1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
|
/*
Copyright (C) 2004-2013 John W. Eaton
Copyright (C) 2008-2009 Jaroslav Hajek
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <fpucw.h>
#include "lo-error.h"
#include "oct-inttypes.h"
template<class T>
const octave_int<T> octave_int<T>::zero (static_cast<T> (0));
template<class T>
const octave_int<T> octave_int<T>::one (static_cast<T> (1));
// define type names.
#define DECLARE_OCTAVE_INT_TYPENAME(TYPE, TYPENAME) \
template <> \
OCTAVE_API const char * \
octave_int<TYPE>::type_name () { return TYPENAME; }
DECLARE_OCTAVE_INT_TYPENAME (int8_t, "int8")
DECLARE_OCTAVE_INT_TYPENAME (int16_t, "int16")
DECLARE_OCTAVE_INT_TYPENAME (int32_t, "int32")
DECLARE_OCTAVE_INT_TYPENAME (int64_t, "int64")
DECLARE_OCTAVE_INT_TYPENAME (uint8_t, "uint8")
DECLARE_OCTAVE_INT_TYPENAME (uint16_t, "uint16")
DECLARE_OCTAVE_INT_TYPENAME (uint32_t, "uint32")
DECLARE_OCTAVE_INT_TYPENAME (uint64_t, "uint64")
#ifdef OCTAVE_INT_USE_LONG_DOUBLE
#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED
#define DEFINE_OCTAVE_LONG_DOUBLE_CMP_OP_TEMPLATES(T) \
template <class xop> \
bool \
octave_int_cmp_op::external_mop (double x, T y) \
{ \
DECL_LONG_DOUBLE_ROUNDING \
\
BEGIN_LONG_DOUBLE_ROUNDING (); \
\
bool retval = xop::op (static_cast<long double> (x), \
static_cast<long double> (y)); \
\
END_LONG_DOUBLE_ROUNDING (); \
\
return retval; \
} \
\
template <class xop> \
bool \
octave_int_cmp_op::external_mop (T x, double y) \
{ \
DECL_LONG_DOUBLE_ROUNDING \
\
BEGIN_LONG_DOUBLE_ROUNDING (); \
\
bool retval = xop::op (static_cast<long double> (x), \
static_cast<long double> (y)); \
\
END_LONG_DOUBLE_ROUNDING (); \
\
return retval; \
}
DEFINE_OCTAVE_LONG_DOUBLE_CMP_OP_TEMPLATES (int64_t)
DEFINE_OCTAVE_LONG_DOUBLE_CMP_OP_TEMPLATES (uint64_t)
#define INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP(OP, T) \
template OCTAVE_API bool \
octave_int_cmp_op::external_mop<octave_int_cmp_op::OP> (double, T); \
template OCTAVE_API bool \
octave_int_cmp_op::external_mop<octave_int_cmp_op::OP> (T, double)
#define INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OPS(T) \
INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (lt, T); \
INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (le, T); \
INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (gt, T); \
INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (ge, T); \
INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (eq, T); \
INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (ne, T)
INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OPS (int64_t);
INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OPS (uint64_t);
uint64_t
octave_external_uint64_uint64_mul (uint64_t x, uint64_t y)
{
DECL_LONG_DOUBLE_ROUNDING
BEGIN_LONG_DOUBLE_ROUNDING ();
uint64_t retval = octave_int_arith_base<uint64_t, false>::mul_internal (x, y);
END_LONG_DOUBLE_ROUNDING ();
return retval;
}
int64_t
octave_external_int64_int64_mul (int64_t x, int64_t y)
{
DECL_LONG_DOUBLE_ROUNDING
BEGIN_LONG_DOUBLE_ROUNDING ();
int64_t retval = octave_int_arith_base<int64_t, true>::mul_internal (x, y);
END_LONG_DOUBLE_ROUNDING ();
return retval;
}
// Note that if we return long double it is apparently possible for
// truncation to happen at the point of storing the result in retval,
// which can happen after we end long double rounding. Attempt to avoid
// that problem by storing the full precision temporary value in the
// integer value before we end the long double rounding mode.
