File: oct-inttypes.cc

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (807 lines) | stat: -rw-r--r-- 21,563 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
/*

Copyright (C) 2004-2013 John W. Eaton
Copyright (C) 2008-2009 Jaroslav Hajek

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <fpucw.h>

#include "lo-error.h"

#include "oct-inttypes.h"

template<class T>
const octave_int<T> octave_int<T>::zero (static_cast<T> (0));

template<class T>
const octave_int<T> octave_int<T>::one (static_cast<T> (1));

// define type names.
#define DECLARE_OCTAVE_INT_TYPENAME(TYPE, TYPENAME) \
  template <> \
  OCTAVE_API const char * \
  octave_int<TYPE>::type_name () { return TYPENAME; }

DECLARE_OCTAVE_INT_TYPENAME (int8_t, "int8")
DECLARE_OCTAVE_INT_TYPENAME (int16_t, "int16")
DECLARE_OCTAVE_INT_TYPENAME (int32_t, "int32")
DECLARE_OCTAVE_INT_TYPENAME (int64_t, "int64")
DECLARE_OCTAVE_INT_TYPENAME (uint8_t, "uint8")
DECLARE_OCTAVE_INT_TYPENAME (uint16_t, "uint16")
DECLARE_OCTAVE_INT_TYPENAME (uint32_t, "uint32")
DECLARE_OCTAVE_INT_TYPENAME (uint64_t, "uint64")

#ifdef OCTAVE_INT_USE_LONG_DOUBLE

#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED

#define DEFINE_OCTAVE_LONG_DOUBLE_CMP_OP_TEMPLATES(T) \
  template <class xop> \
  bool \
  octave_int_cmp_op::external_mop (double x, T y) \
  { \
     DECL_LONG_DOUBLE_ROUNDING \
   \
     BEGIN_LONG_DOUBLE_ROUNDING (); \
   \
     bool retval = xop::op (static_cast<long double> (x), \
                            static_cast<long double> (y)); \
   \
     END_LONG_DOUBLE_ROUNDING (); \
   \
     return retval; \
  } \
   \
  template <class xop> \
  bool \
  octave_int_cmp_op::external_mop (T x, double y) \
  { \
     DECL_LONG_DOUBLE_ROUNDING \
   \
     BEGIN_LONG_DOUBLE_ROUNDING (); \
   \
     bool retval = xop::op (static_cast<long double> (x), \
                            static_cast<long double> (y)); \
   \
     END_LONG_DOUBLE_ROUNDING (); \
   \
     return retval; \
  }

DEFINE_OCTAVE_LONG_DOUBLE_CMP_OP_TEMPLATES (int64_t)
DEFINE_OCTAVE_LONG_DOUBLE_CMP_OP_TEMPLATES (uint64_t)

#define INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP(OP, T) \
  template OCTAVE_API bool \
  octave_int_cmp_op::external_mop<octave_int_cmp_op::OP> (double, T); \
  template OCTAVE_API bool \
  octave_int_cmp_op::external_mop<octave_int_cmp_op::OP> (T, double)

#define INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OPS(T) \
  INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (lt, T); \
  INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (le, T); \
  INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (gt, T); \
  INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (ge, T); \
  INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (eq, T); \
  INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OP (ne, T)

INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OPS (int64_t);
INSTANTIATE_LONG_DOUBLE_LONG_DOUBLE_CMP_OPS (uint64_t);

uint64_t
octave_external_uint64_uint64_mul (uint64_t x, uint64_t y)
{
  DECL_LONG_DOUBLE_ROUNDING

  BEGIN_LONG_DOUBLE_ROUNDING ();

  uint64_t retval = octave_int_arith_base<uint64_t, false>::mul_internal (x, y);

  END_LONG_DOUBLE_ROUNDING ();

  return retval;
}

int64_t
octave_external_int64_int64_mul (int64_t x, int64_t y)
{
  DECL_LONG_DOUBLE_ROUNDING

  BEGIN_LONG_DOUBLE_ROUNDING ();

  int64_t retval = octave_int_arith_base<int64_t, true>::mul_internal (x, y);

  END_LONG_DOUBLE_ROUNDING ();

  return retval;
}

// Note that if we return long double it is apparently possible for
// truncation to happen at the point of storing the result in retval,
// which can happen after we end long double rounding.  Attempt to avoid
// that problem by storing the full precision temporary value in the
// integer value before we end the long double rounding mode.
// Similarly, the conversion from the 64-bit integer type to long double
// must also occur in long double rounding mode.

