) plan. The advantage of this method is
that there is little or no overhead in the generation of the plan, which
is appropriate for a Fourier transform that will be calculated once.
@item @qcode{"measure"}
In this case a range of algorithms to perform the transform is considered
and the best is selected based on their execution time.
@item @qcode{"patient"}
Similar to @qcode{"measure"}, but a wider range of algorithms is
considered.
@item @qcode{"exhaustive"}
Like @qcode{"measure"}, but all possible algorithms that may be used to
treat the transform are considered.
@item @qcode{"hybrid"}
As run-time measurement of the algorithm can be expensive, this is a
compromise where @qcode{"measure"} is used for transforms up to the size
of 8192 and beyond that the @qcode{"estimate"} method is used.
@end table
The default method is @qcode{"estimate"}. The current method can
be queried with
@example
@var{method} = fftw ("planner")
@end example
@noindent
or set by using
@example
fftw ("planner", @var{method})
@end example
Note that calculated wisdom will be lost when restarting Octave. However,
the wisdom data can be reloaded if it is saved to a file as described
above. Saved wisdom files should not be used on different platforms since
they will not be efficient and the point of calculating the wisdom is lost.
The number of threads used for computing the plans and executing the
transforms can be set with
@example
fftw ("threads", @var{NTHREADS})
@end example
Note that octave must be compiled with multi-threaded @sc{fftw} support for
this feature. The number of processors available to the current process is
used per default.
@seealso{@ref{XREFfft,,fft}, @ref{XREFifft,,ifft}, @ref{XREFfft2,,fft2}, @ref{XREFifft2,,ifft2}, @ref{XREFfftn,,fftn}, @ref{XREFifftn,,ifftn}}
@end deftypefn
@c fftconv scripts/signal/fftconv.m
@anchor{XREFfftconv}
@deftypefn {Function File} {} fftconv (@var{x}, @var{y})
@deftypefnx {Function File} {} fftconv (@var{x}, @var{y}, @var{n})
Convolve two vectors using the FFT for computation.
@code{c = fftconv (@var{x}, @var{y})} returns a vector of length equal to
@code{length (@var{x}) + length (@var{y}) - 1}.
If @var{x} and @var{y} are the coefficient vectors of two polynomials, the
returned value is the coefficient vector of the product polynomial.
The computation uses the FFT by calling the function @code{fftfilt}. If
the optional argument @var{n} is specified, an N-point FFT is used.
@seealso{@ref{XREFdeconv,,deconv}, @ref{XREFconv,,conv}, @ref{XREFconv2,,conv2}}
@end deftypefn
@c fftfilt scripts/signal/fftfilt.m
@anchor{XREFfftfilt}
@deftypefn {Function File} {} fftfilt (@var{b}, @var{x})
@deftypefnx {Function File} {} fftfilt (@var{b}, @var{x}, @var{n})
With two arguments, @code{fftfilt} filters @var{x} with the FIR filter
@var{b} using the FFT.
Given the optional third argument, @var{n}, @code{fftfilt} uses the
overlap-add method to filter @var{x} with @var{b} using an N-point
FFT@. The FFT size must be an even power of 2 and must be greater than
or equal to the length of @var{b}. If the specified @var{n} does not
meet these criteria, it is automatically adjusted to the nearest value
that does.
If @var{x} is a matrix, filter each column of the matrix.