// Similarly, the conversion from the 64-bit integer type to long double
// must also occur in long double rounding mode.
#define OCTAVE_LONG_DOUBLE_OP(T, OP, NAME) \
T \
external_double_ ## T ## _ ## NAME (double x, T y) \
{ \
DECL_LONG_DOUBLE_ROUNDING \
\
BEGIN_LONG_DOUBLE_ROUNDING (); \
\
T retval = T (x OP static_cast<long double> (y.value ())); \
\
END_LONG_DOUBLE_ROUNDING (); \
\
return retval; \
} \
\
T \
external_ ## T ## _double_ ## NAME (T x, double y) \
{ \
DECL_LONG_DOUBLE_ROUNDING \
\
BEGIN_LONG_DOUBLE_ROUNDING (); \
\
T retval = T (static_cast<long double> (x.value ()) OP y); \
\
END_LONG_DOUBLE_ROUNDING (); \
\
return retval; \
}
#define OCTAVE_LONG_DOUBLE_OPS(T) \
OCTAVE_LONG_DOUBLE_OP (T, +, add); \
OCTAVE_LONG_DOUBLE_OP (T, -, sub); \
OCTAVE_LONG_DOUBLE_OP (T, *, mul); \
OCTAVE_LONG_DOUBLE_OP (T, /, div)
OCTAVE_LONG_DOUBLE_OPS(octave_int64);
OCTAVE_LONG_DOUBLE_OPS(octave_uint64);
#endif
#else
// Define comparison operators
template <class xop>
bool
octave_int_cmp_op::emulate_mop (uint64_t x, double y)
{
static const double xxup = std::numeric_limits<uint64_t>::max ();
// This converts to the nearest double. Unless there's an equality, the
// result is clear.
double xx = x;
if (xx != y)
return xop::op (xx, y);
else
{
// If equality occured we compare as integers.
if (xx == xxup)
return xop::gtval;
else
return xop::op (x, static_cast<uint64_t> (xx));
}
}
template <class xop>
bool
octave_int_cmp_op::emulate_mop (int64_t x, double y)
{
static const double xxup = std::numeric_limits<int64_t>::max ();
static const double xxlo = std::numeric_limits<int64_t>::min ();
// This converts to the nearest double. Unless there's an equality, the
// result is clear.
double xx = x;
if (xx != y)
return xop::op (xx, y);
else
{
// If equality occured we compare as integers.
if (xx == xxup)
return xop::gtval;
else if (xx == xxlo)
return xop::ltval;
else
return xop::op (x, static_cast<int64_t> (xx));
}
}
// We define double-int operations by reverting the operator
// A trait class reverting the operator
template <class xop>
class rev_op
{
public:
typedef xop op;
};
#define DEFINE_REVERTED_OPERATOR(OP1,OP2) \
template <> \
class rev_op<octave_int_cmp_op::OP1> \
{ \
public: \
typedef octave_int_cmp_op::OP2 op; \
}
DEFINE_REVERTED_OPERATOR(lt,gt);
DEFINE_REVERTED_OPERATOR(gt,lt);
DEFINE_REVERTED_OPERATOR(le,ge);
DEFINE_REVERTED_OPERATOR(ge,le);
template <class xop>
bool
octave_int_cmp_op::emulate_mop (double x, uint64_t y)
{
typedef typename rev_op<xop>::op rop;
return mop<rop> (y, x);
}
template <class xop>
bool
octave_int_cmp_op::emulate_mop (double x, int64_t y)
{
typedef typename rev_op<xop>::op rop;
return mop<rop> (y, x);
}
// Define handlers for int64 multiplication
template <>
uint64_t
octave_int_arith_base<uint64_t, false>::mul_internal (uint64_t x, uint64_t y)
{
// Get upper words
uint64_t ux = x >> 32, uy = y >> 32;
uint64_t res;
if (ux)
{
if (uy)
goto overflow;
else
{
uint64_t ly = static_cast<uint32_t> (y), uxly = ux*ly;
if (uxly >> 32)
goto overflow;
uxly <<= 32; // never overflows
uint64_t lx = static_cast<uint32_t> (x), lxly = lx*ly;
res = add (uxly, lxly);
}
}
else if (uy)
{
uint64_t lx = static_cast<uint32_t> (x), uylx = uy*lx;
if (uylx >> 32)
goto overflow;
uylx <<= 32; // never overflows
uint64_t ly = static_cast<uint32_t> (y), lylx = ly*lx;
res = add (uylx, lylx);
}
else
{
uint64_t lx = static_cast<uint32_t> (x);
uint64_t ly = static_cast<uint32_t> (y);
res = lx*ly;
}
return res;
overflow:
return max_val ();
}
template <>
int64_t
octave_int_arith_base<int64_t, true>::mul_internal (int64_t x, int64_t y)
{
// The signed case is far worse. The problem is that
// even if neither integer fits into signed 32-bit range, the result may
// still be OK. Uh oh.