#define OCTAVE_LONG_DOUBLE_OP(T, OP, NAME) \
  T \
  external_double_ ## T ## _ ## NAME (double x, T y) \
  { \
    DECL_LONG_DOUBLE_ROUNDING \
 \
    BEGIN_LONG_DOUBLE_ROUNDING (); \
 \
    T retval = T (x OP static_cast<long double> (y.value ())); \
 \
    END_LONG_DOUBLE_ROUNDING (); \
 \
    return retval; \
  } \
 \
  T \
  external_ ## T ## _double_ ## NAME (T x, double y) \
  { \
    DECL_LONG_DOUBLE_ROUNDING \
 \
    BEGIN_LONG_DOUBLE_ROUNDING (); \
 \
    T retval = T (static_cast<long double> (x.value ()) OP y); \
 \
    END_LONG_DOUBLE_ROUNDING (); \
 \
    return retval; \
  }

#define OCTAVE_LONG_DOUBLE_OPS(T) \
  OCTAVE_LONG_DOUBLE_OP (T, +, add); \
  OCTAVE_LONG_DOUBLE_OP (T, -, sub); \
  OCTAVE_LONG_DOUBLE_OP (T, *, mul); \
  OCTAVE_LONG_DOUBLE_OP (T, /, div)

OCTAVE_LONG_DOUBLE_OPS(octave_int64);
OCTAVE_LONG_DOUBLE_OPS(octave_uint64);

#endif

#else

// Define comparison operators

template <class xop>
bool
octave_int_cmp_op::emulate_mop (uint64_t x, double y)
{
  static const double xxup = std::numeric_limits<uint64_t>::max ();
  // This converts to the nearest double. Unless there's an equality, the
  // result is clear.
  double xx = x;
  if (xx != y)
    return xop::op (xx, y);
  else
    {
      // If equality occured we compare as integers.
      if (xx == xxup)
        return xop::gtval;
      else
        return xop::op (x, static_cast<uint64_t> (xx));
    }
}

template <class xop>
bool
octave_int_cmp_op::emulate_mop (int64_t x, double y)
{
  static const double xxup = std::numeric_limits<int64_t>::max ();
  static const double xxlo = std::numeric_limits<int64_t>::min ();
  // This converts to the nearest double. Unless there's an equality, the
  // result is clear.
  double xx = x;
  if (xx != y)
    return xop::op (xx, y);
  else
    {
      // If equality occured we compare as integers.
      if (xx == xxup)
        return xop::gtval;
      else if (xx == xxlo)
        return xop::ltval;
      else
        return xop::op (x, static_cast<int64_t> (xx));
    }

}

// We define double-int operations by reverting the operator

// A trait class reverting the operator
template <class xop>
class rev_op
{
public:
  typedef xop op;
};

#define DEFINE_REVERTED_OPERATOR(OP1,OP2) \
  template <> \
  class rev_op<octave_int_cmp_op::OP1> \
  { \
  public: \
    typedef octave_int_cmp_op::OP2 op; \
  }

DEFINE_REVERTED_OPERATOR(lt,gt);
DEFINE_REVERTED_OPERATOR(gt,lt);
DEFINE_REVERTED_OPERATOR(le,ge);
DEFINE_REVERTED_OPERATOR(ge,le);

template <class xop>
bool
octave_int_cmp_op::emulate_mop (double x, uint64_t y)
{
  typedef typename rev_op<xop>::op rop;
  return mop<rop> (y, x);
}

template <class xop>
bool
octave_int_cmp_op::emulate_mop (double x, int64_t y)
{
  typedef typename rev_op<xop>::op rop;
  return mop<rop> (y, x);
}