@seealso{@ref{XREFfilter,,filter}, @ref{XREFfilter2,,filter2}}
@end deftypefn
@c filter libinterp/corefcn/filter.cc
@anchor{XREFfilter}
@deftypefn {Built-in Function} {y =} filter (@var{b}, @var{a}, @var{x})
@deftypefnx {Built-in Function} {[@var{y}, @var{sf}] =} filter (@var{b}, @var{a}, @var{x}, @var{si})
@deftypefnx {Built-in Function} {[@var{y}, @var{sf}] =} filter (@var{b}, @var{a}, @var{x}, [], @var{dim})
@deftypefnx {Built-in Function} {[@var{y}, @var{sf}] =} filter (@var{b}, @var{a}, @var{x}, @var{si}, @var{dim})
Return the solution to the following linear, time-invariant difference
equation:
@tex
$$
\sum_{k=0}^N a_{k+1} y_{n-k} = \sum_{k=0}^M b_{k+1} x_{n-k}, \qquad
1 \le n \le P
$$
@end tex
@ifnottex
@c Set example in small font to prevent overfull line
@smallexample
@group
N M
SUM a(k+1) y(n-k) = SUM b(k+1) x(n-k) for 1<=n<=length(x)
k=0 k=0
@end group
@end smallexample
@end ifnottex
@noindent
where
@ifnottex
N=length(a)-1 and M=length(b)-1.
@end ifnottex
@tex
$a \in \Re^{N-1}$, $b \in \Re^{M-1}$, and $x \in \Re^P$.
@end tex
The result is calculated over the first non-singleton dimension of @var{x}
or over @var{dim} if supplied.
An equivalent form of the equation is:
@tex
$$
y_n = -\sum_{k=1}^N c_{k+1} y_{n-k} + \sum_{k=0}^M d_{k+1} x_{n-k}, \qquad
1 \le n \le P
$$
@end tex
@ifnottex
@c Set example in small font to prevent overfull line
@smallexample
@group
N M
y(n) = - SUM c(k+1) y(n-k) + SUM d(k+1) x(n-k) for 1<=n<=length(x)
k=1 k=0
@end group
@end smallexample
@end ifnottex
@noindent
where
@ifnottex
c = a/a(1) and d = b/a(1).
@end ifnottex
@tex
$c = a/a_1$ and $d = b/a_1$.
@end tex
If the fourth argument @var{si} is provided, it is taken as the
initial state of the system and the final state is returned as
@var{sf}. The state vector is a column vector whose length is
equal to the length of the longest coefficient vector minus one.
If @var{si} is not supplied, the initial state vector is set to all
zeros.
In terms of the Z Transform, y is the result of passing the discrete-
time signal x through a system characterized by the following rational
system function:
@tex
$$
H(z) = {\displaystyle\sum_{k=0}^M d_{k+1} z^{-k}
\over 1 + \displaystyle\sum_{k+1}^N c_{k+1} z^{-k}}
$$
@end tex
@ifnottex
@example
@group
M
SUM d(k+1) z^(-k)
k=0
H(z) = ---------------------
N
1 + SUM c(k+1) z^(-k)
k=1
@end group
@end example
@end ifnottex
@seealso{@ref{XREFfilter2,,filter2}, @ref{XREFfftfilt,,fftfilt}, @ref{XREFfreqz,,freqz}}
@end deftypefn
@c filter2 scripts/signal/filter2.m
@anchor{XREFfilter2}
@deftypefn {Function File} {@var{y} =} filter2 (@var{b}, @var{x})
@deftypefnx {Function File} {@var{y} =} filter2 (@var{b}, @var{x}, @var{shape})
Apply the 2-D FIR filter @var{b} to @var{x}. If the argument
@var{shape} is specified, return an array of the desired shape.
Possible values are:
@table @asis
@item @qcode{"full"}
pad @var{x} with zeros on all sides before filtering.
@item @qcode{"same"}
unpadded @var{x} (default)
@item @qcode{"valid"}
trim @var{x} after filtering so edge effects are no included.
@end table
Note this is just a variation on convolution, with the parameters
reversed and @var{b} rotated 180 degrees.