// Essentially, what we do is compute sign, multiply absolute values
// (as above) and impose the sign.
// FIXME: can we do something faster if we HAVE_FAST_INT_OPS?
uint64_t usx = octave_int_abs (x), usy = octave_int_abs (y);
bool positive = (x < 0) == (y < 0);
// Get upper words
uint64_t ux = usx >> 32, uy = usy >> 32;
uint64_t res;
if (ux)
{
if (uy)
goto overflow;
else
{
uint64_t ly = static_cast<uint32_t> (usy), uxly = ux*ly;
if (uxly >> 32)
goto overflow;
uxly <<= 32; // never overflows
uint64_t lx = static_cast<uint32_t> (usx), lxly = lx*ly;
res = uxly + lxly;
if (res < uxly)
goto overflow;
}
}
else if (uy)
{
uint64_t lx = static_cast<uint32_t> (usx), uylx = uy*lx;
if (uylx >> 32)
goto overflow;
uylx <<= 32; // never overflows
uint64_t ly = static_cast<uint32_t> (usy), lylx = ly*lx;
res = uylx + lylx;
if (res < uylx)
goto overflow;
}
else
{
uint64_t lx = static_cast<uint32_t> (usx);
uint64_t ly = static_cast<uint32_t> (usy);
res = lx*ly;
}
if (positive)
{
if (res > static_cast<uint64_t> (max_val ()))
{
return max_val ();
}
else
return static_cast<int64_t> (res);
}
else
{
if (res > static_cast<uint64_t> (-min_val ()))
{
return min_val ();
}
else
return -static_cast<int64_t> (res);
}
overflow:
return positive ? max_val () : min_val ();
}
#define INT_DOUBLE_BINOP_DECL(OP,SUFFIX) \
template <> \
OCTAVE_API octave_ ## SUFFIX \
operator OP (const octave_ ## SUFFIX & x, const double& y)
#define DOUBLE_INT_BINOP_DECL(OP,SUFFIX) \
template <> \
OCTAVE_API octave_ ## SUFFIX \
operator OP (const double& x, const octave_ ## SUFFIX & y)
INT_DOUBLE_BINOP_DECL (+, uint64)
{
return (y < 0) ? x - octave_uint64 (-y) : x + octave_uint64 (y);
}
DOUBLE_INT_BINOP_DECL (+, uint64)
{ return y + x; }
INT_DOUBLE_BINOP_DECL (+, int64)
{
if (fabs (y) < static_cast<double> (octave_int64::max ()))
return x + octave_int64 (y);
else
{
// If the number is within the int64 range (the most common case,
// probably), the above will work as expected. If not, it's more
// complicated - as long as y is within _twice_ the signed range, the
// result may still be an integer. An instance of such an operation is
// 3*2**62 + (1+intmin ('int64')) that should yield int64 (2**62) + 1. So
// what we do is to try to convert y/2 and add it twice. Note that if y/2
// overflows, the result must overflow as well, and that y/2 cannot be a
// fractional number.
octave_int64 y2 (y / 2);
return (x + y2) + y2;
}
}
DOUBLE_INT_BINOP_DECL (+, int64)
{
return y + x;
}
INT_DOUBLE_BINOP_DECL (-, uint64)
{
return x + (-y);
}
DOUBLE_INT_BINOP_DECL (-, uint64)
{
if (x <= static_cast<double> (octave_uint64::max ()))
return octave_uint64 (x) - y;
else
{
// Again a trick to get the corner cases right. Things like
// 3**2**63 - intmax ('uint64') should produce the correct result, i.e.