// Define handlers for int64 multiplication

template <>
uint64_t
octave_int_arith_base<uint64_t, false>::mul_internal (uint64_t x, uint64_t y)
{
  // Get upper words
  uint64_t ux = x >> 32, uy = y >> 32;
  uint64_t res;
  if (ux)
    {
      if (uy)
        goto overflow;
      else
        {
          uint64_t ly = static_cast<uint32_t> (y), uxly = ux*ly;
          if (uxly >> 32)
            goto overflow;
          uxly <<= 32; // never overflows
          uint64_t lx = static_cast<uint32_t> (x), lxly = lx*ly;
          res = add (uxly, lxly);
        }
    }
  else if (uy)
    {
      uint64_t lx = static_cast<uint32_t> (x), uylx = uy*lx;
      if (uylx >> 32)
        goto overflow;
      uylx <<= 32; // never overflows
      uint64_t ly = static_cast<uint32_t> (y), lylx = ly*lx;
      res = add (uylx, lylx);
    }
  else
    {
      uint64_t lx = static_cast<uint32_t> (x);
      uint64_t ly = static_cast<uint32_t> (y);
      res = lx*ly;
    }

  return res;

overflow:
  return max_val ();
}

template <>
int64_t
octave_int_arith_base<int64_t, true>::mul_internal (int64_t x, int64_t y)
{
  // The signed case is far worse. The problem is that
  // even if neither integer fits into signed 32-bit range, the result may
  // still be OK. Uh oh.

  // Essentially, what we do is compute sign, multiply absolute values
  // (as above) and impose the sign.
  // FIXME: can we do something faster if we HAVE_FAST_INT_OPS?

  uint64_t usx = octave_int_abs (x), usy = octave_int_abs (y);
  bool positive = (x < 0) == (y < 0);

  // Get upper words
  uint64_t ux = usx >> 32, uy = usy >> 32;
  uint64_t res;
  if (ux)
    {
      if (uy)
        goto overflow;
      else
        {
          uint64_t ly = static_cast<uint32_t> (usy), uxly = ux*ly;
          if (uxly >> 32)
            goto overflow;
          uxly <<= 32; // never overflows
          uint64_t lx = static_cast<uint32_t> (usx), lxly = lx*ly;
          res = uxly + lxly;
          if (res < uxly)
            goto overflow;
        }
    }
  else if (uy)
    {
      uint64_t lx = static_cast<uint32_t> (usx), uylx = uy*lx;
      if (uylx >> 32)
        goto overflow;
      uylx <<= 32; // never overflows
      uint64_t ly = static_cast<uint32_t> (usy), lylx = ly*lx;
      res = uylx + lylx;
      if (res < uylx)
        goto overflow;
    }
  else
    {
      uint64_t lx = static_cast<uint32_t> (usx);
      uint64_t ly = static_cast<uint32_t> (usy);
      res = lx*ly;
    }

  if (positive)
    {
      if (res > static_cast<uint64_t> (max_val ()))
        {
          return max_val ();
        }
      else
        return static_cast<int64_t> (res);
    }
  else
    {
      if (res > static_cast<uint64_t> (-min_val ()))
        {
          return min_val ();
        }
      else
        return -static_cast<int64_t> (res);
    }


overflow:
  return positive ? max_val () : min_val ();

}

#define INT_DOUBLE_BINOP_DECL(OP,SUFFIX) \
  template <> \
  OCTAVE_API octave_ ## SUFFIX \
  operator OP (const octave_ ## SUFFIX & x, const double& y)

#define DOUBLE_INT_BINOP_DECL(OP,SUFFIX) \
  template <> \
  OCTAVE_API octave_ ## SUFFIX \
  operator OP (const double& x, const octave_ ## SUFFIX & y)

INT_DOUBLE_BINOP_DECL (+, uint64)
{
  return (y < 0) ? x - octave_uint64 (-y) : x + octave_uint64 (y);
}

DOUBLE_INT_BINOP_DECL (+, uint64)
{ return y + x; }

INT_DOUBLE_BINOP_DECL (+, int64)
{
  if (fabs (y) < static_cast<double> (octave_int64::max ()))
    return x + octave_int64 (y);
  else
    {
      // If the number is within the int64 range (the most common case,
      // probably), the above will work as expected. If not, it's more
      // complicated - as long as y is within _twice_ the signed range, the
      // result may still be an integer. An instance of such an operation is
      // 3*2**62 + (1+intmin ('int64')) that should yield int64 (2**62) + 1.  So
      // what we do is to try to convert y/2 and add it twice. Note that if y/2
      // overflows, the result must overflow as well, and that y/2 cannot be a
      // fractional number.
      octave_int64 y2 (y / 2);
      return (x + y2) + y2;
    }
}