@seealso{@ref{XREFconv2,,conv2}}
@end deftypefn
@c freqz scripts/signal/freqz.m
@anchor{XREFfreqz}
@deftypefn {Function File} {[@var{h}, @var{w}] =} freqz (@var{b}, @var{a}, @var{n}, "whole")
@deftypefnx {Function File} {[@var{h}, @var{w}] =} freqz (@var{b})
@deftypefnx {Function File} {[@var{h}, @var{w}] =} freqz (@var{b}, @var{a})
@deftypefnx {Function File} {[@var{h}, @var{w}] =} freqz (@var{b}, @var{a}, @var{n})
@deftypefnx {Function File} {@var{h} =} freqz (@var{b}, @var{a}, @var{w})
@deftypefnx {Function File} {[@dots{}] =} freqz (@dots{}, @var{Fs})
@deftypefnx {Function File} {} freqz (@dots{})
Return the complex frequency response @var{h} of the rational IIR filter
whose numerator and denominator coefficients are @var{b} and @var{a},
respectively. The response is evaluated at @var{n} angular frequencies
between 0 and
@ifnottex
2*pi.
@end ifnottex
@tex
$2\pi$.
@end tex
@noindent
The output value @var{w} is a vector of the frequencies.
If @var{a} is omitted, the denominator is assumed to be 1 (this
corresponds to a simple FIR filter).
If @var{n} is omitted, a value of 512 is assumed.
For fastest computation, @var{n} should factor into a small number of
small primes.
If the fourth argument, @qcode{"whole"}, is omitted the response is
evaluated at frequencies between 0 and
@ifnottex
pi.
@end ifnottex
@tex
$\pi$.
@end tex
@code{freqz (@var{b}, @var{a}, @var{w})}
Evaluate the response at the specific frequencies in the vector @var{w}.
The values for @var{w} are measured in radians.
@code{[@dots{}] = freqz (@dots{}, @var{Fs})}
Return frequencies in Hz instead of radians assuming a sampling rate
@var{Fs}. If you are evaluating the response at specific frequencies
@var{w}, those frequencies should be requested in Hz rather than radians.
@code{freqz (@dots{})}
Plot the magnitude and phase response of @var{h} rather than returning them.
@seealso{@ref{XREFfreqz_plot,,freqz_plot}}
@end deftypefn
@c freqz_plot scripts/signal/freqz_plot.m
@anchor{XREFfreqz_plot}
@deftypefn {Function File} {} freqz_plot (@var{w}, @var{h})
@deftypefnx {Function File} {} freqz_plot (@var{w}, @var{h}, @var{freq_norm})
Plot the magnitude and phase response of @var{h}.
If the optional @var{freq_norm} argument is true, the frequency vector
@var{w} is in units of normalized radians. If @var{freq_norm} is false, or
not given, then @var{w} is measured in Hertz.
@seealso{@ref{XREFfreqz,,freqz}}
@end deftypefn
@c sinc scripts/signal/sinc.m
@anchor{XREFsinc}
@deftypefn {Function File} {} sinc (@var{x})
Return
@tex
$ \sin (\pi x)/(\pi x)$.
@end tex
@ifnottex
sin (pi*x) / (pi*x).
@end ifnottex
@end deftypefn
@c unwrap scripts/signal/unwrap.m
@anchor{XREFunwrap}
@deftypefn {Function File} {@var{b} =} unwrap (@var{x})
@deftypefnx {Function File} {@var{b} =} unwrap (@var{x}, @var{tol})
@deftypefnx {Function File} {@var{b} =} unwrap (@var{x}, @var{tol}, @var{dim})
Unwrap radian phases by adding multiples of 2*pi as appropriate to
remove jumps greater than @var{tol}. @var{tol} defaults to pi.
Unwrap will work along the dimension @var{dim}. If @var{dim}
is unspecified it defaults to the first non-singleton dimension.
@end deftypefn
@c FIXME: someone needs to organize these ...
@c arch_fit scripts/signal/arch_fit.m
@anchor{XREFarch_fit}
@deftypefn {Function File} {[@var{a}, @var{b}] =} arch_fit (@var{y}, @var{x}, @var{p}, @var{iter}, @var{gamma}, @var{a0}, @var{b0})
Fit an ARCH regression model to the time series @var{y} using the
scoring algorithm in Engle's original ARCH paper. The model is
@example
@group
y(t) = b(1) * x(t,1) + @dots{} + b(k) * x(t,k) + e(t),
h(t) = a(1) + a(2) * e(t-1)^2 + @dots{} + a(p+1) * e(t-p)^2
@end group
@end example
@noindent
in which @math{e(t)} is @math{N(0, h(t))}, given a time-series vector
@var{y} up to time @math{t-1} and a matrix of (ordinary) regressors
@var{x} up to @math{t}. The order of the regression of the residual
variance is specified by @var{p}.