// int64 (2**63) + 1.
const double p2_64 = std::pow (2.0, 64);
if (y.bool_value ())
{
const uint64_t p2_64my = (~y.value ()) + 1; // Equals 2**64 - y
return octave_uint64 (x - p2_64) + octave_uint64 (p2_64my);
}
else
return octave_uint64 (p2_64);
}
}
INT_DOUBLE_BINOP_DECL (-, int64)
{
return x + (-y);
}
DOUBLE_INT_BINOP_DECL (-, int64)
{
static const bool twosc = (std::numeric_limits<int64_t>::min ()
< -std::numeric_limits<int64_t>::max ());
// In case of symmetric integers (not two's complement), this will probably
// be eliminated at compile time.
if (twosc && y.value () == std::numeric_limits<int64_t>::min ())
{
return octave_int64 (x + std::pow (2.0, 63));
}
else
return x + (-y);
}
// NOTE:
// Emulated mixed multiplications are tricky due to possible precision loss.
// Here, after sorting out common cases for speed, we follow the strategy
// of converting the double number into the form sign * 64-bit integer *
// 2**exponent, multiply the 64-bit integers to get a 128-bit number, split that
// number into 32-bit words and form 4 double-valued summands (none of which
// loses precision), then convert these into integers and sum them. Though it is
// not immediately obvious, this should work even w.r.t. rounding (none of the
// summands lose precision).
// Multiplies two unsigned 64-bit ints to get a 128-bit number represented
// as four 32-bit words.
static void
umul128 (uint64_t x, uint64_t y, uint32_t w[4])
{
uint64_t lx = static_cast<uint32_t> (x), ux = x >> 32;
uint64_t ly = static_cast<uint32_t> (y), uy = y >> 32;
uint64_t a = lx * ly;
w[0] = a; a >>= 32;
uint64_t uxly = ux*ly, uylx = uy*lx;
a += static_cast<uint32_t> (uxly); uxly >>= 32;
a += static_cast<uint32_t> (uylx); uylx >>= 32;
w[1] = a; a >>= 32;
uint64_t uxuy = ux * uy;
a += uxly; a += uylx; a += uxuy;
w[2] = a; a >>= 32;
w[3] = a;
}
// Splits a double into bool sign, unsigned 64-bit mantissa and int exponent
static void
dblesplit (double x, bool& sign, uint64_t& mtis, int& exp)
{
sign = x < 0; x = fabs (x);
x = gnulib::frexp (x, &exp);
exp -= 52;
mtis = static_cast<uint64_t> (ldexp (x, 52));
}
// Gets a double number from a
// 32-bit unsigned integer mantissa, exponent, and sign.