DOUBLE_INT_BINOP_DECL (+, int64)
{
  return y + x;
}

INT_DOUBLE_BINOP_DECL (-, uint64)
{
  return x + (-y);
}

DOUBLE_INT_BINOP_DECL (-, uint64)
{
  if (x <= static_cast<double> (octave_uint64::max ()))
    return octave_uint64 (x) - y;
  else
    {
      // Again a trick to get the corner cases right. Things like
      // 3**2**63 - intmax ('uint64') should produce the correct result, i.e.
      // int64 (2**63) + 1.
      const double p2_64 = std::pow (2.0, 64);
      if (y.bool_value ())
        {
          const uint64_t p2_64my = (~y.value ()) + 1; // Equals 2**64 - y
          return octave_uint64 (x - p2_64) + octave_uint64 (p2_64my);
        }
      else
        return octave_uint64 (p2_64);
    }
}

INT_DOUBLE_BINOP_DECL (-, int64)
{
  return x + (-y);
}

DOUBLE_INT_BINOP_DECL (-, int64)
{
  static const bool twosc = (std::numeric_limits<int64_t>::min ()
                             < -std::numeric_limits<int64_t>::max ());
  // In case of symmetric integers (not two's complement), this will probably
  // be eliminated at compile time.
  if (twosc && y.value () == std::numeric_limits<int64_t>::min ())
    {
      return octave_int64 (x + std::pow (2.0, 63));
    }
  else
    return x + (-y);
}

// NOTE:
// Emulated mixed multiplications are tricky due to possible precision loss.
// Here, after sorting out common cases for speed, we follow the strategy
// of converting the double number into the form sign * 64-bit integer *
// 2**exponent, multiply the 64-bit integers to get a 128-bit number, split that
// number into 32-bit words and form 4 double-valued summands (none of which
// loses precision), then convert these into integers and sum them. Though it is
// not immediately obvious, this should work even w.r.t. rounding (none of the
// summands lose precision).

// Multiplies two unsigned 64-bit ints to get a 128-bit number represented
// as four 32-bit words.
static void
umul128 (uint64_t x, uint64_t y, uint32_t w[4])
{
  uint64_t lx = static_cast<uint32_t> (x), ux = x >> 32;
  uint64_t ly = static_cast<uint32_t> (y), uy = y >> 32;
  uint64_t a = lx * ly;
  w[0] = a; a >>= 32;
  uint64_t uxly = ux*ly, uylx = uy*lx;
  a += static_cast<uint32_t> (uxly); uxly >>= 32;
  a += static_cast<uint32_t> (uylx); uylx >>= 32;
  w[1] = a; a >>= 32;
  uint64_t uxuy = ux * uy;
  a += uxly; a += uylx; a += uxuy;
  w[2] = a; a >>= 32;
  w[3] = a;
}

// Splits a double into bool sign, unsigned 64-bit mantissa and int exponent
static void
dblesplit (double x, bool& sign, uint64_t& mtis, int& exp)
{
  sign = x < 0; x = fabs (x);
  x = gnulib::frexp (x, &exp);
  exp -= 52;
  mtis = static_cast<uint64_t> (ldexp (x, 52));
}

// Gets a double number from a
// 32-bit unsigned integer mantissa, exponent, and sign.
static double
dbleget (bool sign, uint32_t mtis, int exp)
{
  double x = ldexp (static_cast<double> (mtis), exp);
  return sign ? -x : x;
}

INT_DOUBLE_BINOP_DECL (*, uint64)
{
  if (y >= 0 && y < octave_uint64::max () && y == xround (y))
    {
      return x * octave_uint64 (static_cast<uint64_t> (y));
    }
  else if (y == 0.5)
    {
      return x / octave_uint64 (static_cast<uint64_t> (2));
    }
  else if (y < 0 || xisnan (y) || xisinf (y))
    {
      return octave_uint64 (x.value () * y);
    }
  else
    {
      bool sign;
      uint64_t my;
      int e;
      dblesplit (y, sign, my, e);
      uint32_t w[4];
      umul128 (x.value (), my, w);
      octave_uint64 res = octave_uint64::zero;
      for (short i = 0; i < 4; i++)
        {
          res += octave_uint64 (dbleget (sign, w[i], e));
          e += 32;
        }
      return res;
    }
}