If invoked as @code{arch_fit (@var{y}, @var{k}, @var{p})} with a
positive integer @var{k}, fit an ARCH(@var{k}, @var{p}) process,
i.e., do the above with the @math{t}-th row of @var{x} given by
@example
[1, y(t-1), @dots{}, y(t-k)]
@end example
Optionally, one can specify the number of iterations @var{iter}, the
updating factor @var{gamma}, and initial values @math{a0} and
@math{b0} for the scoring algorithm.
@end deftypefn
@c arch_rnd scripts/signal/arch_rnd.m
@anchor{XREFarch_rnd}
@deftypefn {Function File} {} arch_rnd (@var{a}, @var{b}, @var{t})
Simulate an ARCH sequence of length @var{t} with AR
coefficients @var{b} and CH coefficients @var{a}. I.e., the result
@math{y(t)} follows the model
@c Set example in small font to prevent overfull line
@smallexample
y(t) = b(1) + b(2) * y(t-1) + @dots{} + b(lb) * y(t-lb+1) + e(t),
@end smallexample
@noindent
where @math{e(t)}, given @var{y} up to time @math{t-1}, is
@math{N(0, h(t))}, with
@c Set example in small font to prevent overfull line
@smallexample
h(t) = a(1) + a(2) * e(t-1)^2 + @dots{} + a(la) * e(t-la+1)^2
@end smallexample
@end deftypefn
@c arch_test scripts/signal/arch_test.m
@anchor{XREFarch_test}
@deftypefn {Function File} {[@var{pval}, @var{lm}] =} arch_test (@var{y}, @var{x}, @var{p})
For a linear regression model
@example
y = x * b + e
@end example
@noindent
perform a Lagrange Multiplier (LM) test of the null hypothesis of no
conditional heteroscedascity against the alternative of CH(@var{p}).
I.e., the model is
@example
y(t) = b(1) * x(t,1) + @dots{} + b(k) * x(t,k) + e(t),
@end example
@noindent
given @var{y} up to @math{t-1} and @var{x} up to @math{t},
@math{e}(t) is @math{N(0, h(t))} with
@example
h(t) = v + a(1) * e(t-1)^2 + @dots{} + a(p) * e(t-p)^2,
@end example
@noindent
and the null is @math{a(1)} == @dots{} == @math{a(p)} == 0.
If the second argument is a scalar integer, @math{k}, perform the same
test in a linear autoregression model of order @math{k}, i.e., with
@example
[1, y(t-1), @dots{}, y(t-@var{k})]
@end example
@noindent
as the @math{t}-th row of @var{x}.
Under the null, LM approximately has a chisquare distribution with
@var{p} degrees of freedom and @var{pval} is the @math{p}-value (1
minus the CDF of this distribution at LM) of the test.
If no output argument is given, the @math{p}-value is displayed.
@end deftypefn
@c arma_rnd scripts/signal/arma_rnd.m
@anchor{XREFarma_rnd}
@deftypefn {Function File} {} arma_rnd (@var{a}, @var{b}, @var{v}, @var{t}, @var{n})
Return a simulation of the ARMA model
@example
@group
x(n) = a(1) * x(n-1) + @dots{} + a(k) * x(n-k)
+ e(n) + b(1) * e(n-1) + @dots{} + b(l) * e(n-l)
@end group
@end example
@noindent
in which @var{k} is the length of vector @var{a}, @var{l} is the
length of vector @var{b} and @var{e} is Gaussian white noise with
variance @var{v}. The function returns a vector of length @var{t}.