static double
dbleget (bool sign, uint32_t mtis, int exp)
{
double x = ldexp (static_cast<double> (mtis), exp);
return sign ? -x : x;
}
INT_DOUBLE_BINOP_DECL (*, uint64)
{
if (y >= 0 && y < octave_uint64::max () && y == xround (y))
{
return x * octave_uint64 (static_cast<uint64_t> (y));
}
else if (y == 0.5)
{
return x / octave_uint64 (static_cast<uint64_t> (2));
}
else if (y < 0 || xisnan (y) || xisinf (y))
{
return octave_uint64 (x.value () * y);
}
else
{
bool sign;
uint64_t my;
int e;
dblesplit (y, sign, my, e);
uint32_t w[4];
umul128 (x.value (), my, w);
octave_uint64 res = octave_uint64::zero;
for (short i = 0; i < 4; i++)
{
res += octave_uint64 (dbleget (sign, w[i], e));
e += 32;
}
return res;
}
}
DOUBLE_INT_BINOP_DECL (*, uint64)
{ return y * x; }
INT_DOUBLE_BINOP_DECL (*, int64)
{
if (fabs (y) < octave_int64::max () && y == xround (y))
{
return x * octave_int64 (static_cast<int64_t> (y));
}
else if (fabs (y) == 0.5)
{
return x / octave_int64 (static_cast<uint64_t> (4*y));
}
else if (xisnan (y) || xisinf (y))
{
return octave_int64 (x.value () * y);
}
else
{
bool sign;
uint64_t my;
int e;
dblesplit (y, sign, my, e);
uint32_t w[4];
sign = (sign != (x.value () < 0));
umul128 (octave_int_abs (x.value ()), my, w);
octave_int64 res = octave_int64::zero;
for (short i = 0; i < 4; i++)
{
res += octave_int64 (dbleget (sign, w[i], e));
e += 32;
}
return res;
}
}
DOUBLE_INT_BINOP_DECL (*, int64)
{ return y * x; }
DOUBLE_INT_BINOP_DECL (/, uint64)
{
return octave_uint64 (x / static_cast<double> (y));
}
DOUBLE_INT_BINOP_DECL (/, int64)
{
return octave_int64 (x / static_cast<double> (y));
}
INT_DOUBLE_BINOP_DECL (/, uint64)
{
if (y >= 0 && y < octave_uint64::max () && y == xround (y))
{
return x / octave_uint64 (y);
}
else
return x * (1.0/y);
}
INT_DOUBLE_BINOP_DECL (/, int64)
{
if (fabs (y) < octave_int64::max () && y == xround (y))
{
return x / octave_int64 (y);
}
else
return x * (1.0/y);
}
#define INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP,T1,T2) \
template OCTAVE_API bool \
octave_int_cmp_op::emulate_mop<octave_int_cmp_op::OP> (T1 x, T2 y)
#define INSTANTIATE_INT64_DOUBLE_CMP_OP(OP) \
INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP, double, int64_t); \
INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP, double, uint64_t); \
INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP, int64_t, double); \
INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP, uint64_t, double)
INSTANTIATE_INT64_DOUBLE_CMP_OP(lt);
INSTANTIATE_INT64_DOUBLE_CMP_OP(le);
INSTANTIATE_INT64_DOUBLE_CMP_OP(gt);
INSTANTIATE_INT64_DOUBLE_CMP_OP(ge);
INSTANTIATE_INT64_DOUBLE_CMP_OP(eq);
INSTANTIATE_INT64_DOUBLE_CMP_OP(ne);
#endif
//template <class T>
//bool
//xisnan (const octave_int<T>&)
//{
// return false;
//}
template <class T>
octave_int<T>
pow (const octave_int<T>& a, const octave_int<T>& b)
{
octave_int<T> retval;
octave_int<T> zero = static_cast<T> (0);
octave_int<T> one = static_cast<T> (1);
if (b == zero || a == one)
retval = one;
else if (b < zero)
{
if (a == -one)
retval = (b.value () % 2) ? a : one;
else
retval = zero;
}
else
{
octave_int<T> a_val = a;
T b_val = b; // no need to do saturation on b
retval = a;
b_val -= 1;
while (b_val != 0)
{
if (b_val & 1)
retval = retval * a_val;
b_val = b_val >> 1;
if (b_val)
a_val = a_val * a_val;
}
}
return retval;
}
template <class T>
octave_int<T>
pow (const double& a, const octave_int<T>& b)
{ return octave_int<T> (pow (a, b.double_value ())); }
template <class T>
octave_int<T>
pow (const octave_int<T>& a, const double& b)
{
return ((b >= 0 && b < std::numeric_limits<T>::digits && b == xround (b))
? pow (a, octave_int<T> (static_cast<T> (b)))
: octave_int<T> (pow (a.double_value (), b)));
}
template <class T>
octave_int<T>
pow (const float& a, const octave_int<T>& b)
{ return octave_int<T> (pow (a, b.float_value ())); }
template <class T>
octave_int<T>
pow (const octave_int<T>& a, const float& b)
{
return ((b >= 0 && b < std::numeric_limits<T>::digits && b == xround (b))
? pow (a, octave_int<T> (static_cast<T> (b)))
: octave_int<T> (pow (a.double_value (), static_cast<double> (b))));
}
// FIXME: Do we really need a differently named single-precision
// function integer power function here instead of an overloaded
// one?