DOUBLE_INT_BINOP_DECL (*, uint64)
{ return y * x; }

INT_DOUBLE_BINOP_DECL (*, int64)
{
  if (fabs (y) < octave_int64::max () && y == xround (y))
    {
      return x * octave_int64 (static_cast<int64_t> (y));
    }
  else if (fabs (y) == 0.5)
    {
      return x / octave_int64 (static_cast<uint64_t> (4*y));
    }
  else if (xisnan (y) || xisinf (y))
    {
      return octave_int64 (x.value () * y);
    }
  else
    {
      bool sign;
      uint64_t my;
      int e;
      dblesplit (y, sign, my, e);
      uint32_t w[4];
      sign = (sign != (x.value () < 0));
      umul128 (octave_int_abs (x.value ()), my, w);
      octave_int64 res = octave_int64::zero;
      for (short i = 0; i < 4; i++)
        {
          res += octave_int64 (dbleget (sign, w[i], e));
          e += 32;
        }
      return res;
    }
}

DOUBLE_INT_BINOP_DECL (*, int64)
{ return y * x; }

DOUBLE_INT_BINOP_DECL (/, uint64)
{
  return octave_uint64 (x / static_cast<double> (y));
}

DOUBLE_INT_BINOP_DECL (/, int64)
{
  return octave_int64 (x / static_cast<double> (y));
}

INT_DOUBLE_BINOP_DECL (/, uint64)
{
  if (y >= 0 && y < octave_uint64::max () && y == xround (y))
    {
      return x / octave_uint64 (y);
    }
  else
    return x * (1.0/y);
}

INT_DOUBLE_BINOP_DECL (/, int64)
{
  if (fabs (y) < octave_int64::max () && y == xround (y))
    {
      return x / octave_int64 (y);
    }
  else
    return x * (1.0/y);
}

#define INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP,T1,T2) \
  template OCTAVE_API bool \
  octave_int_cmp_op::emulate_mop<octave_int_cmp_op::OP> (T1 x, T2 y)

#define INSTANTIATE_INT64_DOUBLE_CMP_OP(OP) \
  INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP, double, int64_t); \
  INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP, double, uint64_t); \
  INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP, int64_t, double); \
  INSTANTIATE_INT64_DOUBLE_CMP_OP0(OP, uint64_t, double)

INSTANTIATE_INT64_DOUBLE_CMP_OP(lt);
INSTANTIATE_INT64_DOUBLE_CMP_OP(le);
INSTANTIATE_INT64_DOUBLE_CMP_OP(gt);
INSTANTIATE_INT64_DOUBLE_CMP_OP(ge);
INSTANTIATE_INT64_DOUBLE_CMP_OP(eq);
INSTANTIATE_INT64_DOUBLE_CMP_OP(ne);

#endif

//template <class T>
//bool
//xisnan (const octave_int<T>&)
//{
//  return false;
//}

template <class T>
octave_int<T>
pow (const octave_int<T>& a, const octave_int<T>& b)
{
  octave_int<T> retval;

  octave_int<T> zero = static_cast<T> (0);
  octave_int<T> one = static_cast<T> (1);

  if (b == zero || a == one)
    retval = one;
  else if (b < zero)
    {
      if (a == -one)
        retval = (b.value () % 2) ? a : one;
      else
        retval = zero;
    }
  else
    {
      octave_int<T> a_val = a;
      T b_val = b; // no need to do saturation on b

      retval = a;

      b_val -= 1;

      while (b_val != 0)
        {
          if (b_val & 1)
            retval = retval * a_val;

          b_val = b_val >> 1;

          if (b_val)
            a_val = a_val * a_val;
        }
    }

  return retval;
}

template <class T>
octave_int<T>
pow (const double& a, const octave_int<T>& b)
{ return octave_int<T> (pow (a, b.double_value ())); }

template <class T>
octave_int<T>
pow (const octave_int<T>& a, const double& b)
{
  return ((b >= 0 && b < std::numeric_limits<T>::digits && b == xround (b))
          ? pow (a, octave_int<T> (static_cast<T> (b)))
          : octave_int<T> (pow (a.double_value (), b)));
}

template <class T>
octave_int<T>
pow (const float& a, const octave_int<T>& b)
{ return octave_int<T> (pow (a, b.float_value ())); }

template <class T>
octave_int<T>
pow (const octave_int<T>& a, const float& b)
{
  return ((b >= 0 && b < std::numeric_limits<T>::digits && b == xround (b))
          ? pow (a, octave_int<T> (static_cast<T> (b)))
          : octave_int<T> (pow (a.double_value (), static_cast<double> (b))));
}