The optional parameter @var{n} gives the number of dummy
@var{x}(@var{i}) used for initialization, i.e., a sequence of length
@var{t}+@var{n} is generated and @var{x}(@var{n}+1:@var{t}+@var{n})
is returned. If @var{n} is omitted, @var{n} = 100 is used.
@end deftypefn
@c autoreg_matrix scripts/signal/autoreg_matrix.m
@anchor{XREFautoreg_matrix}
@deftypefn {Function File} {} autoreg_matrix (@var{y}, @var{k})
Given a time series (vector) @var{y}, return a matrix with ones in the
first column and the first @var{k} lagged values of @var{y} in the
other columns. I.e., for @var{t} > @var{k}, @code{[1,
@var{y}(@var{t}-1), @dots{}, @var{y}(@var{t}-@var{k})]} is the t-th row
of the result. The resulting matrix may be used as a regressor matrix
in autoregressions.
@end deftypefn
@c bartlett scripts/signal/bartlett.m
@anchor{XREFbartlett}
@deftypefn {Function File} {} bartlett (@var{m})
Return the filter coefficients of a Bartlett (triangular) window of
length @var{m}.
For a definition of the Bartlett window, see e.g., A. V. Oppenheim &
R. W. Schafer, @cite{Discrete-Time Signal Processing}.
@end deftypefn
@c blackman scripts/signal/blackman.m
@anchor{XREFblackman}
@deftypefn {Function File} {} blackman (@var{m})
Return the filter coefficients of a Blackman window of length @var{m}.
For a definition of the Blackman window, see e.g., A. V. Oppenheim &
R. W. Schafer, @cite{Discrete-Time Signal Processing}.
@end deftypefn
@c detrend scripts/signal/detrend.m
@anchor{XREFdetrend}
@deftypefn {Function File} {} detrend (@var{x}, @var{p})
If @var{x} is a vector, @code{detrend (@var{x}, @var{p})} removes the
best fit of a polynomial of order @var{p} from the data @var{x}.
If @var{x} is a matrix, @code{detrend (@var{x}, @var{p})} does the same
for each column in @var{x}.
The second argument is optional. If it is not specified, a value of 1
is assumed. This corresponds to removing a linear trend.
The order of the polynomial can also be given as a string, in which case
@var{p} must be either @qcode{"constant"} (corresponds to
@code{@var{p}=0}) or
@qcode{"linear"} (corresponds to @code{@var{p}=1}).
@seealso{@ref{XREFpolyfit,,polyfit}}
@end deftypefn
@c diffpara scripts/signal/diffpara.m
@anchor{XREFdiffpara}
@deftypefn {Function File} {[@var{d}, @var{dd}] =} diffpara (@var{x}, @var{a}, @var{b})
Return the estimator @var{d} for the differencing parameter of an
integrated time series.
The frequencies from @math{[2*pi*a/t, 2*pi*b/T]} are used for the
estimation. If @var{b} is omitted, the interval
@math{[2*pi/T, 2*pi*a/T]} is used. If both @var{b} and @var{a} are
omitted then @math{a = 0.5 * sqrt (T)} and @math{b = 1.5 * sqrt (T)}
is used, where @math{T} is the sample size. If @var{x} is a matrix,
the differencing parameter of each column is estimated.
The estimators for all frequencies in the intervals
described above is returned in @var{dd}. The value of @var{d} is
simply the mean of @var{dd}.
Reference: P.J. Brockwell & R.A. Davis. @cite{Time Series:
Theory and Methods}. Springer 1987.
@end deftypefn
@c durbinlevinson scripts/signal/durbinlevinson.m
@anchor{XREFdurbinlevinson}
@deftypefn {Function File} {} durbinlevinson (@var{c}, @var{oldphi}, @var{oldv})
Perform one step of the Durbin-Levinson algorithm.
The vector @var{c} specifies the autocovariances @code{[gamma_0, @dots{},
gamma_t]} from lag 0 to @var{t}, @var{oldphi} specifies the
coefficients based on @var{c}(@var{t}-1) and @var{oldv} specifies the
corresponding error.