template <class T>
octave_int<T>
powf (const float& a, const octave_int<T>& b)
{ return octave_int<T> (pow (a, b.float_value ())); }
template <class T>
octave_int<T>
powf (const octave_int<T>& a, const float& b)
{
return ((b >= 0 && b < std::numeric_limits<T>::digits && b == xround (b))
? pow (a, octave_int<T> (static_cast<T> (b)))
: octave_int<T> (pow (a.double_value (), static_cast<double> (b))));
}
#define INSTANTIATE_INTTYPE(T) \
template class OCTAVE_API octave_int<T>; \
template OCTAVE_API octave_int<T> pow (const octave_int<T>&, const octave_int<T>&); \
template OCTAVE_API octave_int<T> pow (const double&, const octave_int<T>&); \
template OCTAVE_API octave_int<T> pow (const octave_int<T>&, const double&); \
template OCTAVE_API octave_int<T> pow (const float&, const octave_int<T>&); \
template OCTAVE_API octave_int<T> pow (const octave_int<T>&, const float&); \
template OCTAVE_API octave_int<T> powf (const float&, const octave_int<T>&); \
template OCTAVE_API octave_int<T> powf (const octave_int<T>&, const float&); \
template OCTAVE_API octave_int<T> \
bitshift (const octave_int<T>&, int, const octave_int<T>&); \
INSTANTIATE_INTTYPE (int8_t);
INSTANTIATE_INTTYPE (int16_t);
INSTANTIATE_INTTYPE (int32_t);
INSTANTIATE_INTTYPE (int64_t);
INSTANTIATE_INTTYPE (uint8_t);
INSTANTIATE_INTTYPE (uint16_t);
INSTANTIATE_INTTYPE (uint32_t);
INSTANTIATE_INTTYPE (uint64_t);
/*
%!assert (intmax ("int64") / intmin ("int64"), int64 (-1))
%!assert (intmin ("int64") / int64 (-1), intmax ("int64"))
%!assert (int64 (2**63), intmax ("int64"))
%!assert (uint64 (2**64), intmax ("uint64"))
%!test
%! a = 1.9*2^61; b = uint64 (a); b++; assert (b > a);
%!test
%! a = -1.9*2^61; b = int64 (a); b++; assert (b > a);
%!test
%! a = int64 (-2**60) + 2; assert (1.25*a == (5*a)/4);
%!test
%! a = uint64 (2**61) + 2; assert (1.25*a == (5*a)/4);
%!assert (int32 (2**31+0.5), intmax ("int32"))
%!assert (int32 (-2**31-0.5), intmin ("int32"))
%!assert ((int64 (2**62)+1)**1, int64 (2**62)+1)
%!assert ((int64 (2**30)+1)**2, int64 (2**60+2**31) + 1)
%!assert (uint8 (char (128)), uint8 (128));
%!assert (uint8 (char (255)), uint8 (255));
%!assert (int8 (char (128)), int8 (128));
%!assert (int8 (char (255)), int8 (255));
%!assert (uint16 (char (128)), uint16 (128));
%!assert (uint16 (char (255)), uint16 (255));
%!assert (int16 (char (128)), int16 (128));
%!assert (int16 (char (255)), int16 (255));
%!assert (uint32 (char (128)), uint32 (128));
%!assert (uint32 (char (255)), uint32 (255));
%!assert (int32 (char (128)), int32 (128));
%!assert (int32 (char (255)), int32 (255));
%!assert (uint64 (char (128)), uint64 (128));
%!assert (uint64 (char (255)), uint64 (255));
%!assert (int64 (char (128)), int64 (128));
%!assert (int64 (char (255)), int64 (255));
*/
|