// FIXME: Do we really need a differently named single-precision
//        function integer power function here instead of an overloaded
//        one?
template <class T>
octave_int<T>
powf (const float& a, const octave_int<T>& b)
{ return octave_int<T> (pow (a, b.float_value ())); }

template <class T>
octave_int<T>
powf (const octave_int<T>& a, const float& b)
{
  return ((b >= 0 && b < std::numeric_limits<T>::digits && b == xround (b))
          ? pow (a, octave_int<T> (static_cast<T> (b)))
          : octave_int<T> (pow (a.double_value (), static_cast<double> (b))));
}

#define INSTANTIATE_INTTYPE(T) \
  template class OCTAVE_API octave_int<T>; \
  template OCTAVE_API octave_int<T> pow (const octave_int<T>&, const octave_int<T>&); \
  template OCTAVE_API octave_int<T> pow (const double&, const octave_int<T>&); \
  template OCTAVE_API octave_int<T> pow (const octave_int<T>&, const double&); \
  template OCTAVE_API octave_int<T> pow (const float&, const octave_int<T>&);  \
  template OCTAVE_API octave_int<T> pow (const octave_int<T>&, const float&);  \
  template OCTAVE_API octave_int<T> powf (const float&, const octave_int<T>&); \
  template OCTAVE_API octave_int<T> powf (const octave_int<T>&, const float&); \
  template OCTAVE_API octave_int<T> \
  bitshift (const octave_int<T>&, int, const octave_int<T>&); \

INSTANTIATE_INTTYPE (int8_t);
INSTANTIATE_INTTYPE (int16_t);
INSTANTIATE_INTTYPE (int32_t);
INSTANTIATE_INTTYPE (int64_t);

INSTANTIATE_INTTYPE (uint8_t);
INSTANTIATE_INTTYPE (uint16_t);
INSTANTIATE_INTTYPE (uint32_t);
INSTANTIATE_INTTYPE (uint64_t);


/*

%!assert (intmax ("int64") / intmin ("int64"), int64 (-1))
%!assert (intmin ("int64") / int64 (-1), intmax ("int64"))
%!assert (int64 (2**63), intmax ("int64"))
%!assert (uint64 (2**64), intmax ("uint64"))
%!test
%! a = 1.9*2^61; b = uint64 (a); b++; assert (b > a);
%!test
%! a = -1.9*2^61; b = int64 (a); b++; assert (b > a);
%!test
%! a = int64 (-2**60) + 2; assert (1.25*a == (5*a)/4);
%!test
%! a = uint64 (2**61) + 2; assert (1.25*a == (5*a)/4);
%!assert (int32 (2**31+0.5), intmax ("int32"))
%!assert (int32 (-2**31-0.5), intmin ("int32"))
%!assert ((int64 (2**62)+1)**1, int64 (2**62)+1)
%!assert ((int64 (2**30)+1)**2, int64 (2**60+2**31) + 1)

%!assert (uint8 (char (128)), uint8 (128));
%!assert (uint8 (char (255)), uint8 (255));
%!assert (int8 (char (128)), int8 (128));
%!assert (int8 (char (255)), int8 (255));

%!assert (uint16 (char (128)), uint16 (128));
%!assert (uint16 (char (255)), uint16 (255));
%!assert (int16 (char (128)), int16 (128));
%!assert (int16 (char (255)), int16 (255));

%!assert (uint32 (char (128)), uint32 (128));
%!assert (uint32 (char (255)), uint32 (255));
%!assert (int32 (char (128)), int32 (128));
%!assert (int32 (char (255)), int32 (255));

%!assert (uint64 (char (128)), uint64 (128));
%!assert (uint64 (char (255)), uint64 (255));
%!assert (int64 (char (128)), int64 (128));
%!assert (int64 (char (255)), int64 (255));
*/