If @var{oldphi} and @var{oldv} are omitted, all steps from 1 to
@var{t} of the algorithm are performed.
@end deftypefn
@c fftshift scripts/signal/fftshift.m
@anchor{XREFfftshift}
@deftypefn {Function File} {} fftshift (@var{x})
@deftypefnx {Function File} {} fftshift (@var{x}, @var{dim})
Perform a shift of the vector @var{x}, for use with the @code{fft}
and @code{ifft} functions, in order the move the frequency 0 to the
center of the vector or matrix.
If @var{x} is a vector of @math{N} elements corresponding to @math{N}
time samples spaced by @nospell{@math{dt}}, then
@code{fftshift (fft (@var{x}))} corresponds to frequencies
@example
f = [ -(ceil((N-1)/2):-1:1)*df 0 (1:floor((N-1)/2))*df ]
@end example
@noindent
where @nospell{@math{df} = 1 / @math{dt}}.
If @var{x} is a matrix, the same holds for rows and columns. If
@var{x} is an array, then the same holds along each dimension.
The optional @var{dim} argument can be used to limit the dimension
along which the permutation occurs.
@end deftypefn
@c ifftshift scripts/signal/ifftshift.m
@anchor{XREFifftshift}
@deftypefn {Function File} {} ifftshift (@var{x})
@deftypefnx {Function File} {} ifftshift (@var{x}, @var{dim})
Undo the action of the @code{fftshift} function. For even length
@var{x}, @code{fftshift} is its own inverse, but odd lengths differ
slightly.
@end deftypefn
@c fractdiff scripts/signal/fractdiff.m
@anchor{XREFfractdiff}
@deftypefn {Function File} {} fractdiff (@var{x}, @var{d})
Compute the fractional differences @math{(1-L)^d x} where @math{L}
denotes the lag-operator and @math{d} is greater than -1.
@end deftypefn
@c hamming scripts/signal/hamming.m
@anchor{XREFhamming}
@deftypefn {Function File} {} hamming (@var{m})
Return the filter coefficients of a Hamming window of length @var{m}.
For a definition of the Hamming window, see e.g., A. V. Oppenheim &
R. W. Schafer, @cite{Discrete-Time Signal Processing}.
@end deftypefn
@c hanning scripts/signal/hanning.m
@anchor{XREFhanning}
@deftypefn {Function File} {} hanning (@var{m})
Return the filter coefficients of a Hanning window of length @var{m}.
For a definition of this window type, see e.g., A. V. Oppenheim &
R. W. Schafer, @cite{Discrete-Time Signal Processing}.
@end deftypefn
@c hurst scripts/signal/hurst.m
@anchor{XREFhurst}
@deftypefn {Function File} {} hurst (@var{x})
Estimate the Hurst parameter of sample @var{x} via the rescaled range
statistic. If @var{x} is a matrix, the parameter is estimated for
every single column.
@end deftypefn
@c pchip scripts/polynomial/pchip.m
@anchor{XREFpchip}
@deftypefn {Function File} {@var{pp} =} pchip (@var{x}, @var{y})
@deftypefnx {Function File} {@var{yi} =} pchip (@var{x}, @var{y}, @var{xi})
Return the Piecewise Cubic Hermite Interpolating Polynomial (pchip) of
points @var{x} and @var{y}.
If called with two arguments, return the piecewise polynomial @var{pp}
that may be used with @code{ppval} to evaluate the polynomial at specific
points. When called with a third input argument, @code{pchip} evaluates
the pchip polynomial at the points @var{xi}. The third calling form is
equivalent to @code{ppval (pchip (@var{x}, @var{y}), @var{xi})}.
The variable @var{x} must be a strictly monotonic vector (either
increasing or decreasing) of length @var{n}. @var{y} can be either a
vector or array. If @var{y} is a vector then it must be the same length
@var{n} as @var{x}. If @var{y} is an array then the size of @var{y} must
have the form
@tex
$$[s_1, s_2, \cdots, s_k, n]$$
@end tex
@ifnottex
@code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n}]}
@end ifnottex
The array is reshaped internally to a matrix where the leading
dimension is given by
@tex
$$s_1 s_2 \cdots s_k$$
@end tex
@ifnottex
@code{@var{s1} * @var{s2} * @dots{} * @var{sk}}
@end ifnottex
and each row of this matrix is then treated separately. Note that this
is exactly opposite to @code{interp1} but is done for @sc{matlab}
compatibility.
@seealso{@ref{XREFspline,,spline}, @ref{XREFppval,,ppval}, @ref{XREFmkpp,,mkpp}, @ref{XREFunmkpp,,unmkpp}}
@end deftypefn
@c periodogram scripts/signal/periodogram.m
@anchor{XREFperiodogram}
@deftypefn {Function File} {[Pxx, @var{w}] =} periodogram (@var{x})
For a data matrix @var{x} from a sample of size @var{n}, return the
periodogram. The angular frequency is returned in @var{w}.
[Pxx,w] = periodogram (@var{x}).
[Pxx,w] = periodogram (@var{x},win).
[Pxx,w] = periodogram (@var{x},win,nfft).
[Pxx,f] = periodogram (@var{x},win,nfft,Fs).
[Pxx,f] = periodogram (@var{x},win,nfft,Fs,"range").
@itemize
@item x: data; if real-valued a one-sided spectrum is estimated,
if complex-valued or range indicates @qcode{"@nospell{twosided}"}, the full
spectrum is estimated.
@item win: weight data with window, x.*win is used for further computation,
if window is empty, a rectangular window is used.
@item nfft: number of frequency bins, default max (256, 2.^ceil (log2 (length (x)))).
@item Fs: sampling rate, default 1.
@item range: @qcode{"@nospell{onesided}"} computes spectrum from [0..nfft/2+1].
@qcode{"@nospell{twosided}"} computes spectrum from [0..nfft-1]. These
strings can appear at any position in the list input arguments after
window.
@item @nospell{Pxx}: one-, or two-sided power spectrum.
@item w: angular frequency [0..2*pi) (two-sided) or [0..pi] one-sided.
@item f: frequency [0..Fs) (two-sided) or [0..Fs/2] one-sided.
@end itemize
@end deftypefn
@c sinetone scripts/signal/sinetone.m
@anchor{XREFsinetone}
@deftypefn {Function File} {} sinetone (@var{freq}, @var{rate}, @var{sec}, @var{ampl})
Return a sinetone of frequency @var{freq} with length of @var{sec}
seconds at sampling rate @var{rate} and with amplitude @var{ampl}.
The arguments @var{freq} and @var{ampl} may be vectors of common size.
Defaults are @var{rate} = 8000, @var{sec} = 1 and @var{ampl} = 64.
@end deftypefn
@c sinewave scripts/signal/sinewave.m
@anchor{XREFsinewave}
@deftypefn {Function File} {} sinewave (@var{m}, @var{n}, @var{d})
Return an @var{m}-element vector with @var{i}-th element given by
@code{sin (2 * pi * (@var{i}+@var{d}-1) / @var{n})}.
The default value for @var{d} is 0 and the default value for @var{n}
is @var{m}.
@end deftypefn
@c spectral_adf scripts/signal/spectral_adf.m
@anchor{XREFspectral_adf}
@deftypefn {Function File} {} spectral_adf (@var{c})
@deftypefnx {Function File} {} spectral_adf (@var{c}, @var{win})
@deftypefnx {Function File} {} spectral_adf (@var{c}, @var{win}, @var{b})
Return the spectral density estimator given a vector of
autocovariances @var{c}, window name @var{win}, and bandwidth,
@var{b}.
The window name, e.g., @qcode{"triangle"} or @qcode{"rectangle"} is
used to search for a function called @code{@var{win}_lw}.
If @var{win} is omitted, the triangle window is used. If @var{b} is
omitted, @code{1 / sqrt (length (@var{x}))} is used.
@seealso{@ref{XREFspectral_xdf,,spectral_xdf}}
@end deftypefn
@c spectral_xdf scripts/signal/spectral_xdf.m
@anchor{XREFspectral_xdf}
@deftypefn {Function File} {} spectral_xdf (@var{x})
@deftypefnx {Function File} {} spectral_xdf (@var{x}, @var{win})
@deftypefnx {Function File} {} spectral_xdf (@var{x}, @var{win}, @var{b})
Return the spectral density estimator given a data vector @var{x},
window name @var{win}, and bandwidth, @var{b}.
The window name, e.g., @qcode{"triangle"} or @qcode{"rectangle"} is
used to search for a function called @code{@var{win}_sw}.
If @var{win} is omitted, the triangle window is used. If @var{b} is
omitted, @code{1 / sqrt (length (@var{x}))} is used.
@seealso{@ref{XREFspectral_adf,,spectral_adf}}
@end deftypefn
@c spencer scripts/signal/spencer.m
@anchor{XREFspencer}
@deftypefn {Function File} {} spencer (@var{x})
Return Spencer's 15 point moving average of each column of
@var{x}.
@end deftypefn
@c stft scripts/signal/stft.m
@anchor{XREFstft}
@deftypefn {Function File} {@var{y} =} stft (@var{x})
@deftypefnx {Function File} {@var{y} =} stft (@var{x}, @var{win_size})
@deftypefnx {Function File} {@var{y} =} stft (@var{x}, @var{win_size}, @var{inc})
@deftypefnx {Function File} {@var{y} =} stft (@var{x}, @var{win_size}, @var{inc}, @var{num_coef})
@deftypefnx {Function File} {@var{y} =} stft (@var{x}, @var{win_size}, @var{inc}, @var{num_coef}, @var{win_type})
@deftypefnx {Function File} {[@var{y}, @var{c}] =} stft (@dots{})
Compute the short-time Fourier transform of the vector @var{x} with
@var{num_coef} coefficients by applying a window of @var{win_size} data
points and an increment of @var{inc} points.
Before computing the Fourier transform, one of the following windows
is applied:
@table @asis
@item @qcode{"hanning"}
win_type = 1
@item @qcode{"hamming"}
win_type = 2
@item @qcode{"rectangle"}
win_type = 3
@end table
The window names can be passed as strings or by the @var{win_type} number.
The following defaults are used for unspecified arguments:
@var{win_size} = 80, @var{inc} = 24, @var{num_coef} = 64, and
@var{win_type} = 1.
@code{@var{y} = stft (@var{x}, @dots{})} returns the absolute values
of the Fourier coefficients according to the @var{num_coef} positive
frequencies.
@code{[@var{y}, @var{c}] = stft (@code{x}, @dots{})} returns the
entire STFT-matrix @var{y} and a 3-element vector @var{c} containing
the window size, increment, and window type, which is needed by the
@code{synthesis} function.
@seealso{@ref{XREFsynthesis,,synthesis}}
@end deftypefn
@c synthesis scripts/signal/synthesis.m
@anchor{XREFsynthesis}
@deftypefn {Function File} {@var{x} =} synthesis (@var{y}, @var{c})
Compute a signal from its short-time Fourier transform @var{y} and a
3-element vector @var{c} specifying window size, increment, and
window type.
The values @var{y} and @var{c} can be derived by
@example
[@var{y}, @var{c}] = stft (@var{x} , @dots{})
@end example
@seealso{@ref{XREFstft,,stft}}
@end deftypefn
@c yulewalker scripts/signal/yulewalker.m
@anchor{XREFyulewalker}
@deftypefn {Function File} {[@var{a}, @var{v}] =} yulewalker (@var{c})
Fit an AR (p)-model with Yule-Walker estimates given a vector @var{c}
of autocovariances @code{[gamma_0, @dots{}, gamma_p]}.
Returns the AR coefficients, @var{a}, and the variance of white
noise, @var{v}.
@end deftypefn
|